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Tuning the performance of a micrometer-sized
Stirling engine through reservoir engineering
Niloyendu Roy 1✉, Nathan Leroux 2, A. K. Sood3,4 & Rajesh Ganapathy 4,5

Colloidal heat engines are paradigmatic models to understand the conversion of heat into

work in a noisy environment - a domain where biological and synthetic nano/micro machines

function. While the operation of these engines across thermal baths is well-understood, how

they function across baths with noise statistics that is non-Gaussian and also lacks memory,

the simplest departure from the thermal case, remains unclear. Here we quantified the

performance of a colloidal Stirling engine operating between an engineered memoryless non-

Gaussian bath and a Gaussian one. In the quasistatic limit, the non-Gaussian engine func-

tioned like a thermal one as predicted by theory. On increasing the operating speed, due to

the nature of noise statistics, the onset of irreversibility for the non-Gaussian engine preceded

its thermal counterpart and thus shifted the operating speed at which power is maximum.

The performance of nano/micro machines can be tuned by altering only the nature of

reservoir noise statistics.
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Experimental advances in nano/micro manipulation have
made feasible the realization of mesoscale heat engines with
only a single atom1 or colloidal particle2–6 as the working

substance. Even while the functioning of these engines is strongly
influenced by fluctuations in the local environment with quan-
tities like work and efficiency becoming stochastic, when oper-
ating between thermal/Gaussian heat baths, their cycle-averaged
performance mirrors their macroscopic counterparts, and stan-
dard thermodynamic relations apply7–12. Recently, Krishna-
murthy et al.13 experimentally realized an active stochastic heat
engine by replacing the isothermal branches of a conventional
Stirling cycle with isoactive ones. Here, a colloidal particle in a
time-varying optical potential was periodically cycled across two
bacterial reservoirs characterized by different levels of activity.
Unlike in thermal baths where the displacement distribution of
the colloid, ρ(x), is Gaussian, in active reservoirs, it was non-
Gaussian and heavy-tailed13,14. These rare large displacement
events resulted in large work output and the efficiency of this
active engine was found to surpass equilibrium engines; even
those operating between thermal baths with an infinite tem-
perature difference. Since the metabolic activity of the bacteria
could not be altered rapidly, this engine was operated only in the
quasistatic limit, i.e., for a cycle duration τ larger than the
relaxation time of the colloid. Subsequent theoretical calculations
for the τ→∞ limit posited that a departure from equilibrium
efficiencies requires noise not just with non-Gaussian statistics
but also with memory, a feature typical of active baths due to the
persistent motion of the particles15. In fact, when the bath noise is
non-Gaussian and white, an effective temperature Teff defined
through the variance of ρ(x) is thought to act like a bona fide
temperature15,16 and engines operating between such baths are
expected to perform like thermal ones in the quasistatic limit.
Whether this similarity persists when τ is reduced and irrever-
sibility begins to set in is not known and is worth exploring since
real heat engines never operate in the quasistatic limit as here
their power P→ 0. On the experimental front, memoryless non-
Gaussian heat baths are yet to be realized and predictions even in
the quasistatic limit remain untested.

Here we engineered non-Gaussian heat baths without memory
(δ-correlated noise) and with different kurtosis, κ, and then
operated colloidal Stirling heat engines between these baths and
thermal ones for different τ. In the quasistatic limit, the perfor-
mance of these non-Gaussian engines mirrored a classical Stirling
engine operating between thermal/Gaussian baths in agreement
with theoretical predictions. Strikingly, due primarily to differ-
ences in the noise statistics of the baths, the small τ behavior of
these engines was quite different. On lowering τ, not only did the
distribution of work done per cycle, ρ(Wcyc), for the non-
Gaussian engines become increasingly negatively skewed, unlike
the standard Stirling case where it remained Gaussian, the onset
of irreversibility for these engines was also different. Importantly,
we demonstrate that even without memory, changing the nature
of noise statistics of the reservoirs between which an engine
operates allows tuning its performance characteristics, specifi-
cally, the τ at which the power goes through a maximum.

Results
Reservoir engineering by flashing optical traps. Our experi-
mental scheme for reservoir engineering is elaborated in Fig. 1a.
A polystyrene colloidal particle of radius R= 2.5 μm suspended in
water is held in a harmonic optical potential, U ¼ 1

2 k1hx2i, cre-
ated by tightly focusing a laser beam (1064 nm ALS-IR-5-SF,
Azur Light Systems France) through a microscope objective
(Leica Plan Apochromat 100×, N.A. 1.4, oil) that is also used for
imaging the particle (see “Methods”). Here, k1 is the stiffness of

this primary trap, x is the displacement of the colloid from the
center of the optical trap and 〈〉 denotes an average. At equili-
brium, the trap stiffness can be determined through the equi-
partition relation 1

2 k1hx2i ¼ 1
2 kBT where kB is the Boltzmann

constant and T is the bath temperature, which in our experiments
is fixed at 300 K. As a first step, we attempted to engineer a
reservoir that mimicked a thermal bath, i.e., with Gaussian noise
statistics, but with the desired Teff. To this end, we imposed an
additional noise on the colloidal particle along one spatial
dimension, here the x-axis (Fig. 1a), from a second optical trap of
fixed intensity but with a time-dependent center that was flashed
at a distance δa(t) away from the primary one (Fig. 1b). This was
made possible by using a second laser (Excelsior 1064 nm, Spectra
Physics USA) coupled to the microscope through a spatial light
modulator (SLM). The refresh rate of the SLM set the speed at
which the secondary traps could be flashed and to ensure that our
findings were not sensitive to the SLM’s refresh rate, experiments
were carried out with both a low-speed SLM (Boulder Nonlinear
Systems USA) with a flashing frequency of 34 Hz and a high-
speed SLM (Meadowlark Optics USA) with a flashing frequency
of 135 Hz (see “Methods”). Earlier reservoir engineering studies
wherein the colloidal particle experienced only the potential from
the flashing trap found that when δa was drawn from a Gaussian
distribution, the particle indeed behaved like one in a thermal
bath but at a Teff > T and furthermore, when δa(t) < R, the trap
stiffness also remained unaltered.17,18. Here, we adhered to the
same protocol and further ensured that the peak of the δa dis-
tribution coincided with the center of the primary trap. Thus, the
effective trap stiffness in our experiments k= k1+ k2, where k2 is
the stiffness of the flashing trap. Like in a thermal bath, ρ(x) of the
trapped colloidal particle was a Gaussian (solid circles in Fig. 1d),
and its power spectral density (PSD) a Lorentzian, allowing us to
determine k2 and hence Teff18 (Supplementary Fig. 1 and Sup-
plementary Note 1). For the δa(t) profile shown in Fig. 1b, the
particle experienced a Teff= 1331 K.

Engineering a memoryless non-Gaussian reservoir involved only a
small tweak to the manner in which the external noise was imposed
on the colloidal particle. The instantaneous δa was now drawn
randomly from a distribution with zero mean and skew, as before,
but with a high κ (see “Methods” and Supplementary Fig. 2). Such a
distribution has a narrow central region with heavy tails. The flashing
optical trap is thus mostly coincident with the primary trap, thereby
confining the particle strongly, and is occasionally positioned a large
distance away from the center leading to a large excursion by the
particle (Fig. 1c and Supplementary Movie). The overall noise
experienced by the particle is δ-correlated as the thermal and
imposed noise are individually δ-correlated. Under the influence of
such a noise, the corresponding ρ(x) of the colloidal particle was also
non-Gaussian. The hollow squares in Fig. 1d show ρ(x) (κ= 27) for a
flashing frequency of 34Hz and the hollow triangles in Supplemen-
tary Fig. 4a show ρ(x) (κ= 10) for a flashing frequency of 135Hz.
The PSD of the trapped particle, for both the flashing frequencies,
could be fit to a Lorentzian with the fit showing better agreement
with the data over a broader dynamic range for the higher flashing
frequency. This suggests that the overall noise experienced by the
particle is indeed uncorrelated and additive. Since all other
experimental parameters are held fixed, the roll-off frequency of
the PSD was also same as that of the Gaussian case (Supplementary
Fig. 3 and Supplementary Note 1). For an appropriate choice of the
variance and kurtosis of the δa distribution, we could engineer the
Teff of the non-Gaussian bath, again defined through the variance of
ρ(x), to be nearly identical to that in a Gaussian bath (Fig. 1d).

Performing a Stirling cycle between engineered reservoirs.
Armed with the capability to engineer reservoirs, we first built a
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Fig. 1 Experimental realization of a non-Gaussian Stirling heat engine. a The big red spot represents the primary optical trap and the small red spots
represent the secondary flashing optical trap at different time instances t1–t3. b, c The distance δa(t) from the primary trap at which the secondary trap was
flashed as a function of t for engineering a Gaussian and a non-Gaussian reservoir, respectively. d The probability distribution of particle displacements,
ρ(x), for the engineered Gaussian/thermal (solid blue circles) and the non-Gaussian reservoir with κ= 27 (red hollow squares) for a nearly identical Teff.
e A quintessential Stirling cycle between a hot non-Gaussian (κ= 20) bath at TH

eff ¼ 1824 K and a cold Gaussian reservoir with TC
eff ¼ 1570 K. The trap

stiffness k is varied linearly in the expansion/compression steps. Having a fixed primary trap and a second flashing optical trap, as opposed to just the
latter, prevented the trapped particle from escaping the trap and allowed for long experiments. ρ(x) of the particle measured at the four-state points (at
equilibrium) labeled ①–④ is also shown. The black lines are Gaussian fits.
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colloidal Stirling engine operating between a hot non-Gaussian
(κ= 20) and a cold Gaussian bath held at temperatures
TH
eff ¼ 1824 K and TC

eff ¼ 1570 K, respectively. We then com-
pared the performance of this engine with yet another non-
Gaussian engine operating between a hot reservoir (TH

eff ¼ 1500
K, κ= 10) and a cold Gaussian reservoir (TC

eff ¼ 1140 K) (see
Supplementary Fig. 4 and Supplementary Note 4) and also a
standard Stirling engine operating between engineered Gaussian
baths with TH

eff ¼ 1378 K and TC
eff ¼ 1238 K (see Supplementary

Note 2). The Stirling cycle we executed with the trapped colloid
(Fig. 1e), like in the previous studies2,13,19, comprised of an iso-
thermal compression (path ①–②) and expansion step (path ③–④)
linked by two isochoric transitions (paths ②–③ and ④–①). In the
isothermal compression (expansion) steps, k was increased
(decreased) linearly by changing k1 alone (see Fig. 1e and Sup-
plementary Note 4). The isochroric transitions were nearly
instantaneous and occurred on millisecond time scales. We
exploited the ability to rapidly alter Teff and also the nature of
noise statistics through the SLM to explore engine performance
over a range of τ which spanned from 2 to 32 s (see “Methods”).

Elucidating the origins of irreversibility in the non-Gaussian
Stirling engine. The framework of stochastic thermodynamics
provides a prescription for calculating thermodynamic quantities
like the work, power, and efficiency of mesoscopic machines7,8,10,19.
The work done per cycle, Wcyc, by the particle due to a modulation
in the stiffness of the trap is just the change in potential energy and
is given by Wcyc ¼

R tiþτ
ti

∂U
∂k � dk � 1

2

R tiþτ
ti

x2 � dk. Here, the ∘ sig-
nifies that the product is taken in the Stratonovich sense and ti is the
starting time of ith cycle. Owing to its stochastic nature, Wcyc of the
engine fluctuates from cycle-to-cycle and we quantified the nature of
these fluctuations through the probability distribution function ρ
(Wcyc). Figure 2a, b shows ρ(Wcyc) at different τ for the thermal and
non-Gaussian (κ= 20) Stirling cycles, respectively (see Supplemen-
tary Fig. 4b for a non-Gaussian engine with κ= 10 for the hot
reservoir). Focusing on the large cycle duration (τ= 18.8 s) first, we
observed that ρ(Wcyc) is a Gaussian for the thermal and also for the
non-Gaussian cycles (circles in Fig. 2a, b and see Supplementary
Fig. 4b). The experimentally calculated average work done per cycle,
〈Wcyc〉, is negative indicating that the engine extracts heat from the
bath to perform work on the surroundings. Further, τ= 32 s cor-
responds to the quasistatic limit for all the engines since the value of
〈Wcyc〉 is in excellent agreement with the theoretically calculated

quasistatic Stirling work output, W1 ¼ kBðTC
eff � TH

eff Þ ln
ffiffiffiffiffiffi
kmax
kmin

q
(short solid horizontal lines in Fig. 2c and Supplementary Fig. 4c).

On lowering τ, ρ(Wcyc) for the thermal Stirling engine
remained Gaussian (Fig. 2a) and 〈Wcyc(τ)〉 ≈ 〈Wcyc(τ= 32 s)〉
(hollow circles Fig. 2c). As expected of such a distribution, 〈Wcyc〉
was the same as the most probable work W*—the value of Wcyc

where ρ(Wcyc) is a maximum (solid circles Fig. 2c). For both the
non-Gaussian engines on the other hand, on reducing τ, ρ(Wcyc)
became increasingly negatively skewed (Fig. 2b and Supplemen-
tary Fig. 4b) and W*(τ) also became increasingly positive (solid
squares Fig. 2c and solid triangles in Supplementary Fig. 4c).
〈Wcyc(τ)〉 however, was only marginally smaller than 〈Wcyc(τ=
32 s)〉 (hollow squares Fig. 2c and hollow triangles in
Supplementary Fig. 4c). We note that the work done by a
thermal Stirling engine at a finite τ is given by the relation2,19

WðτÞ ¼ W1 þWdiss � W1 þ Σ

τ
ð1Þ

where Wdiss is the dissipative work which accounts for the
particle’s inability to fully explore the available phase space when
k is rapidly lowered during the hot isotherm and Σ is a constant

also called the irreversibility parameter. Since Wdiss is a positive
quantity as per definition, at small enough τ, the overall work
done itself can be positive indicating the stalling of the engine.
Clearly, there is no buildup of irreversibility for the thermal
engine as τ is lowered since 〈Wcyc(τ)〉≡W*(τ) ≈W∞, while for
the non-Gaussian one, there is, even if only in the most-probable
sense (〈Wcyc(τ)〉 ≈W∞ <W*(τ)), and the engine stalls for τ ≤ 10 s.
We also found excellent agreement between equation (1) and our
data allowing us to determine Σ ¼ 0:11 kBT

C
eff (red solid line in

Fig. 2c). Furthermore, the work output of the non-Gaussian
engine with κ= 10 for the hot reservoir also showed a similar
behavior (Supplementary Fig. 4c and Supplementary Note 4) with
irreversibility building up at comparatively smaller τ, resulting in
positive W* (stalling) for τ ≤ 6 s.

The observed behavior of the non-Gaussian engines can be
easily rationalized by analyzing the relaxation of the particle in
the hot isotherm at the level of an individual cycle. For the
particle to fully sample the statistical properties of the non-
Gaussian hot reservoir, it should also experience the occasional
large kicks that displace it far from the center and not just the
ones that predominantly keep it confined close to it. As τ is
lowered, in most cycles, the probability that the particle
encounters a large kick in the isothermal expansion step also
becomes increasingly small. Due to the incomplete exploration of
the available phase volume in these cycles, less useful work is
performed and W*(τ) lifts off with decreasing τ. In a few cycles,
where these large kicks are present, anomalously large work is
done by the engine and this results in ρ(Wcyc) being negatively
skewed. When an adequate number of cycles, which has to be
increased when τ is lowered, has been performed, all features of
the noise are sampled and the engine operates like one in the
quasistatic limit in an average sense with 〈Wcyc(τ)〉→W∞

(Fig. 2c). More interestingly, a comparison of non-Gaussian
engines with κ= 20 (Fig. 2c) and κ= 10 (Supplementary Fig. 4c)
for the hot reservoir, respectively, allows us to infer that this
irreversibility due to the unavailability of large kicks in the
isothermal expansion step is also dependent upon the extent of
non-Gaussianity (Supplementary Note 4). This inference can be
further strengthened by quantifying the equilibration of the
particle over a fixed, but limited, number of cycles for all τ. In
Fig. 2d, we show khx2i

kBT
H
eff

calculated over a small window in the

middle of the hot isotherm and averaged over N= 50 cycles for
the thermal (squares) and the non-Gaussian (κ= 20) engine
(circles). Despite N being small, khx2i

kBT
H
eff
is close to 1 at all τ for the

thermal engine implying that it is operating in the quasistatic
limit, while for the non-Gaussian engine (κ= 20) this is the case
only at large τ with a clear violation of quasistaticity setting in for
τ ≤ 10 s. Evidently, for a non-Gaussian engine W*(τ), and not
〈Wcyc(τ)〉, is a more precise metric for performance. To further
strengthen this claim, we plot khx2i

kBT
H
eff

at the middle of the hot

isotherm for the non-Gaussian engine with κ= 10 for the hot
reservoir in Supplementary Fig. 4d. Once again, the violation of
quasistaticity (gray-shaded region) is concurrent with the onset of
irreversibility.

Tuning the performance of a Stirling engine through mem-
oryless non-Gaussian noise. We now examined how differences
in the nature of noise statistics affected the power output of our

engines. In the quasistatic limit PðτÞ ¼ � hWcycðτÞi
τ ! 0 since

τ→∞, while at high cycle frequencies Wdiss is large and P is once
again small. At intermediate τ, however, these effects compete
resulting in a maximum in P and this is a feature of both mac-
roscopic and mesoscopic engines2,20. Figure 3a shows the most
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probable power, P�ðτÞ ¼ �W�ðτÞ
τ , for the Gaussian Stirling engine

(circles) and for the non-Gaussian one with κ= 10 (triangles) and
κ= 20 (squares) for the hot reservoir, respectively. Since for the
Gaussian engine, over the range of τ studied Σ= 0, P*(τ) is same
as P(τ) and only increases monotonically on lowering τ. Whereas
for the non-Gaussian engine on reducing τ, P*(τ), especially for
the engine with κ= 10 for the hot reservoir, first increases and
crosses zero for τ ≈ 6 s indicating stalling of the engine. Although
we do not evidence a clear maximum for the non-Gaussian
engine with κ= 20 for the hot reservoir, P*(τ) becomes negative
for τ < 10 s. We note that the primary contribution to irreversi-
bility stems from the inability of the particle to explore the
available volume during the isothermal expansion step. Better
volume equilibration can be achieved by operating the engine
across baths at higher temperatures. Our Gaussian engine how-
ever operates across baths at effective temperatures lower than the
non-Gaussian one. Thus, the maximum in P for a hypothetical
Stirling engine operating across Gaussian baths with effective
temperatures identical to either of the two non-Gaussian ones

should be at a τ that is smaller than the one for the Gaussian
engine studied here. However, even for the smallest cycle dura-
tion investigated here, we did not evidence a maximum in P for
the Gaussian engine (circles in Fig. 3a). Thus, even without
memory, altering the statistical properties of the noise bath alone
allows for tuning the performance characteristics of mesoscopic
heat engines.

For a complete understanding of the operation of the non-
Gaussian engines, we calculated their efficiency at various τ and
benchmarked it with the thermal engine. Conventionally, the

efficiency, ε ¼ Wcyc

Q , where Q is the heat absorbed by the particle
when it is in contact with the hot reservoir. Q is the sum of the
isochoric heat during the transition from state point ②–③, given
by

Q2!3 ¼ � 1
2
kmaxðTH

eff � TC
eff Þ ð2Þ

c d

ba

Gaussian Engine

Non-Gaussian Engine (   = 20)

Fig. 2 Buildup of irreversibility in the non-Gaussian Stirling engine at finite τ. In a and b, we show probability distribution of work done per cycle ρ(Wcyc)
for the Gaussian engine and for the non-Gaussian engine with κ= 20 in the hot reservoir, respectively, for different cycle durations. τ= 18.8 s (blue
triangles), τ= 10.6 s (red circles), and τ= 5.6 s (black squares). Solid lines represent corresponding Gaussian fits to the data. c Red hollow and solid
squares show the average work done per cycle 〈Wcyc〉 and the most-probable work W*, respectively, for the non-Gaussian engine with κ= 20 for the hot
reservoir at various τ. The red solid line is a fit to Eq. (1). Black hollow and solid circles show 〈Wcyc〉 and W* respectively for the thermal/Gaussian engine.
At large τ, the experimentally calculated work for these engines agrees with theoretically calculated quasistatic work W∞ indicated by the small red
horizontal line for the non-Gaussian engine with κ= 20 for the hot reservoir and by the black line for the Gaussian engine. Mean work 〈Wcyc〉 is calculated
for each realization of the engine over 450 cycles for τ= 3.7 s, 400 cycles for τ= 4 s, 278 cycles for τ= 5.6 s, 193 cycles for τ= 8 s, 150 cycles for τ= 10.6
s, 85 cycles for τ= 18.8 s and 50 cycles for τ= 32 s. d The ratio khx2i=kBTH

eff calculated at the midpoint of the hot isotherm for various τ is showed by the
red squares for the non-Gaussian engine with κ= 20 in the hot reservoir and by the black circles for the Gaussian engine. The horizontal line indicates the
equilibrium condition, which is violated inside the shaded gray region, in the case of the non-Gaussian engine with κ= 20 in the hot reservoir. The error
bars indicate the standard deviations of the mean and the most probable quantities across different experiments.
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and the isothermal heat during transition from ③–④, given by

Q3!4 ¼
Z ð4Þ

ð3Þ

∂U
∂x

_xdt ¼ WH þ Qboundary ð3Þ

Here, WH ¼ 1
2

R ð4Þ
ð3Þ x

2 � dk is the work done in the hot isotherm

and Qboundary ¼ � 1
2 ½kðtÞx2ðtÞ�

ð4Þ
ð3Þ. For the non-Gaussian engine,

we naturally chose W* instead of Wcyc and defined the most
probable efficiency ε� ¼ W�

hWHiþhQboundaryiþhQisochorici (see Supplemen-

tary Note 5). For the Gaussian engine, the experimentally
determined ε* (black circles in Fig. 3b) hovers around the
theoretically calculated saturation Stirling efficiency εSat ¼
εc½1þ εc

ln ðkmax=kminÞ�
�1 (solid blue line). Here, εc ¼ 1� TC

eff

TH
eff

is the

Carnot efficiency. Whereas for the non-Gaussian engines with κ
of 10 and 20 for the hot reservoirs, ε*(τ) converges to εSat only at
large τ (blue triangles and red squares in Fig. 3b). When τ is
reduced, ε*(τ) drops and becomes negative for τ < 6 s for the non-
Gaussian engine with κ= 10 and τ < 10 s for the non-Gaussian
one with κ= 20 indicating stalling of the engines. Of particular
importance in the operation of real heat, engines are the efficiency
at maximum power εMax. Most remarkably, for both the non-
Gaussian engines the experimentally determined efficiency values
agree within error bars with the theoretically predicted
Curzon–Ahlborn efficiency, εCA ¼ εSat

2�αεSat
¼ 0:035 (κ= 10) and

0.026 (κ= 20)19,20. In our experiments, α is a constant calculated
from the irreversibility parameters corresponding to the work

done in the hot and cold isotherms (Supplementary Fig. 5 and
Supplementary Note 6). While it is known that εMax � εCA for
both macro and mesoscopic thermal engines, ours is the first
observation of this being the case even for a non-Gaussian engine.

Discussion
Collectively, our experiments show that a micrometer-sized
Stirling engine operating between a Gaussian and a non-
Gaussian bath, without memory, indeed performs like a con-
ventional engine in the quasistatic limit as anticipated by theory.
On lowering the cycle times, the buildup of irreversibility in the
engine, due entirely to the non-Gaussian nature of noise, results
in work distributions that become increasingly negatively skewed,
unlike a thermal engine where it remains Gaussian. Strikingly,
this noise-induced enhancement of irreversibility modulates the
performance characteristics of the non-Gaussian engine in a
manner similar to predictions by Curzon and Ahlborn for ther-
mal engines where irreversibility sets in purely due to the rapid
change of the control parameter. Our experiments thus reveal a
strategy for optimizing the performance of a mesoscale engine by
tuning only the nature of noise statistics. Importantly, the ease
with which the noise can be engineered and also applied locally,
i.e., on the particle scale, in our approach presents advantages
over other reservoir engineering methods where this can prove to
be difficult, if not impossible6,21. This should now make feasible
the experimental realization of future stochastic machines like the
non-Gaussian and the Buttiker–Landauer ratchet22–24.

a b

Fig. 3 Quantifying the performance of the non-Gaussian Stirling engine. a The most probable power P* with τ. Black circles represent P* for the Gaussian
engine, blue triangles represent P* for the non-Gaussian engine with κ= 10 at the hot reservoir and red squares represent P* for the non-Gaussian engine
with κ= 20 at the hot reservoir. With decreasing τ, P* increases considerably (inset) for the non-Gaussian engine with κ= 10 at the hot reservoir and
rapidly falls off for τ≤ 8 s. For the non-Gaussian engine with κ= 20 at the hot reservoir, the increase in P* is rather small and it decays for τ≤ 10.6 s. The
blue and red solid lines are calculated from the fit to Eq. (1) and are overlaid on the experimental data. The blue (red) vertical dashed line indicates the τ
below which P* is negative for the non-Gaussian engine with κ= 10 (κ= 20) at the hot reservoir. b The most-probable efficiency ε* for various τ. Black
circles represent ε* for the Gaussian engine, blue triangles represent ε* for the non-Gaussian engine with κ= 10 at the hot reservoir and red squares
represent ε* for the non-Gaussian engine with κ= 20 at the hot reservoir. The blue solid lines indicate the theoretically calculated Stirling saturation, εSat.
Efficiency εMax just before the rapid drop in power at τ= 8 s (τ= 10.6 s) of the non-Gaussian engine with κ= 10 (κ= 20) at the hot reservoir agrees with
the Curzon–Ahlborn efficiency εCA. The error bars indicate the standard deviations of the mean and the most probable quantities across different
experiments. Note that the black vertical line through the first data point (smallest τ) is a portion of a large error bar. The error bars at other τ values are
smaller than the symbol size.
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Methods
Experimental set-up for reservoir engineering. In order to impart additional
noise into the trapped colloid, a secondary optical trap was flashed along a line
passing through the time-averaged center of the particle at variable distances from
the same. This was achieved by coupling a second laser (Excelsior 1064 nm, Spectra
Physics USA) to the microscope which is reflected from an SLM. The SLM contains
a 512 × 512 array of shiny electrodes covered with a transparent liquid crystal layer
so that an electric potential modulation across the electrodes imposes an additional
phase pattern on the incident beam. We carried out two sets of experiments with
two different SLMs. The experiments for the Gaussian engine and the non-
Gaussian engine with κ= 20 for the hot reservoir were carried out with a Boulder
Nonlinear Systems USA SLM which upon interfacing to a computer through
MATLAB could flash a series of desired phase patterns at a fixed frequency of
maximum 34 Hz. For the non-Gaussian engine with κ= 10 for the hot reservoir,
we used an SLM from Meadowlark Optics USA to flash phase patterns at a fixed
frequency of 135 Hz. The use of SLMs enabled us to dynamically reconfigure the
position of the first-order diffraction spot by applying a series of linear diffraction
grating patterns with a varying periodicity which is controlled through a computer.
We blocked the zeroth-order spot so that only the first order spot is incident on the
back of the microscope objective resulting in a flickering optical trap in the vicinity
of the tweezed colloidal particle.

Image acquisition and processing. Images of the trapped colloid were captured at
250 Hz using a fast camera (Photron 500K-M3) attached to the microscope. The
position of the particle’s center in each frame was located at the subpixel level using
the particle tracking codes by R. Parthasarathy25. This allowed us to find the
particle’s position with an accuracy of 5 nm.

Non-Gaussian Reservoir Engineering. For engineering the non-Gaussian reservoir,
δa were chosen from a δ-correlated distribution with zero mean and skewness but a
high κ= 50. One such distribution (for 34Hz noise) with a standard deviation of σ=
0.28 μm for engineering a reservoir with κ= 20 is represented in Supplementary
Fig. 2b. To create this distribution, we first generate two highly asymmetric distribu-
tions δaL and δaR (Supplementary Fig. 2a) with a standard deviation of 0.28 μm, a κ=
60 and skewness of −6.5 for δaL and +6.5 for δaR through Pearson’s protocol in
MATLAB. Next, we add/subtract a suitable number to δaL and δaR so that their peaks
coincide at zero. Then we take the union of δaL and δaR and randomly permute all the
elements to finally obtain the set of δa. In order to realize a desired effective tem-
perature with such a noise, the standard deviation of δa is optimized. As shown in
Supplementary Fig. 2c, ρ(δa) for the non-Gaussian reservoir with κ= 10 is similar to
the one in Supplementary Fig. 2b except for the broad central portion. Since, for the
case of Supplementary Fig. 2c, the flashing frequency is 135Hz and the stiffness of the
flashing trap is also higher, a similar-looking ρ(δa) results in a different ρ(x) with κ=
10. It should be noted that heavy tails rise due to rare events that can only be captured
with huge statistics. Since we are limited by finite flashing frequencies, it is not possible
to completely sample the statistics within one isotherm even for the largest τ. To
address this issue, the engine was cycled enough times (depending on τ) so that the
collection of all the hot isotherms exhausts all the rare events.

Instantaneous isochoric transitions. The isochoric transitions ②→③ and ④→①

shown in Fig. 1e of the main text are realized by changing the statistics and the
variance of δa-distribution. The transition ②→③ is realized by changing the δa
distribution from a Gaussian resulting in Teff= 1570 K to a non-Gaussian pro-
ducing Teff= 1824.3 K while the transition ④→① is realized by the reverse. Since
the secondary laser is diffracted by a computer-controlled SLM, the distribution
from which δas are chosen can be altered in 1/34th of a second. Thus the particle is
decoupled and coupled from one engineered reservoir to the other in less than 33
ms which is almost negligible even in compared to the lowest cycle time and hence
instantaneous.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly
available due to the very large size of the video files (>600 Gb) but are available from the
corresponding author on reasonable request.
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