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ABSTRACT: A technology for optimization of potential parameters from condensed-
phase simulations (POP) is discussed and illustrated. It is based on direct calculations
of the derivatives of macroscopic observables with respect to the potential parameters.
The derivatives are used in a local minimization scheme, comparing simulated and
experimental data. In particular, we show that the Newton trust region protocol allows
for more accurate and robust optimization. We apply the newly developed technology
to study the liquid mixture of tert-butanol and water. We are able to obtain, after four
iterations, the correct phase behavior and accurately predict the value of the Kirkwood
Buff (KB) integrals. We further illustrate that a potential that is determined solely by
KB information, or the pair correlation function, is not necessarily unique.

■ INTRODUCTION

Molecular dynamics (MD) is a useful tool to study molecular
mechanisms in materials science and biophysics. Advancements
in computer power and simulation techniques continuously raise
the bar of what is possible to model; systems of millions of atoms
can be studied with MD,1 and the longest simulations can reach
milliseconds.2 New interesting applications are investigated, and
new simulation challenges are found.
As the world of molecular simulations grows in size and

complexity, there is a growing demand for more accurate force
fields capable of recovering subtle physical phenomena that are
difficult to reproduce with simplified interaction models. The
recent and continuous increase of simulation lengths allows us
to compute converged statistical averages to be compared to
experimental data that were inaccessible for simulations in the
past.3

The functional form of MD force fields remained essentially
the same for decades. The energy function consists of bonding
and nonbonding terms. The bonded interactions consist of two-,
three-, and four-body interactions (respectively, bonds, angles,
and torsions), and the nonbonded interactions are a sum
of electrostatic forces between fixed-point charges placed on
atom centers, and hard-core and dispersion forces modeled by
Lennard-Jones (LJ) interaction.
This functional form showed robustness and transferability,

and is the method of choice of most simulation software. While
many quantitative and qualitative observations support the
validity of suchMD force fields, it is certainly possible to improve
their functional form. There are many ongoing efforts in this
direction; the addition of polarization terms4 and the addition of
statistical potentials5 are examples of such efforts. In this paper
we consider the standard functional form for the MD force field,
and we focus on the process of the choice of the parameters

optimized against condensed-phase simulations. This idea
was put forward by Jorgensen in the OPLS force field.6 Our
contribution is in the design of an automated refinement
algorithm that, in principle, can handle a large number of
parameters. Our algorithm is not restricted to a particular choice
of a functional form; however, our software7 is designed to work
with the functional form and the data structure of the MOIL
program.8

Choosing the optimal set of parameters is important and
attracted a considerable amount of manual and partially auto-
mated work in the past. Widely used parameter sets (OPLS,6

AMBER,9 CHARMm10) have been subject to continuous
updates and refinements; some updates are improvements on
biopolymer models (peptides11), while others are additions of
parameters for some new small molecules.12

The development of force field parameters for a small
molecule typically involves multiple stages. It involves quantum
mechanical calculations (usually in the gas phase) to fit molecular
mechanics parameters and condensed-phase calculations to
fit parameters so that thermodynamic properties can be
reproduced.
Sometimes, properties of liquid mixtures are not well

reproduced by the parameters developed to describe a single-
component system. It is therefore desired to address liquid
mixtures more directly and to consider theories and algorithms
tailored for these systems. There are a few examples of theories
that capture properties of solutions in a relatively small number
of parameters. The Kirkwood−Buff (KB) integrals13 summarize
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a set of experimental observables characterizing liquid mix-
tures and are useful targets of optimization of potential
parameters.12,14,15

Di Pierro and Elber have recently published an automated
method to refine parameters of force fields using as targets
experimental observables that can be predicted with computa-
tional statistical mechanics. A prime advantage of the technology is
its ability to handle the coupled optimization of a large number of
potential parameters. We named our algorithm POP (Parameter
OPtimization),7 and we illustrated its effectiveness on hundreds of
parameters, exploring potentials for peptide folding in aqueous
solutions. Independently, and at the same time, Wang et al. pub-
lished a similar algorithm and used it to refine a potential for liquid
water,16 illustrating the general applicability of the method.
In the present paper, we combine POP and the observables of

KB theory to optimize the potential for liquid mixtures. We also
discuss enhancements to the original POP algorithm that enable
faster and more accurate convergence to the desired set of
parameters.
We use the POP method to improve the current force field

for tert-butanol (TBA) in aqueous solution (see Figure 1). Our

starting point is the OPLS united-atom (OPLSUA) parameters
for TBA17 and the TIP3P18 water model.We develop a new set of
parameters only for TBA. We retain the same water model that
was tested comprehensively by now on a very large number of
systems. We seek a set of TBA parameters that better reproduce
the KB integrals estimated from experiments19 over a range of
different concentrations. While optimization for TBA−water
mixtures according to KB integrals have been done in the past,15

the present study is automated, producing high-quality
potentials, and makes it possible to address questions about
the uniqueness of the results.
This paper proceeds as follows. In the Methods Section, we

revisit the theory of POP and introduce an improved
optimization algorithm. We then discuss the KB theory and its
application in MD simulations; last, we focus on its use in the
context of the POP algorithm. In the Results and Discussion
section, we develop a new force field for liquid mixtures of TBA
and water. Discussion and conclusions are left for the final
section.

■ METHODS SECTION
POP Algorithm. We denote an experimental measurement

of an observable O by Oexp. The measured quantity corresponds
to the (canonical) ensemble average of a certain function of the

phase space (positions are collectively indicated by R and momenta
by P) that may or may not depend on the force field parameters π

∫
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The ensemble average of the observable always depends on the
set of parameters π through the exponential weight, and of
course, it depends on the macroscopic constraints of the system
(number of particles N, volume V, and temperature of the
thermal reservoir in contact with the system T).
In practice, the ensemble average above can be substituted by a

time average over a trajectory
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provided that the system is ergodic and that the dynamics
reproduces the canonical sampling (e.g., isokinetic dynamics20).
One way to validate the results of a simulation is to measure

how much computed observables differ from experimental
measurements. Here, we optimize the parameters in the MD
force field in order minimize the discrepancy between computed
and experimental observables.
Given NO experimental observations, we define our target

function to be

∑πΘ = ⟨ ⟩ −π
=

w O O( ) [ ]
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i i i
1

exp,
2

O

(3)

where wi are constant weights which are ones in the present
example. Other choices of the target function are possible,
provided that the target function is differentiable. Ideally, the
target function Θ should be zero. The optimal set of parameters
is π*, such that

π π* = Θarg min ( ) (4)

We minimize the target function using a trust region Newton
method.22 To do so, we need the gradient vector and the Hessian
matrix (or some approximation of it23) in parameter space.
We have shown in a previous paper that any derivative of the

target function can be calculated as a single ensemble average;7

the calculation is analytical and affected only by the statistical
error associated with the ensemble average.
The gradient vector is

∑π

β
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while the Hessian matrix is
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Note that theHessianmatrix, while symmetric by construction, is
in general indefinite.

Figure 1. United-atom model of TBA; note that each methyl group is
represented by a single united atom.
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Using the gradient and the Hessian (calculated for a given
parameter set π0), we can build a quadratic model for the target
function Θ(π) in a neighborhood of the point π0; the quadratic
model m(p) is a function of the displacement vector p = π − π0.
The quadratic model is accurate in a neighborhood of π0; we
characterize this region of the parameter space by the space
contained in a spherical domain of radius Δ. Later on, we will
explain how the radius can be iteratively updated.
We minimize the target function by iteratively updating the

parameter set

π π= ++ pk k k1 (7)

where the increment pk is chosen by solving the subproblem

π π π

= || || ≤ Δ
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The subproblem can be solved in approximated way23 or
exactly; here, given the dimension of the parameter space and
having calculated the Hessian, we find the exact solution of the
subproblem following the method of More ́ and Sorensen22

(Appendix A).
One specific problem of full space optimization of MD force

fields lies in the range of values of different parameters; some
parameter ranges of values are in the hundreds of thousands (e.g.,
some van der Waals parameters), while others are of order one
(e.g., torsion coefficients). The difference of several orders of
magnitude presents a significant challenge for simple optimiza-
tion algorithms like steepest descent. In order to make adjust-
ments that are homogeneous, we introduce a scaling matrix Dk
such that every element of the vector γk = Dkπk is of order one.
The matrix Dk is a diagonal matrix
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In this way, all of the parameters are scaled to be in the range of
−1 to 1.
We can now solve the subproblem in an elliptical trust

region
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The parameters that we optimize include the atomic (partial)
charges within a molecule. An obvious constraint on the space of
the optimization is the preservation of the molecular charge, that
is, the total molecular charge must not change upon optimiza-
tion. This is in contrast to other parameters such as bond length.
We impose charge conservation as a linear constraint. We write
the total charge as Q = ∑l=1

m nlql, where ql is the partial charge
associated with the atom type l, there are nl atoms of type l, and
the total number of atom types is m. Keeping the total charge
constant means satisfying the linear constraint Qk = Q0, where
k, as before, is the iteration index. Exploiting the linearity
of the constraint, we can fix the total charge by projecting the
increment pk on the hyperplane of constant charge defined by the
constraint Q

′ = −
·∇

∇ ·∇
∇π

π π
πp p

p Q

Q Q
Qk k

k

(11)

We now outline the strategy to update the trust region radius
Δk.

23 The choice of radius is based on the agreement between the
model function mk and the target function Θ. Given a step pk at
iteration k, such agreement can be measured by the following
ratio

ρ
π π

= =
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−
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m m p
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( ) ( )

(0) ( )k
k k k

k k k (12)

The predicted reduction is always positive; therefore, if ρk is
negative, thenΘ(πk + pk) is greater than the current valueΘ(πk),
and the step must be rejected.
If ρk is close to 1, there is good agreement between the model

and target function; therefore, it is safe to expand the trust region.
If ρk is positive but not close to 1, we do not alter the trust

region; if ρk is close to 0, then we shrink the trust region (see
Appendix A for more details).

KB Theory. The KB theory of fluid mixtures13 relates
some integrals of the pair correlation functions (microscopic
observables) computed in the grand-canonical ensemble to
derivatives of the chemical potential, isothermal compressibility,
and partial molar volumes (macroscopic quantities). A detailed
derivation of the theory can be found elsewhere.13,24 Here, we
present the key concepts for our application. The use of KB to
optimize potential parameters was put forward by Smith.25 The
optimization using Newton−Raphson in a trusted region is our
contribution.
Let us consider a binary mixture of two chemical species,

chemical species S1 and chemical species S2. The symbols “A”
and “B” can either be S1 or S2. Let us define the following pair
correlation function

ρ
ρ ρ
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The averages are performed in the grand-canonical ensemble
(holding fixed the reservoir temperature T, the volume V, and
the chemical potentials of the two chemical species S1 and S2,
μ1 and μ2, respectively). This function expresses the joint
probability of finding the center of mass of a molecule of species
A (we indicate its position by ri⃗) at r1⃗ and the center of mass of a
molecule of species B (we indicate its position by rj⃗) at r2⃗, relative
to the probability of the two independent events. Note that, even
though only the centers of mass appear in eq 13, the theory is
general; it does not require spherically symmetric molecules.
Indeed, the internal degrees of freedom of A and B molecules,
as well as their overall orientation, are accounted for in the
ensemble average.13,24

Let us assume that the system is homogeneous and therefore
that the probability of finding a molecule in a specific place is
constant anywhere in the system. In this case, we can rewrite
eq 13 as
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Let us now define r ⃗ = r1⃗ − r2⃗ and ri⃗j = ri⃗ − rj⃗. If the probability
of finding the center of mass of B-type molecules around a
molecule of species A depends only on their distance and not the
orientation of the vector that connects them (i.e., the system,
averaged over its internal degrees of freedom and the
orientations of the molecules, is isotropic), then we can rewrite
eq 14
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where we transformed the Dirac’s delta from Cartesian
coordinates to polar coordinates.
The key object in the KB theory is the so-called KB integral
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The meaning of this quantity becomes clearer if we rewrite
eq 16 as
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The left-hand side of eq 17 is the so-called excess coordination
number. The integrand on the right-hand side of eq 17 has two
terms: first the conditional probability of finding a molecule of
species B around a molecule of species A and second the
probability of finding the molecule of species B. The integral
gives the excess (or shortage) of molecules of species B in volume
V around a molecule of species A with respect to the average
number of B-type molecules in the same volume V. Obviously, at
large distances (for small solutes, typically a few nanometers), the
correlation between A-type and B-type molecules is lost (i.e.,
ρAB
μ1μ2PVT(r) ⎯ →⎯⎯⎯

→∞r
ρA
μ1μ2VTρB

μ1μ2VT), and the integrand of eq 17 is zero.

This means that the KB integral carries local, microscopic
information that can be evaluated with a MD simulation.
At the same time, it is possible to show13,24 that the KB integral

(eq 16) is equal to
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where NA and NB are the number of molecules of type A and B,
respectively, and δAB is the usual Kronecker’s delta.
This equation expresses the connection with thermodynamics.

The fluctuation of numbers of particles in the system is a
macroscopic object, and it can be expressed in terms of
derivatives of the chemical potential of A-type molecules with
respect to the number of particles of species B, the isothermal
compressibility, and the partial molar volumes of the two

species.13,24 These quantities can be measured experimentally.
It is also possible to extract the KB integrals from these
thermodynamical quantities.26

Therefore, KB theory provides a useful protocol to analyze
MD simulation and connect the results with measurable
quantities; it requires extracting from the trajectory the pair
correlation function and its integral, which are routinely com-
puted. Indeed, it has been found in numerous applications in
recent years, particularly in the context of force field param-
etrization.12,14,15,27

Nevertheless, there are some caveats. First of all, MD
simulations are performed at a constant number of particles,
therefore, in the canonical, not in the grand-canonical ensemble.
The connection between the KB integral and the measurable
quantities relies upon eq 18, which in the canonical ensemble
would be24

δ
= −G V

N
N N VT
AB

AB

A

1 2

(19)

where N1 and N2 are the fixed number of particles of species S1
and S2, respectively.
Obviously, in this case, the connection with the chemical

potential would be lost. How can we compute a grand-canonical
average from a canonical simulation? A possible way is to
compute the KB integral in a volume V′ that is much smaller than
the volume of the system. In such a volume the number of
molecules fluctuates. The rest of the system acts as a molecular
reservoir. This procedure is correct as long as the pair correlation
function in eq 16 decays to 1 within V′. This leads to the second
caveat; sometimes the pair correlation function decays to 1 very
slowly, and we need to account properly for its long tail. A
careless truncation may have a bad impact on the evaluation of
the KB integral. To understand why, let us consider the case in
which the KB integral in eq 16 is computed in a spherical domain
of radius RC

∫ π= −μ μ μ μG R g r r r( ) [ ( ) 1]4 dVT R
VT

AB C
0 AB

21 2
C

1 2

(20)

If at RC the pair correlation function is not 1, we are neglecting a
contribution to the integral that might potentially be very large as
it is multiplied by the square of the radius.
Ganguly and van der Vegt28 have investigated these caveats

and proposed empirical corrections to the KB integrals to
alleviate these problems. Others29 have carried out the
calculation of KB integrals using the adaptive resolution scheme
for MD.30 In our case, we decided to compute the integral of the
pair correlation in theNVT ensemble without corrections, but we
computed the integral of the pair correlation function up to 20 Å,
which is large compared with what is commonly found in the
literature.12,14,15,28 In this way, we can check whether the KB
integral has indeed reached a plateau. To ensure that the system
can be considered grand-canonical, we run the simulations in
cubic systems of roughly a 65 Å box length. This ensures that the
reservoir is around 7 times larger than the volume V′ in which the
pair correlation function is computed.

KBObservable Functions. In this paper, we use the method
described above to optimize the MD force field using the
three KB integrals of a binary liquid mixture as a target for
optimization. We write an observable function associated with
the KB integrals. We derive the observable function from the
definition of the KB integral; using eq 15 for the pair correlation
function but computed in the canonical ensemble, we obtain
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The function inside of the canonical ensemble average is our
observable; in this case, it only depends on the set of coordinates
R. We define our observable functions to be
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where ρ1 = N1/V and ρ2 = N2/V.
Let us define
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that is, the number of molecules of species B that are at a distance
less than RC from a molecule of species A averaged on all of the
molecules of species A. Similarly, we can define
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4
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the average number of molecules in a spherical volume of radius
RC. We can rewrite eq 22 as
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Therefore, the observables in eq 23 measure the excess (or
shortage) of a molecule of type A around a molecule of type
B compared to the average in the system. The observables do
not carry explicit parameter dependence, which simplifies the

expressions for the gradient and the Hessian. While the
observable function depends explicitly only on the coordinates,
it is clear that its ensemble average depends on the composition
of the liquid mixture. The ensemble average is a function of the
variables

πN N V T( , , , , )1 2

if we introduce the molar fraction

=
+

= +x
N

N N
N N N1

1 2
1 2

the same set of variables can be written as

πN x V T( , , , , )

In the following, we are only interested in changes in
parameters and molar fractions, and we will therefore drop the
other variables; clearly, it is to be intended that experiment and
computation are performed under the same conditions.
For multiple mole fractions Nx, the target function is

∑ ∑πΘ = ⟨ ⟩ −π
= =

O O x( ) [ ( )]
j

N

i
i x i j

1 1

3

( , ) exp,
2

x

j
(24)

■ COMPUTATIONAL DETAILS
Optimization. For theMD simulations, mixtures of TBA and

water were prepared at the mole fractions of TBA in Table 1. The
model used for water was TIP3P,18 and it remained fixed
throughout the process of potential refinement. The starting
model chosen for TBA was the OPLSUA.17 The system was
prepared to have density consistent with that of experiment
(error of about 1%;31 see Table 1). ParticleMesh Ewald (PME)32

was used to account for long-range electrostatic interactions with
a grid of 64× 64× 64. Short-range electrostatic interactions were
calculated by real space summation up to a cutoff of 9.5 Å; the
same cutoff was used for van der Waals interactions. Periodic
boundary conditions were applied. The equations of motion
were integrated using the multiple time step integrator RESPA33

with a time step of 1 fs. Short-range forces were updated every
femtosecond, while long-range interactions were calculated every
4 fs according to the protocol in MOIL described in ref 8.
The sampling in theNVT ensemble was enforced by rescaling the
velocities (isokinetic ensemble21). The temperature was set to be
300 K in all of the simulations. The experimental results used in
the target function are those in ref 19.
An iteration of the optimization of the potential parameters

includes a series of MD simulations to collect a sample of
structures. An ensemble of structures computed with a particular
force field is analyzed to calculate the new parameter set. The
new parameter set and potential are used in a successive MD
simulation, from which we collect new structures that are
analyzed again.

Table 1. Molar Concentration of TBA, Density, Volumes, and Number of Molecules of Each One of the Systems Simulateda

concentrations

TBA molar concentration 0.04 0.10 0.14 0.17 0.20 0.30
density g/cm3 0.9707 0.9357 0.9146 0.9010 0.8836 0.8577
volume Å3 64.0793 64.3933 64.7233 64.9873 65.2553 66.1703

number of TBA molecules 304 637 808 919 1000 1289
number of water molecules 7290 5733 4968 4488 4096 3006

aThe parameters were chosen such that the densities were within 1% of the experimental values reported in ref 31 at 308.15 K.
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For the first three iterations, the target function used was

∑πΘ = ⟨ ⟩ −π–
=

O O x( ) [ ( )]
i

i x iI III
1

3

( , ) exp,
2

at the single mole fraction of TBA of x = 0.2.
For the last iteration, we used the target function

∑ ∑πΘ = ⟨ ⟩ −π
= =

O O x( ) [ ( )]
j i

i x i jIV
1

2

1

3

( , ) exp,
2

j

with mole fractions of TBA of x1 = 0.04 and x2 = 0.10.

The optimization process was stopped at the IV iteration,
where the experimental observables matched the simulated
quantities within acceptable error bars.
All of the MD simulations were performed using the software

packageMOIL in its GPU variant.8 The analysis of the structures,
including the calculation of the gradient and Hessian and the
updating of the parameter set, was performed using the software
POP7 included in MOIL.
The KB integrals were calculated up to a cutoff distance of 20 Å.

For each iteration, a simulation of 60 nswas performed.We discarded
the initial equilibration phase (10 ns), and from the last 50 ns, we
collected 4990 equally spaced (in time) structures. The structures
were used in the calculations for parameter optimization by POP.

Validation. To validate our potential, we examined the
performance of the newly developed model over a range of
mixtures at different concentrations. We prepared six systems at
mole fractions for which experimental results for the Kirkwood
integrals are known19 (see Table 1). Each of the systems was
simulated for 60 ns with the same setup as that described in the
optimization paragraph, and the experimental observables were
compared to the simulations.

Force Fields. The starting force field for TBA is OPLSUA.17

In this force field, TBA is composed of six particles because each
of themethyl groups is treated as a single particle without internal
degrees of freedom. Here, we report the OPLSUA force field and
the optimized force field, which we will refer to as POP4ff.
The complete potential is a sumof bonding and nonbonding terms

∑ ∑ ∑ ∑ ∑= + + + +
θ

θ
ϕ

ϕU U U U U Utotal
b

b
LJ

LJ
elec

elec

Figure 2. Snapshots of the simulation box; TBA is in green. On the left,
we show an equilibrium snapshot of the mixture of TBA and water at
0.20 TBAmole fraction using the OPLSUA force field. Phase separation
is evident by visual inspection. On the right is the same system after
equilibration using POP4ff; by visual inspection, the solution is mixed.

Figure 3. The value of the KB integral of (A) TBA−TBA as a function of RC (see eq 21), (B) TBA−water, and (C) water−water. The mole fractions in
Table 1 are displayed in different colors. At 20 Å, most of the curves are close to a plateau, indicating convergence.
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The functional form for bonded terms (bonds, angles, and
torsions) is

∑
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The nonbonded terms (LJ and electrostatic) are
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with combination rules
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Our software utilizes the equivalent formulation
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Some of the results will be presented with respect to param-
eters A and B. Angles and bonds parameters were not optimized
and are therefore shared between OPLSUA and POP4ff.
The torsions parameters were optimized in POP4ff but are

very similar to the ones of OPLSUA; POP4ff final parameters
were (K1, K2, K3) = (0.0001, −0.0003, 0.3258), while OPLSUA

parameters were (K1,K2,K3) = (0, 0, 0.325).Hence, in practice, only
the amplitude of the three-fold rotation is different from zero.

■ RESULTS AND DISCUSSION

TBA is a tertiary alcohol. Unlike the other butyl alcohols, TBA is
miscible in water at any proportion and any temperature;34 it is
also the largest monohydric alcohol to be fully soluble.35 TBA−
water mixtures exhibit many anomalous physical properties.
Solutions of TBA in water show an anomalously large volume
contraction, indicating that the trimethyl groups must be
somehow easily accommodated into the water structure.36

There is evidence that TBA when added to water in solvating
peptides behaves as a helix promoter.37

The peculiar characteristics of TBA motivate us to apply our
newly developed procedure to investigate it and improve current
potentials.
We first simulated the mixture of TBA and water using the

parameters of the OPLSUA force field. After equilibration, phase
separation is evident by visual inspection, as illustrated in
Figure 2. This is a known effect as force fields optimized to
reproduce pure liquid properties often exhibit too much self-
aggregation when observed in solution.38 This system was the
starting point of our optimization. In the same figure, we show
the same system once equilibrated with the optimized force field
of the fourth iteration; we will refer to this force field as POP4ff.
In the optimization, we used KB integral extracted from small-

angle X-ray scattering.19 In calculating the KB integrals fromMD

Figure 4. (A) KB integral for TBA−TBA at a mole fraction of TBA 0.2 as a function of the optimization iteration. The first data point corresponds to the
KB integral calculated with the force field OPLSUA.17 The data point IV corresponds to the final force field POP4ff, and the experimental value19 is
represented by the black horizontal line. In the inset, the same data are shown with a magnified scale for the last four data points. The error bars,
computed with block analysis,21 are sometimes below the size of the point. (B,C) Same data for TBA−water and water−water; even in this case, the final
force field reproduces the experimental value.
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data, we assumed the position of the oxygen atom to be the
position of water molecule; similarly, the position of the TBA
molecule was assumed to be the one of the central carbon.
In Figure 3, we show the KB integrals for POP4ff as a function

of the cutoff RC for all of the concentrations tested in our
simulations. At a distance of 20 Å the integrals are approaching a
plateau, suggesting that we are close to the region where the
integral is converged.
Lee and Van der Vegt15 already used the KB theory to develop

a force field for TBA, obtaining good results. They used the LJ
parameters from GROMOS39 and SPC40 as a water model. They
tuned the dipole moment of the TBAmolecule so that they could
better reproduce the KB integrals over a range of concentrations.
Their protocol, while successful, shows the typical limitation
of current force field development; they could adjust only a few
parameters at the time. The choice of those parameters was left
to chemical intuition. We repeated the optimization of the force
field in an automated procedure using KB integrals as the
optimization target for the POP algorithm. All of the parameters
(excluding bonds and angles) of the model were subject to
automated optimization following the gradient. The TBA
molecule, in the united-atom model, is composed of three
torsions (of one torsion type) and six atoms (of four different
atom types). In OPLSUA, polar hydrogen atoms have a zero
van der Waals radius. We kept this convention, and we did
not optimize those parameters. The total number of parameters
under optimization was 13.
Four iterations of the optimization procedure were conducted.

The progression in approaching the experimental values through
the optimization iterations is shown in Figure 4.

The first three iterations were conducted using as a target the
KB integrals with the mole fraction of TBA at 0.2. The first
optimization step significantly improved the original OPLSUA
force field, as shown in Figure 4. Iterations II and III yielded
smaller but significant improvements.
After the third iteration, the optimization procedure produced

only minor improvements. We therefore decided to use a
more informative target function. Inspection of the results over a
broader range of concentrations suggested using as targets the
KB integrals at TBA mole fractions of 0.04 and 0.10. The
experimental KB integral of species TBA−TBA exhibits a global
minimum at a TBA mole fraction of 0.04 and a global maximum
at a TBA mole fraction of 0.10 (see squares in Figure 5). This
feature is missing in the force field obtained after the third
iteration (Figure 5). Iteration IV produced a significant improve-
ment over the whole concentration range. The force field
produced by the fourth iteration (POP4ff) reproduces very
well the three KB integrals over a wide concentration range
(0.04−0.3), outperforming both OPLSUA and the force field
developed by Lee and Van Der Vegt. The KB integrals for the
different force fields as functions of the concentration are shown
in Figure 5. Note that only TBA mole fractions of 0.2, 0.04, and
0.1 were used at any time in the optimization, leaving us ample
data for meaningful testing.
The pair correlation functions of TBA-TBA, TBA−water and

water−water are shown in Figure 6. It is clear that the system is
now well mixed because long-range correlations are absent. The
pair correlation functions of TBA−TBA and TBA−water of
OPLSUA (yellow in Figure 6) and POP4ff (purple in Figure 6)
are significantly different; OPLSUA shows two nearby peaks,

Figure 5. KB integrals as a function of TBA mole fraction. (A) TBA−TBA; (B) TBA−water; (C) water−water. The blue line shows the experimental
results from ref 19, the red line shows results from Lee and Van Der Vegt potential,15 the green line shows computational results from force field POP3ff,
and the purple line shows computational results from force field POP4ff.
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whereas POP4ff shows a single smooth peak. The pair
correlation functions of force fields POP3ff (green in Figure 6)
and POP4ff deviate only slightly. We did not include any
information about the shape of the pair correlation functions in
the target function; this change is a byproduct of the optimization
procedure. Whether this is correct or not is difficult to say
because we do not know the pair correlation function from
experiment, only its integral, which hides such features.
The different interaction types that are optimized at once do

not contribute in the same way to the optimization. The
sensitivity vector g is defined as the gradient in parameter space of
the target function in eq 24; it is a local feature of the target

function, and it changes as the parameter set is improved by the
optimization process. To provide useful information and
following the procedure described in the Methods Section, we
multiply the gradient by the scaling matrix D−1, enforcing
homogeneity in parameter space (see eq 9). We also normalize
the sensitivity vector. In Table 4, we report the 13 different
components of the normalized and scaled sensitivity obtained
after POP analysis of the simulations carried out with the
OPLSUA parameters, that is

π
π| |

=
∇ Θ
|∇ Θ |

−

−
g
g

D
D

( )
( )

T

T
OPLSUA

1

OPLSUA
1

(25)

Initially, the KB integrals are insensitive to the torsions
parameters, mildly sensitive to the LJ parameters (as was also

Figure 6. (A) Pair correlation function for species TBA−TBA; the yellow curve is the pair correlation function computed with the OPLS force field, the
green curve is the pair correlation function computed with POP3ff, and the purple curve is the pair correlation function computed with force field
POP4ff. (B,C) The same information as (A) for species TBA−water and water−water. All of the results were obtained at a TBA mole fraction of 0.20.

Table 2. Bonded parameters for United-Atom TBA for the
Force Fields OPLSUA and POP4ffa

bonds kb (kcal/mol Å
2) r0 (Å)

O−H 553.0 0.945
C−O 320.0 1.430
C−CH3 268 1.530

angles kθ (kcal/mol) θ0

CH3 −C−CH3 63.0 112.00
H−O−C 55.0 108.50
O−C−CH3 80.0 108.00
torsions K1 (kcal/mol) K2 (kcal/mol) K3 (kcal/mol)

H−O−C− CH3 0 0 0.325
aBonded terms are the standard OPLS force field. Angles and bonds
were not optimized; the change in torsions parameters was found to be
small during the calculations, and their adjustment is ignored.

Table 3. Nonbonded Parameters for United-Atom TBA for
the Force Fields OPLSUA and POP4ff

atom Type q (e) ε (kcal/mol) σ (Å)

OPLS Parameters

C 0.265 0.050 3.800
CH3 0 0.160 3.910
O −0.700 0.170 3.070
H 0.435 0 0

POP Parameters
C 0.04670 0.0372 3.9899
CH3 0.10900 0.1271 4.0618
O −0.58197 0.1566 3.1104
H 0.20827 0 0
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noted by Lee and van der Vegt15 by direct testing), and highly
sensitive to the charge distribution.
It has been noted38 that to properly mimic the behavior of

liquid mixtures, tuning only the dipole moment of the solute is
not sufficient; it is required to find a solute charge distribution
that represents higher-order moments of the charge distribution.
Indeed, we find that this distribution is the most important
feature affecting the KB integrals.
The dipole moment of TBA for OPLSUA is 2.28 D, and in our

optimized force fields, it is 3.20 D. The difference in dipole
moment is the result of a redistribution of partial charges
involving all of the atoms; in OPLSUA, the methyl groups are

neutral, and the positive charge is on the central carbon, while in
our potential, the central carbon is almost neutral, and each of the
methyl groups carry a small positive charge (see Table 3).
After the third iteration and using a target function that

includes information on two concentrations, the sensitivity is
significantly different. After the adjustment of the charge distribu-
tion, the improved force field shows the highest sensitivity to the
LJ parameters. The last optimization step was indeed mainly a
readjustment of the LJ parameters.
Finally, we extracted the angular dependence of the

distribution of TBA and water around a central TBA molecule
(see Figure 7). The blue dots represent regions with high water
density and the green dots regions with high TBA density. The
figure is roughly symmetric for rotations of 120° around the
C−O axis of TBA. Because of steric repulsion, the high densities
are in the grooves between these atoms. A region with high
density of water is situated just under the methyl groups;
contrary to what could be intuitive, the methyl groups, which are
usually considered hydrophobic, are found to be well hydrated.
Around the hydroxyl group, TBA tends to stay closer than water.
Our model of TBA does not show hydrophobic interactions
between methyl groups.

■ CONCLUSIONS
We provided a simple systematic procedure to optimize force
fields to reproduce properties of liquid mixtures connected to the
KB integrals.
Wemade a useful improvement to the original POP algorithm.

The first version of POP was using gradient descent as a min-
imization algorithm. The introduction of the trust region
Newton algorithm has improved the performance of POP in
many ways. First of all, the Newton algorithm is known to have
better convergence properties. Also, the concept of the trust
region provides an easy and efficient way to assess the quality of
the quadratic model used in the minimization. Finally, the use of
a hyperelliptical trust region takes into account the different
scales of magnitude present in the parameter set and allows
modifications to the parameters that are homogeneous on a
relative scale. We remark that the results shown in this paper
were achieved with just four iterations of parameter adjustments.
We developed a new force field for TBA that approximates the

behavior of mixtures of TBA with water better than force fields
currently available, as shown by comparison to the experimental
KB values. In the first three iterations of the optimization, we
included in the target function only the KB integrals at one
concentration (0.20 mole fraction of TBA). These iterations
showed larger sensitivity toward the partial charges of TBA. In
the last step of the optimization, we included in the target
function the KB integrals of two lower concentrations (0.04 and
0.10 mole fraction of TBA). In this case, the charges, already
optimized, did not change significantly, while most of the
sensitivity was to LJ parameters. Even though our algorithm
allowed for changes in torsional parameters, they remained
essentially unchanged from the original OPLSUA parameters.
Lee and Van der Vegt15 observed in the past that the KB integrals
depend more on a partial charge distribution than on LJ
parameters. Similar observations were made in the context of
urea parametrization with KB integrals.12 Our results for the first
three iterations confirm, strengthen, and quantify these previous
observations (see Table 3 for sensitivities to different force field
parameters) as they are the consequence of an automated
optimization of all of the parameters at once. Nevertheless, we
also observed that a fourth step of optimization of LJ parameters

Table 4. Scaled and Normalized Sensitivitiesa of the 13
Parameters Used in the Optimization

Torsion

K1 K1 K1

1.9 × 10−5 1.9 × 10−5 1.9 × 10−5

van der Waals A

C CH3 O

−6.5 × 10−3 −4.2 × 10−2 −3.0 × 10−2

van der Waals B

C CH3 O

2.7 × 10−2 1.1 × 10−1 8.6 × 10−2

Charges

C CH3 O H

0.079 −0.86 0.36 0.31
aSee eq 25.

Figure 7. Regions with the highest density of TBA (green) and water
(blue) around a central TBA molecule. The densities are measured on a
grid of size 0.5 Å. As before, we assumed the position of the TBA
molecule to be the position of the central carbon and the position of the
oxygen to represent the center of the water molecule. We color by green
the cells that have a density of TBA larger than 85% of the maximum
density of TBA measured. We color by blue the cells that have a density
of water larger than 75% of the maximum density of water. The methyl
groups are well hydrated, as shown by the presence of a region of space
with the high density of water just under those groups. Methyl groups of
TBA are also found close to the hydroxyl group of other TBAmolecules.
The presence of both water and TBA around both the hydroxyl group
and themethyl groups indicates the absence of hydrophobic interactions
between methyl groups.
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was necessary to improve the force field beyond what we
obtained from the first three iterations (see Figure 5).
Lee and Van Der Vegt15 used the GROMOS39 force field,

which has a more general (and complex) type of LJ interaction.
The pair interaction parameters Aij and Bij are not separable to
single-atom parameters (i.e., Aij=Ai·Aj) but depend instead
on both indices. We illustrate here that the decomposable
presentation, with a smaller number of parameters, works well.
As a practical consequence, we note that separating the param-
eters describing pairs of interactions to products of two single-
particle parameters makes it easier to apply the Ewald sum for
LJ interactions and to obtain a more accurate description of long-
range forces.
Other differences between the POP4ff force field and the

force field developed by Lee and Van De Vegt15 lie in the
values of the parameters that in some cases are strikingly
different; for example, the radius for the central carbon is ∼6 Å
in the force field that they used, while in POP4ff, the same
carbon atom has a dimension that deviates only slightly from
the original OPLS atom type (∼4 Å). The charge distribution
is also very different because they chose to keep the methyl
groups neutral.
The fact that such diverse force fields produce similar results

is a warning sign against optimizing liquid potentials solely
according to KB data. The results are unlikely to be unique. This
is also reflected in the comparison of two different potentials
(POP3ff and control) reported in Appendix B. Therefore, when
we refine the parameters using KB integrals, we need either to
make sure that the changes to the force field are minimal or to use
a larger pool of observables to ensure compatibility toward other
observables.
Finally, we want to stress two important features of our

optimization method. First, our method minimizes the target
function with minimal changes to the parameter set. This is an
important feature, given that force field parameters were already
optimized extensively in the past. If we need to adjust these
parameters against a new set of data, small adjustments are to be
preferred because they are less likely to perturb results of
previous refinement of the current set of potential parameters.
Second, ourmethod does not require larger simulation time if the
set of observables used for the optimization is increased. The
change in the parameters is obtained as the postprocessed
analysis of one MD trajectory. This will make it easier and faster
to optimize the force field against a larger pool of observables
whenever such a large pool is available.

■ APPENDIX A: ALGORITHMS
We describe the trust region Newton method (TRNM) used in
POP; for more details, see refs 22 and 23. At iteration k, pk is the
increment to the parameter set, and ρk is the following ratio

ρ
π π

= =
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The following algorithm prescribes how to iteratively update
the trust region radius Δk.

η is a tuning parameter (kept fixed through the iterations) that
is used to optimize the performance of the algorithm; in our case,
given the small number of iterations performed, we could not
study the efficiency of the algorithm for several values of η. In
practice, we used the value η = 0.
As defined in the Methods Section, our quadratic subproblem

is the following
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We first cast this elliptical trust region problem in the canonical
form of an equivalent spherical trust region problem in the
variable γk = Dpk
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Then we apply the inverse transformation to obtain pk = D−1γk.
For a simplernotation, let usdefineB =D−T∇∇TΘ(πk)D−1 and gT =

∇TΘ(πk)D−1; we recall that the matrix B is symmetric by construction.
The following theorem gives a precise characterization of the

solution of spherical trust region problem.
Theorem:
The vector γ* is a global solution of the trust region problem

γ γ γ γ γ= + + || || ≤ Δ
γ∈

m f g Bmin ( )
1
2

s.t.T T
n

Table 5. Nonbonded Parameters for POP3ffa

atom type q (e) ε (kcal/mol) σ (Å)

C 0.04670 (0.45702) 0.0499 (0.1155) 3.8010 (4.0471)
CH3 0.10920 (0) 0.1595 (0.0645) 3.9119 (4.3646)
O −0.58180 (−0.56038) 0.1696 (0.5831) 3.0695 (2.5736)
H 0.20750 (0.10336) 0 (0) 0 (0)

aIn brackets are the parameters for control.
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if and only if ∥γ*∥ ≤ Δ and there is a scalar λ ≥ 0 such that the
following conditions are satisfied:

λ γ

λ γ

λ

+ * = −

Δ − || * || =

+

B I g

B I

( )

( ) 0

( ) is positive semidefinite

To find the solution for γ*, we need to find the scalar λ that
satisfies the conditions in the theorem and then solve the linear
system.
An iterative algorithm that performs both the tasks is the

following:

The initial λ(0) is set to be zero if the matrix B is positive
definite. If the matrix B is indefinite, it is instead set to be
λ(0) =−min {λ1

−,λ2
−,...,} + 0.00001, where {λ1

−,λ2
−,...,} are the nega-

tive eigenvalues of B. In this way, B + λ(0)I is always positive
definite, and it is therefore possible to perform its Cholesky
factorization.41

■ APPENDIX B

On the Uniqueness of the Potential Derived from KB
Integrals
The optimization as described may depend on the initial
conditions, producing potentials that are consistent with the
experimental observables that we examined but not unique. To
explore the uniqueness of the potential, we conducted another
optimization (we will refer to it as the “control”) starting from
another set of parameters and for slightly different conditions.
Bond and angle parameters were left as is. The initial torsion
parameters were the same as those in OPLSUA (see Table 2).
Also, the initial charges were chosen to be the OPLSUA (see
Table 3). The initial LJ parameters for the central carbon of TBA
were set to (ε, σ) = (0.14450 kcal/mol, 3.96 Å), while the initial
ones of the methyl groups were set to (ε, σ) = (0.2940 kcal/mol,
3.73 Å). The initial LJ parameters for the oxygen and hydrogen of
TBA’s hydroxyl group were chosen to be the OPLSUA ones (see
Table 3). We ran the same system as the one in Table 1 for a
molar fraction of TBA of 0.20 but with a box size slightly larger
(65.5053 Å3), corresponding to the average one found by Lee and
van der Vegt for the same system.15

The first run of this system showed a phase separation and
the presence of a vacuum bubble in the periodic box. The
optimization was carried out with three iterations. At the
beginning of each iteration, we ran 5 ns of simulation using the
replica exchange algorithm,42,43 using 50 replicas equally spaced
between 300 and 422.5 K. After 1 ns of equilibration, we
collected 4000 structures, equally spaced in time and ran POP to
optimize the force field parameters. In this case, we left the
methyl groups uncharged, as it is in OPLSUA. At the second

Figure 8. Pair correlation function of (A) TBA−TBA, (B) TBA−water, and (C) water−water. The green line represents POP3ff and the yellow line the
control force field. In the insets, the KBIs are reported as a function of the cutoff distance. In black is shown the experimental value.
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iteration, our protocol gave us a negative charge for the TBA
hydrogen of the hydroxyl group. We decided that such a result
was unphysical; therefore, we discarded the optimization
of the charge of the hydrogen atom at the second and third
iterations. The final nonbonded parameters that we derived with
this method are reported in the Table 5.
The charge distribution results in a dipole moment of 3.03 D,

slightly lower than the one found for the POP3ff and POP4ff
(3.20 D). The torsion parameters of the control optimization
changedmore than the POP3ff and POP4ff parameters. The final
result was (K1, K2, K3) = (0.0019, −0.0032, 0.5580).
Figure 8 shows the pair correlation functions and the integral

of the pair correlation functions for POP3ff and the result of the
control optimization.
We optimize a potential for TBA using two different protocols.

The initial conditions for the parameters were different, and a
constraint on the charges of the methyl groups was applied in
only one case. Nevertheless the KB integrals were computed at
similar accuracy in both cases (see insets). The shape of the pair
correlation functions is remarkably close. The largest qualitative
difference between the control (yellow) and the POP3ff (green)
is perhaps in the first peak of the TBA−TIP3 pair correlation
function for the control, which is missing in the POP3ff.
Both potentials are capable of reproducing the KBIs with

comparable accuracy, and the pair correlation functions obtained
with these two potentials are remarkably similar. This shows that
the different potential can produce not only similar KB integrals
but also similar pair correlation functions.
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