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The long-term mortality of patients with kidney failure remains unacceptably high. There are a multitude of
reasons for the unfavorable status quo of dialysis care, such as the inadequate and suboptimal pattern of
uremic toxin removal resulting in a metabolic and hemodynamic “roller coaster” induced by thrice-weekly
in-center hemodialysis. Innovation in dialysis delivery systems is needed to build an adaptive and self-
improving process to change the status quo of dialysis care with the aim of transforming it from being
reactive to being proactive. The introduction of more physiologic and smart dialysis systems using artificial
intelligence (Al) incorporating real-time data into the process of dialysis delivery is a realistic target. This
would enable machine learning from both individual and collective patient treatment data. This has the
potential to shift the paradigm from the practice of population-driven, evidence-based data to precision
medicine. In this review, we describe the different components of an Al system, discuss the studied
applications of Al in the field of dialysis, and outline parameters that can be used for future smart, adaptive
dialysis delivery systems. The desired output is precision dialysis; a self-improving process that has the
ability to prognosticate and develop instant and individualized predictive models.

he number of patients with end stage kidney disease

(ESKD) receiving dialysis has exceeded 2.5 million
globally and expected to double to 5.4 million by 2030."*
Since its introduction by Dr Willem Kolff in 1943, he-
modialysis has saved patients with kidney failure from
imminent death; however, premature death has remained
unacceptably high.'” A factor that could be responsible for
this is that dialysis does not fully replace the kidneys’
functions and that it mainly removes small nonprotein
bounded uremic toxins.” Approximately one-quarter of
patients die within the first year of dialysis initiation.'
Suboptimal outcomes of patients labeled as receiving
“adequate dialysis” according to widely accepted param-
eters, such as Kt/V, indicate the need for revisiting the
definition of adequate dialysis.

Over the past decades, modifications in dialysis delivery
systems have not resulted in a significant improvement in
patient outcomes.” Poor quality of life of patients receiving
dialysis with overwhelming symptoms, such as insomnia,
pruritus, anxiety and depression, remains an important
challenge.” The conventional 3 times weekly hemodialysis
practice is largely administered because of logistic and cost
concerns rather than clinical outcomes.” Patients on thrice-
weekly dialysis experience a metabolic and hemodynamic
“roller coaster” of fluid, toxin, and solute removal that
may contribute to poor outcomes. Despite the lower dia-
lytic clearance of peritoneal dialysis (PD),° outcomes of
patients on PD, at least in the short term, are comparable
with patients on hemodialysis,""” which may in part be
related to the shorter interdialytic period.

Conventional dialysis does not provide automatic dynamic
responses to unexpected (yet common) hemodynamic
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changes during a patient’s treatment. For example, the
reaction to a drop in blood pressure during dialysis is
frequently delayed until the patient experiences symptoms
of hypotension or the dialysis nurse notices the reading
and responds to the situation. The greater the frequency of
such episodes is, the greater the likelihood of loss of re-
sidual kidney function and increased potential for cardiac,
cerebral, and gut ischemia.’ This is reactionary dialysis
care and delivery. Although there is a limited number of
small studies in the dialysis space, large-scale well-con-
ducted studies are needed for the operationalization of
artificial intelligence (AI) approaches in dialysis delivery.

Innovation in dialysis delivery systems is needed to
build an adaptive and self-improving process minimizing
the metabolic and hemodynamic “roller coaster” to change
the status quo of dialysis care with the aim of transforming
it from being reactive to being proactive. The nephrology
community (patients and providers) and the dialysis in-
dustry is overdue a future in which the technological
advancement in dialysis care and delivery can at least
match and ideally outpace the innovations and improve-
ments seen in other industries from electric vehicles,
handheld communication devices, and entertainment
products.

ARTIFICIAL INTELLIGENCE

Al is a field of study of computations enabled to perceive,
reason, and act.” Machine learning (ML) is considered a
branch of AI that is capable of self-improvement and
learning from experience without the need for explicit
programming for a specific task (Fig 1).” Al can help solve
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Artificial Intelligence
Computer systems that can perform tasks by combining large datasets and
programming to enable problem-solving in a way that mimics human intelligence

2 8

Machine Learning
Self-improvement and learning from experience, without explicit programming for a
specific task, to generate generalizable predictive patterns

1

Artificial Neural Network
Mimics the process of human learning. Utilizes large datasets to identifies patterns.
Comprised of an input layer (features), optional hidden layers, and one output
layer (labels).

Figure 1. A summary of artificial intelligence.

multidimensional nonlinear problems. Although there is
no clear line to distinguish statistical models from ML, the
focus of traditional statistical models is to draw inference
from a sample, whereas ML is mainly designed to produce
generalizable predictive patterns.'’

A subset of ML called “deep learning” is made of arti-
ficial neural network (ANNs) (Fig 1). Inspired by the
function of biologic neurons, the neural networks have
been developed to mimic the process of human learning.
In contrast to conventional ML, which is required to be
carefully designed by human engineers, the process of
deep learning by ANNs is based on a general-purpose
learning procedure that learns from data and identifies
patterns in a large data set.'' An ANN has one input layer
(features), optional hidden layers and one output layer
(labels).”'” For example, an image is an array of pixels.
Each pixel has a value in the corresponding neuron in the
first layer of the neural network. Let us assume that the
learned feature in the first layer is the presence or absence
of edges at particular orientations of an image. The second
layer may detect motifs of particular arrangements of the
edges, and the third layer may assemble those motifs into
larger combinations corresponding to parts of familiar
objects, and subsequent layers may detect the object using
a combination of these learned features."'

To validate its performance, the ANN needs to be
trained by data sets that are diverse and representative of
problem domain proportionate to the size of the network
and the complexity of the desired output and the number
of features selected and eventually tested on a separate data
set before it can be used for a practical purpose.” Complex
relationships between features and labels beyond the
abilities of human can be learned by ANNs when per-
forming tasks. A clinical application of this would be using
heterogeneous data obtained from electronic medical re-
cords, images, continuous monitoring data, vital signs,
laboratory parameters and geonomics, pharmacogenomics
for learning process and providing predictions to support
clinical decisions.'”

There is a growing role for AI in health care, creating
new standards of care, risk, care debt gap identification,
and care variation reduction.'” It is expected that Al-driven
approaches will result in incremental changes in health
care.'” The US Food and Drug Administration (FDA) has
cleared 700 AI algorithms for medical use, mostly in the
field of radiology.'” AI in medicine has been used to
identify high risk patients for inhospital mortality, length
of stay, and 30-day readmission rates.'” It has also been
used to identify known drug—drug interactions as well as
predicting unknown drug interactions.'® In nephrology,
Al systems have been used to predict acute kidney injury'’
and chronic kidney disease progression'® and applied in
transplant' ** and nephropathology.”'*** The prediction
of glomerular filtration rate decline in autosomal dominant
polycystic kidney disease, evaluation of risk of progressive
IgA nephropathy”’, and the estimation of tacrolimus area
under the curve in transplant recipients are among the
examples.

Al IN THE DIALYSIS SPACE

Establishing dry weight for dialysis patients is chal-
lenging. Both intradialytic hypertension and hypoten-
sion are common complications and are associated with
poor outcomes.”**® A deep learning model was applied
to predict the risk of intradialytic hypotension using a
time stamp-bearing data set of 261,647 hemodialysis
sessions with 1,600,531 independent timestamps, such
as time-varying vital signs.”” The recurrent neural
network model for predicting intradialytic hypotension
achieved an area under the receiver operating charac-
teristic curve of 0.94, which was higher than that ob-
tained wusing multilayer perceptron, light gradient
boosting machine, and logistic regression models
(P<0.001). AI algorithms such as the deep learning
model can be used to predict the real-time risk of
intradialytic hypotension.”” A neural network using
bioimpedance in 14 pediatric patients used blood
pressure and blood volume monitoring to determine
dry weight and compared the results with the dry
weight determined by nephrologists.”® The AI dry
weight was found to be higher than the dry weight
determined by nephrologists in 28.6% of the cases and
lower in 50% of the cases. The mean difference between
AI- and nephrologist-determined dry weights was
0.497 kg (—1.33 to +1.29 kg). In those patients with Al
dry weight lower than nephrologist dry weight, systolic
blood pressure decreased after dry weight was adjusted
to AI dry weight (77th to 60th percentile, P =0.022).
Antihypertensive medications were reduced or dis-
continued in 28.7% of the cases. In those with Al
dry weight higher than nephrologist dry weight, no
hypertension was detected after dry weight was
increased to AI dry weight. Symptoms associated with
dry weight underestimation also subsided. In this
study, Al predictions clearly outperformed experienced
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Figure 2. Artificial intelligence empowered clinical decision support system provides individualized recommended dose of an
erythrocyte-stimulating agent based on the predicted response to the erythrocyte-stimulating agent.

nephrologists, indicating a potential role for Al-assisted
dry weight adjustments in hemodialysis patients.

An Al algorithm has been used to improve anemia
management in patients on hemodialysis aiming for
optimized use of erythropoietic-stimulating agents (ESAs)
(Fig 2). The Anemia Control Model (ACM) was used in 3
pilot clinics as part of routine practice for an observation
period of 12 months.”” The ACM calculates the ESA dose
based on an ANN model in which patients’ clinical pa-
rameters are considered as the input. The model will
predict the future hemoglobin (Hb) concentration. The
algorithm simulates the effect of varying doses of ESA and
suggests an optimal prescription to achieve the Hb target.
A control group of 653 hemodialysis patients were treated
by physicians according to standard of care without the
ACM (group 1). A matched group of 640 patients were
treated by physicians who had access to the ACM recom-
mendations (group 2). Darbepoetin consumption declined
by 25% in group 2, and despite instances of physicians
rejecting ACM guidance, the percentage of Hb values at
target range increased by 6%. In the subset of patients in
group 2 whose physicians accepted the suggestions of the
ACM, a more decisive improvement in Hb was noted
(83.2% Hb values on target; median darbepoetin 20
[interquartile range, 80] mcg/month).”’

DIALYSIS ADEQUACY

Urea clearance has been the mainstay of measuring dialysis
adequacy. The volume of distribution of urea reflects total
body fluid given that urea is neither highly protein bound
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nor lipophilic. Kt/V is a dimensionless construct that re-
lates the clearance of urea to its volume of distribution. K is
the urea clearance of the dialyzer, t is the dialysis duration
in minutes, and V is the urea volume of distribution in
milliliters corrected for volume lost during ultrafiltra-
tion.””” Kt/V is a predictor of mortality for patients
receiving dialysiss"sz; however, using Kt/V as the sole
marker of dialysis adequacy can be misleading. Kt/V does
not account for clinical symptoms, volume control,
nutritional status, and other biochemical factors influ-
encing clinical outcomes. Moreover, the kinetic behavior
of urea molecules is not similar to other small solutes such
as guanidine compounds that, in contrast to urea, are
known to be toxic.>” In addition, the assumption is that
the Kt/V of one dialysis session is representative of all
other sessions, which is most likely not the case. Therefore,
it can be challenging to determine the true “adequacy” of
dialysis using Kt/V.

On the other hand, direct dialysate quantification
(DDQ) is the most accurate and direct method of
measuring dialytic urea nitrogen removal’*; however,
collecting the entire spent dialysate is not feasible or
practical. A neural network model was applied to predict
blood urea concentration during hemodialysis.”” Using
DDQ at 30-minute intervals during dialysis, total urea
removal was measured in 15 hemodialysis patients. The
neural network model was initially trained to learn the
evolution of measured urea concentrations and was sub-
sequently used in another group of 15 hemodialysis pa-
tients. The neural network was able to predict the dialysis
duration needed to reach a target solute removal index
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with a prediction error of 10.9%. There was no significant
difference between the predicted total urea nitrogen
removal and urea nitrogen removal measured using DDQ.
Although the prediction model was not exact at all in-
tervals, predicted dialysis duration was comparable to the
actual duration required to reach target urea removal, and
the concept can be applied to intradialysis profiling of
solutes based on individual clinical needs aiming to pro-
vide precision dialysis.

Given that malnutrition is common among dialysis
population and associated with adverse outcomes’®, esti-
mations of patients’ protein catabolic rate (PCR) can be
significantly consequential to the quality of dialysis deliv-
ered. PCR is indicative of interdialytic urea generation and
is used as a parameter to reflect dietary protein intake. An
ANN model was found to provide a more accurate cor-
relation between estimated and calculated follow-up PCR
(P<0.001) compared with experienced nephrologists.
The use of the ANN therefore enhances a nephrologist’s
ability to estimate and detect an unsatisfactory nutritional

37
status.

ADAPTIVE DIALYSIS PRESCRIPTION: SCIENCE
FICTION OR REALITY?

Most patients on thrice-weekly dialysis receive the same
dialysis prescription for weeks or months regardless of
their dietary intake. This is despite variations in their di-
etary habits and changes over time. There is a push for the
increased use of mobile food logging applications by pa-
tients, whereby they can log everything they eat and drink
and photograph their meals. This will allow their dietitians
to calculate the caloric and macronutrient content of their
food and therefore help guide the clinical care team when
implementing changes to the dialysis prescription.
Currently, a predialysis serum potassium level checked
once a month is used as a representative of the entire
month’s dietary intake of potassium. This can be and often
is misleading. Clinical validation of such approaches will
be challenging; however, nephrologists should be pre-
pared to respond and adjust the dialysis prescription as
needed based on such data. Checking serum potassium
levels every dialysis treatment may sound costly and
cumbersome; however, using imperfect measurements
such as potassium levels from i-STAT chemistry devices
incorporated into dialysis machine functionality can serve
as a tool to complement the data from food log applica-
tions. The implementation of this would require a clinical
decision support system that can make recommendations
to the dietitian and nephrologist about dietary adjustments
and changes to the potassium bath based on a combination
of food log application data and i-STAT potassium levels.
Al algorithms with input from blood volume moni-
toring and bioimpedance data in combination with bio-
markers such as brain natriuretic peptide’® and lung
ultrasonography’” present a possible step toward
improving volume management in dialysis patients.

Establishing a dry weight based on traditional methods
appears to be unreliable and likely contributes to poor
patient outcomes. Employing available biomarkers and
imaging data may help develop algorithms to establish
accurate dry weight and predict outcomes such as intra-
dialytic hypotension. Such AI algorithms can recognize
patterns and provide recommendations accordingly;
however, this is not a replacement for clinical assessment.

DATA LAKE: FROM CLINICAL PARAMETERS TO
DIALYZER MANUFACTURER

Data Lake is a centralized repository that stores large
amounts of unprocessed data. Because the cost of data
storage constantly decreases, this makes it more feasible to
collect and store all dialysis patient and treatment data. This
includes patients’ demographics, comorbid conditions,
laboratory results, and imaging data obtained using inte-
grated electronic medical records, real-time vital sign
measurements and/or wearable heart rhythm monitor
data, blood volume monitoring, blood flow rate, dialysate
flow rate, dialysate composition, dialysis consumables
characteristics, dialyzer, and fiber manufacturer’s model
number, lot number, and so on.

Leveraging big data and Al algorithms, nephrologists
and other members of the clinical care team may
cautiously benefit from clinical decision support system.
Dialysis patients can therefore benefit from their own
treatment data as well as anonymous data from other pa-
tients to predict adverse events and provide dynamic re-
sponses. Direct feedback from the dialysis chair side to the
dialysis equipment manufacturer would be also important
to optimize the process and surgery, which may have
clinical implications (Fig 3).

THE FUTURE AHEAD

It is too soon to draw conclusions about the applicability of
Al algorithm-based practices on a population scale. The
incorporation of large data sets is a prerequisite for the
appropriate training of the AI algorithm and its imple-
mentation. On the other hand, access to large human data
sets will raise other concerns including regulatory, access
to protected health information, data leakage, ownership
of data and informed consent issues.'” Strict regulatory
oversight for the development and monitoring of AI sys-
tems is needed to ensure safe and ethical Al-driven prac-
tices and models. That being said, there are barriers to the
widespread integration of Al into clinical practice. Lack of
physician awareness, concerns regarding its effect on the
patient—doctor relationship, as well as uncertainty of stake
holders about the return on investment are among the
barriers. Developing guidelines to ensure the responsible
use of Al is crucial. To help combat some of these con-
cerns, the World Health Organization (WHO) has outlined
considerations for regulation of AI for health,”” and an
executive order from the White House has been issued on
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Figure 3. All data from continuous dialysis monitoring, vital signs, patient demographics, laboratory results, imaging results, and ge-
netic testing results can be used as the input for the learning process to provide predictions and a clinical decision support system

for clinicians.

the safe, secure and trustworthy use of Al while managing
the risks, protecting privacy, civil rights and advancing eq-
uity.”' The FDA has also outlined a regulatory approach
tailored to AT and ML technologies used in medical devices."”

Caution is advised with the widespread incorporation of
Al in dialysis. Prediction models are as accurate as the data
used to generate them. For example, gaps in the data of
dialysis patients that do not factor in crucial relevant
clinical information such as hospitalization information,
acute illnesses, and the effect of residual kidney function
may adversely affect the Al-generated recommendations
and management.

In conclusion, Al is a support system and not a
replacement for clinical judgment and should not
decrease the vigilance of practitioners. As technology
advances and cost of data storage constantly decreases, it
is feasible to collect patient information and dialysis
treatment data. Using these large data sets, unbiased Al
algorithms can be trained to identify patterns with clinical
implications confirmed by clinicians. The introduction of
more physiologic and smart dialysis systems equipped
with AI approaches can enable learning from individual
and collective treatment data and provide dynamic re-
sponses to unexpected changes during dialysis. The
nephrology community should become familiar with the
appropriate use and limitations of the Al-driven clinical
decision support system. It is yet to be demonstrated how
big data and Al tools could improve outcomes of dialysis
patients.
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