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Abstract

The large-scale structure of complex systems is intimately related to their functionality and evolution. In particular, global
transport processes in flow networks rely on the presence of directed pathways from input to output nodes and edges, which
organize in macroscopic connected components. However, the precise relation between such structures and functional or
evolutionary aspects remains to be understood. Here, we investigate which are the constraints that the global structure of
directed networks imposes on transport phenomena. We define quantitatively under minimal assumptions the structural
efficiency of networks to determine how robust communication between the core and the peripheral components through
interface edges could be. Furthermore, we assess that optimal topologies in terms of access to the core should look like ‘‘hairy
balls’’ so to minimize bottleneck effects and the sensitivity to failures. We illustrate our investigation with the analysis of three
real networks with very different purposes and shaped by very different dynamics and time-scales–the Internet customer-
provider set of relationships, the nervous system of the worm Caenorhabditis elegans, and the metabolism of the bacterium
Escherichia coli. Our findings prove that different global connectivity structures result in different levels of structural efficiency.
In particular, biological networks seem to be close to the optimal layout.
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Introduction

Despite profound differences, natural and artificial networked

systems share striking similarities. Complex networks science [1,2,3]

has successfully identified several of their common features, such as

the small world property or the presence of strong degree

heterogeneity, relating them to the existence of organizing

principles. These ubiquitous properties seem further reinforced by

the universality of patterns recognized in the large-scale architecture

of a class of networks describing transport processes and represented

as directed networks. They are characterized by asymmetric

interactions giving rise to local flows–of matter, energy, information,

etc.–that collectively organize into a global stream dominated by

three main structures, an input component and an output one

connected by a core. The precise relation of these characteristic

bow-tie layouts [4] to functional or evolutionary aspects remains to

be understood and prompts for an in-depth investigation.

In general terms, previous research exploring the relation

between form and function in complex networks has mainly

focused on the analysis of topological features such as modular

ordering related to functional aspects [5], with only a few

exceptions treating directly concepts such as efficiency [6].

Specifically, transport has been studied as one of the main

functions influenced by topology [7,8] and functional design

principles of global flux distributions have been discussed for

biological networks [9,10,11]. Despite these efforts, the ‘‘form

follows function’’ assertion still remains to be fully understood

from a complex network science perspective, a major difficulty

being the fact that present network patterns are the result of non-

stationary and adaptive evolutionary histories that can greatly vary

depending on the network. Such interplay between structure

formation and evolution is usually studied by modeling networks

where connections change depending on the node dynamics

[12,13,14,15]. In some of these models [16], spontaneous

structures are able to form that exhibit the typical architectures

of transport systems.

Our purpose of inferring information about function and

evolution from a precise knowledge of the topology requires the

understanding of how global transport networks organize to

develop functionality. In this respect, percolation theory of

complex networks [17] provides a valuable framework to

characterize the presence and the size of the connectivity

structures that are essential for the description of networks at the

macroscopic level. Their global connectivity layouts in the

percolated phase are named henceforth as percolated landscape.

The analysis of these structures allows us to quantify the degree of

efficiency that networks are able to achieve as global transport

systems. In particular, the major role played by the interfaces

bridging the different percolated components [18] allows us to

discuss how accessible the core is for elements in the peripheral

components. We define structural efficiency in terms of the stress

(or load) carried by the interfaces as elements transported in the

system traverse the network. This quantity also gives information

about robustness, indicating the edges at the interfaces that are

more critical in connecting the periphery to the core. Finally, we

use theoretical arguments to propose the conformation of maximal
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structural efficiency. Although our aim is not to perform a detailed

comparative analysis, we illustrate our investigation with the

examination of real networks with very different purposes. Their

analysis allows us to show that different percolated landscapes

impose different structural restrictions on transport and as a

consequence networks display different levels of structural

efficiency. In particular, we studied two biological systems exposed

to long-term evolutionary pressures, which seem to be close to

optimality, and an information technology system such as the

Internet, at an early stage of development and dominated by

competitive forces, which is far from an efficient global

architecture.

Results

Percolated landscapes of directed networks
For all complex systems, global communication is essential to

develop efficiently collective behavior. In directed network

representations, it is ensured by the presence of pathways that

enable to pass from the input to the output components. These

global layouts are best described in the framework of percolation

theory [17]. Above the percolation transition, the topological

landscape denotes a global flux that organizes in different linked

components comprising macroscopic portions of the system (Fig. 1

gives a schematic representation). The node percolated map

[19,20,21,22] organizes around a core structure, the strongly

connected component (SCC), whose vertices can communicate

with each other following directed paths. This core is usually

connected to peripheral components: the in-component (IN),

composed of all vertices that can reach the SCC but cannot be

reached from it, and the out-component (OUT), made of all

vertices that are reachable from the SCC but cannot reach it.

Secondary structures, such as tubes or tendrils, could also be

present [4]. Changing perspective from nodes to edges, this picture

is complemented by the edge percolated map [18], where the

number of relevant structures increases to five: edges connecting

nodes within the IN, OUT, and SCC form respectively the edge in

component (ICE), the edge out component (OCE), and the edge

strongly connected component (SCE); and edges bridging the

peripheral IN and OUT components to the SCC form the in and

the out interfaces (ITF and OTF respectively). Edges at the

interfaces connect nodes in different components so that they have

a hybrid nature that prevents to classify them in a single node

component. The edge interfaces are thus essential and there is no

transformation able to reduce the edge percolated map to the node

percolation map (in contrast to the duality between nodes and

edges in undirected network representations). They both are

complementary and indispensable for a complete description of

the large-scale structure of percolated networks.

The global organization of directed networks is further shaped

by system dependent specificities that are the reflection of

functional demands and evolutionary and/or adaptive forces. In

particular, the specific conformation of the interfaces informs us

about the potential risk of bottleneck effects and more in general

tells us about how well structure facilitates global communication

in the system.

Real systems
We consider here three different systems characterized by global

transport phenomena: a socio-technological one governed by

competitive forces, namely the set of customer-provider relation-

ships between autonomous systems in the Internet, and two

natural cooperative systems, the nervous wiring of the nematode

worm Caenorhabditis elegans (C. elegans) and the metabolism of the

bacterium Escherichia coli (E. coli). Our aim is not to perform an

exhaustive comparative analysis but to prove that different real

systems could display very different percolated landscapes and as a

consequence very different levels of structural efficiency.

The Internet is one of the paradigms of information and

communication networks [23]. From an operative point of view, it

is composed of thousands of autonomous systems that operate

individual parts of the whole infrastructure. Those engage in

mutual business relationships [24] to collectively route traffic

through the network, giving place to transfers of money in a

competitive market. Such dependencies can be mapped to a

directed graph representation of unambiguous customer-provider

relationships (see Materials and Methods).

A different family of archetypical information transport systems,

dominated by cooperative rather than competitive forces, are

biological nervous systems. As for human-made complex net-

works, their structure is intimately related to their function and

they display an emergent behavior that cannot be understood as

being merely the sum of the individual actions [25]. As a particular

example, here we focus on the nervous system of the worm C.

Figure 1. Schematic diagram of the main components in the percolated landscape of a flow network. The core at the center comprises
nodes in the strongly connected component (SCC) and edges within (SCE). The rest corresponds to peripheral components. Nodes in red belong to
the in node component (IN) and the edge in component (ICE) is formed by red links. Nodes in blue belong to the out node component (OUT) and
blue links form the edge out component (OCE). Both interfaces (ITF and OTF) appear in black.
doi:10.1371/journal.pone.0003654.g001

Structural Efficiency
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elegans which is practically completely known [26,27], and

reconstruct its synaptic structure as a directed network (see

Materials and Methods and Supporting Information Table S3).

Cellular metabolism is also recognized as a canonical biological

transport system and its bow-tie structure [10] has been

recognized to be compatible with the categorization of metabolites

into a variety of nutrient inputs that are transformed into

intermediate metabolites necessary to the biosynthesis of final

compounds. We have thus chosen as a third example the network

representation of the metabolism of the bacterium E. coli [28,29]

(see Materials and Methods for its network reconstruction).

These networks present different global structures. Their node

and edge percolated maps are shown in Fig. 2 (see also Table S1 in

Supporting Information) as compared to their maximally random

counterparts analyzed as null models (see Materials and Methods).

The node percolated map of the Internet customer-provider

network is extremely asymmetric and hierarchical, with a huge IN

component, a very small SCC, and an even tinier OUT

Figure 2. Bar charts detailing the percolated landscapes of the real network. Values for the Internet customer-provider relationships
network, the synaptic neuronal network of C. Elegans, and the metabolism of E. coli are compared with their randomized counterparts. Top charts
show the node components and the bottom charts show the edge components. The total number of nodes and edges are 24545 nodes and 45914
edges for the Internet, 279 nodes and 1961 links (of which 233 are bidirectional) for C. elegans, and 1024 nodes and 4283 links (of which 634 are
bidirectional) for E. coli. See Table S1 in Supporting Information for detailed numerical values.
doi:10.1371/journal.pone.0003654.g002

Structural Efficiency
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component, in perfect accordance to CAIDA’s AS rank classifi-

cation based on the size of the customer cones for the same dataset

[30]. Even though the SCC comprises less than one percent of the

total number of nodes in the network, its presence implies that the

Economic Internet is not a perfect acyclic graph but contains a

small number of directed loops. While at first glance this may seem

counterintuitive, we remember that we are analyzing customer-

provider relationships and not traffic flows and the presence of

structural loops in economic networks is common [31]. Finally, we

note that the randomized counterpart is qualitatively very similar.

On the other hand, the edge percolated map shows that the

architecture of the real network is different from that of the

randomized one. While the number of edges in the core and the

outgoing structures are qualitatively in accordance with the values

for the randomized network, the organization of the incoming

components is very different from random. The ICE of the real

network contains as many edges as nodes in the IN component,

which points to a tree-like structure. Moreover, the number of ITF

edges connecting the IN and the SCC is just half the number of IN

nodes so that many nodes in the in-component lack direct access to

the core as expected in a hierarchical system. In contrast, the

randomization produces an ITF with twice as many edges than

actually observed, with a correspondingly reduced ICE, so a

shallower IN component.

Unlike the Internet, the percolated layouts of the synaptic

neuronal structure of C. elegans and the metabolism of E. coli are

surprisingly close to a random organization (once preserved the

number of connections per node). In both cases, the main

structure consists of a big core with smaller IN and OUT

components in accordance to the measures for the randomized

versions. The number of edges within the peripheral components

is extremely small. As a result, the C. elegans nervous system seems

to rely on clear input and output signals with direct access to the

SCC, the computational processing core, through well populated

interfaces. For the metabolic network, the organization of edges

reveals that almost all reactions occur in the core, with input

nutrients directly entering it without pre-processing and biosyn-

thesized compounds leaving it in its final form.

Structural efficiency in terms of stress
Next, we show how these conformations may impose bounds to

performance assuming that the basic functionality of a flow

network is to perform a global transport. Interfaces play the pivotal

role of connecting core and periphery and, setting aside the

discussion of weights [32] (see Materials and Methods) or wiring

costs [33], their potential efficiency in fulfilling such task may be

defined as a first approximation using structural measures. We

introduce two measures of structural efficiency giving idea of how

efficiently peripheral elements access the core. More specifically,

we define stress as the amount of load that the edges at the

interface bear. In this way, we try to characterize with simple

measures and under minimal assumptions how robust communi-

cation between core and periphery could be and which are the

bounds imposed by the structure on global transport.

Stress as random-walk betweenness. Thinking of

interfaces as bridges, the average structural efficiency of an

interface can be simply approximated as

SKBT~
EI

NP

: ð1Þ

EI refers to the average number of edges at the interface I (ITF or

OTF) and NP to the number of nodes in the corresponding

peripheral component P (IN or OUT). High values of ÆkBæ are

clearly desirable as peripheral nodes would have, on average, more

edges -and so more routes- to access the core.

A more detailed description beyond ÆkBæ can be achieved by

calculating the distribution of loads of the edges at the interfaces.

Load can be understood as a measure of the extent to which edges

are under stress because of the flow passing through them. It can

be characterized as betweenness, a topological measure of the

number of paths between nodes in different components that

traverse an edge, as elements transported in the system travel the

network. Typically, betweenness is calculated taking into account

only shortest-paths between pairs of nodes [34]. Here, we are

however interested in a basic approximation so we assume that the

flow uses only local information without global knowledge of the

system. We suppose that the topological structure is supporting

blind flow, and we measure the load as random-walk betweenness

[35] that counts all possible routes assuming that information

wanders at random until it finds the target (see Materials and

Methods for further details and the explanation of computational

procedures). Edges with higher random-walk betweenness are

expected to be more important for the spread of information

across the system and, if the load is excessive, bottleneck effects

could even appear. Finally, notice that the inverse of the average

betweenness of the edges at the interfaces

SBTI~
X

j[I bj

�
EI ð2Þ

coincides with the structural efficiency average degree defined in

Eq. (1). This formalism can be easily extrapolated to situations in

which the flow follows other routing protocols.

In Fig. 3 (top plots), we provide the cumulative distribution

Pc bð Þ~
X

b’wb
P b’ð Þ of the random-walk betweenness, or loads,

of the edges at the interfaces of the Internet, C. elegans, and E. coli

networks. The graphs show that the loads are not uniformly

distributed for either network but are broadly distributed denoting

large fluctuations, with a few links bearing a much higher level of

structural stress. This heterogeneity is not per se indicating that the

interface is overstressed. The random-walk betweenness is

moderately highly correlated with degree [35] meaning that, in

general, edges attached to vertices with high degree tend also to

have high random-walk betweenness, so that strong disorder in the

topology could induce spurious heterogeneity in the load

distribution.

In order to assess whether the structural load could represent a

potential danger of bottleneck formation in traffic related processes

running on the network, one has to further define what is expected

as a low load in the situation of maximal structural efficiency. We

make the assumption that such efficiency is reached whenever

each edge at the interface carries at most a unitary load. This gives

a simple criterion which enables to compare different networks but

also different links of the same interface. At the same time, the

results should again be validated by the investigation of the

maximally random version of the network. In Fig. 3 (top plots),

grey areas denote stress regions with loads above 1. Although the

distributions for the C. elegans and the E. coli networks present

different functional form, both are once again in good agreement

with their randomized versions having almost all loads below the

threshold, and remaining quite symmetric in relation to the

performance of the ITF and OTF. However, the Internet

interfaces are clearly asymmetric. Most edges of the in-interface

lie in the grey region, a signature of overstress, and the loads in the

real network are above the ones in the randomized network,

pointing to a vulnerability of the system. On the contrary, the

loads of the out-interface are well below one and below the

Structural Efficiency
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randomized. For all networks, the region of loads much below one

usually corresponds to peripheral leaf nodes directly connected to

the core through multiple interface edges. Apart from a signature

of local robustness, such diversification could also be interpreted as

peripheral leaf nodes being spreaders, if they belong to the IN

component, or collectors, if they belong to the OUT. It is

noteworthy that the steps observed for the distributions of the

randomized version of the C. elegans network (more important for

Figure 3. Top plots. Cumulative random-walk betweenness distribution for the in- and out-interfaces. The empirical distributions
(symbol lines) are compared against those for the randomized null models (dashed lines). Grey areas denote stress regions with loads above 1. The
steps observed for the distributions of the randomized version of the C. elegans network (more important for its ITF) are due to the small size of the
peripheral component (only 12 nodes in the case of the IN) along to its structure with all nodes directly connected to the core though multiple edges.
The small size of the peripheral component brings out the quantization in the number of connections per node at the interface, and this affects the
distribution of loads. This structural effect, determined by the degree distribution, cannot be smoothed by the randomization procedure. Bottom
plots. Fraction of nodes remaining in the peripheral components after removing a fraction p of edges of the corresponding
interfaces. Two different experiments are performed and compared with each other, always on the real networks. In Experiment 1 (full symbol lines),
a targeted removal of edges at the interfaces is performed in decreasing order of load as measured in the original network. In Experiment 2 (open
symbol lines), the order of edge deletion at the interfaces is random and also applied to the original networks under analysis. In this case, averages
are shown over 100 different realizations of random orderings of the edges.
doi:10.1371/journal.pone.0003654.g003

Structural Efficiency
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its ITF) are precisely due to the presence of these structures. When

the size of the peripheral component is very small (only 12 nodes

in the case of the C. elegans IN, see Table S1 in Supporting

Information), the quantization of the number of connections

associated to the peripheral nodes at the interfaces becomes

noticeable and affects the distribution of loads. This structural

effect cannot be smoothed by the randomization procedure

because it preserves the degree distribution.

The distribution of loads also informs us about robustness,

defined as a measure of the ability of the interfaces to maintain

communication between core and periphery under malfunction or

failure. In the bottom plots of Fig. 3, we show the fraction of nodes

in the peripheral components that remains connected after the

removal of an increasing fraction of interface edges. Two different

experiments are performed, both of them on the real networks.

The first removes edges in decreasing order of load and the second

selects at random the edges to be removed at the interfaces of the

original network. The results prove that although the interfaces

seem to be quite robust against random failures, the malfunction of

high load edges would disconnect a bigger portion of peripheral

nodes, strongly affecting the behavior of the system. This effect is

more important in the case of the Internet, for which a sharp drop

of about 40% is observed in the number of connected nodes for

p,0.1. This is not found in the curves for the other two networks

with loads which are not as broadly distributed. Again, steps

appear in the curves for the Internet OTF and the C. elegans

interfaces (more evident for its ITF). The reason is, as before, the

presence of spreaders and collectors in small peripheral compo-

nents. Their edges at the interfaces share equal load, so that when

removing edges by load those peripheral nodes do not become

disconnected until all its edges disappear, giving place to the

observed small plateaus. The metabolic network is characterized

by a distribution of loads far from homogeneous but nevertheless

narrower than the ones associated to the other two networks. As a

consequence, it does not seem to be as sensitive as them regarding

the targeted removal of edges by load. In particular, the curves for

the two experiments performed on the E. coli OTF are quite

similar, except for a sharp drop in the curve for the targeted

experiment in the range 0.15,p,0.35.

Discounting leaf edges at the interfaces. The random

walk methodology presented above cannot discriminate between

peripheral conformations with different access to the core if equal

loads are associated to their edges at the interface (as a simple

example, see tree-like groups A and B in Fig. 1). A refinement is

needed to characterize the different efficiencies associated to

dissimilar peripheral architectures.

By convention, leaf vertices are those with in-degree zero or out-

degree zero, so that they are restricted to belong to a peripheral

component (if present, bidirectional links have to be counted as an

incoming and an outgoing link, and by definition can never belong

to an interface). In-leaf edges (out-leaf edges) are considered as

directed links leaving from (pointing to) a leaf vertex. Strictly

speaking, vertices with in-degree zero are usually referred as root

vertices. We refer to them as leaf vertices for economy of language.

Note also that according to the definitions of in-leaf (out-leaf)

edges, the in (out) interface cannot contain out-leaf (in-leaf) edges.

From the perspective of vertices the definitions would be reversed.

Non-leaf edges at the interfaces are the ones that ensure the

communication from/to nodes not directly connected to the core.

These non-leaf edges are the ones potentially responsible for

bottleneck effects, since they act as bridges for more than a single

IN or OUT node. A first estimate of how these topological

considerations affect efficiency at the structural level is given by the

average degree,

SkB,dw1T~
EI ,nl

NP,dw1
: ð3Þ

This is the ratio of the number of interface non-leaf edges, EI,nl, to

the number of peripheral nodes which are not directly connected

to the SCC but at a distance d from the core greater than one,

NP,d.1. (See Table S2 in Supporting Information for the figures

associated to the decomposition of the Internet, C. elegans and E.

coli interfaces and peripheral components into leafs and non-leaf

units).

Values for the average degree efficiency measures as defined in

Eq. (1) and Eq. (3) are shown in Table 1. In general terms, the

higher the averages the more structurally efficient the system is

expected to be. An important imbalance is observed between the

in and out values for the Internet. According to these numbers, the

in-interface presents a certain level of inefficiency, with low

average degrees combined with a low number of leafs, much below

random expectations. In this situation, potential bottleneck effects

are more likely. In contrast, the out component shows high levels

of structural efficiency, with the practical totality of nodes being

directly connected to the core. On the other hand, all peripheral

nodes (except a 5% in the E. coli IN) of the biological networks

analyzed here have direct access to the core, a signature of high

efficiency.

Discussion

Under the requirement of low stress, and in the approximation

of inexpensive homogeneous edges, maximum efficiency would be

realized by a percolated landscape structured as a perfect ‘‘hairy

ball’’, with all the nodes in the peripheral components directly

attached to the core through leaf edges carrying at most a unitary

load, thus not prone to bottleneck effects. The absence of nodes at

Table 1. Structural efficiency average degrees.

AVERAGES Internet
Internet
randomized C. elegans

C.elegans
randomized E. coli E. coli randomized

ÆkBæIN 0.54 1.1460.09 5.83 6.3–0.8 2.60 2.9860.13

ÆkB,d.1æIN 0.24 1.0560.09 ‘ ‘ 4.57 ‘

ÆkBæOUT 13.29 7.961.6 5.73 5.6–0.3 2.08 2.3960.09

ÆkB,d.1æOUT 8 22617 ‘ ‘ ‘ ‘

Structural efficiency average degrees as defined in Eq. (1) and Eq. (3) for the Internet customer-provider relationships network, the synaptic neuronal network of C.
elegans, and the metabolism of the bacterium E. coli, and their randomized counterparts (values are average6standard deviation rounded off to the first significant
figure). Infinite values come from the fact that all peripheral nodes are directly connected to the core.
doi:10.1371/journal.pone.0003654.t001

Structural Efficiency
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distances larger than one could however involve a marginal

deviation from the ‘‘hairy ball’’ conformation, with a few loads

slightly greater than one due to inner connections in the peripheral

component. In the hairy ball layout, the interfaces would be robust

because the failure or malfunctioning of any of its edges would

affect a minimum number of nodes in the peripheral components.

Finally, all peripheral nodes would have direct access to the core.

Any departure from the ‘‘hairy ball’’ paradigm would lead to

situations in which the requests for structural efficiency as defined

here are violated to some extent.

Hence, our analysis of percolated landscapes shows that the

conformation of interfaces plays a central role in the performance

of complex directed networks representing global transport

systems, affecting their efficiency against bottlenecks and their

robustness against failures. We emphasize that a ‘‘hairy ball’’

design would be optimal from the point of view of structural

efficiency as defined here. As seen for the synaptic neuronal

network of C. elegans or the metabolism of E. coli, such behavior

may be displayed even by architectures in good agreement to their

randomized counterparts, meaning that their large-scale structures

do not need to conform to special ordering requirements beyond

the degree distribution. In contrast, the Economic Internet

presents a downgraded in-interface, indicating a structural

inefficiency. These findings point to two, not mutually exclusive,

interpretations. On the one hand, different adaptation dynamics

are surely at work: whereas the present structure of the biological

networks seem to optimize the collective performance without

apparent internal competition pressures, the Internet network

emerges, due to its underlying business implications, as a

competitive system where it is not the global optimization which

is sought for but rather the individual Internet provider gain. In

this respect, global efficiency in the sense defined in this work is

important because it is necessary as a substrate for the services that

Internet providers offer, but it is not a common good that

everybody strives to optimize cooperatively. On the other hand,

the evolution of the worm nervous system and of the metabolism

of the bacterium might have allowed more efficient architectures

to emerge, due to the evolutionary time-scales (hundreds of

millions of years or more) running much longer than the time-span

of existence of the commercial Internet.

Clearly, these findings only shed light on some basic structural

ingredients for efficiency and robustness, but this study forms a

baseline for trying to discover what other relevant factors are at

play. Indeed, several other constraints, e.g. costs of edge

deployment and maintenance, capacities, weights (see Materials

and Methods), or different routing strategies should be taken into

account for more precise and system specific analysis. Yet, the

structure of a percolated landscape puts fundamental bounds on

performance, possibly suggesting specific actions to reinforce

stressed elements or to redistribute loads so to reduce the risk of

bottlenecks and the impacts of failures.

Materials and Methods

Directed network reconstructions
Internet customer-provider relationships. The directed

graph is reconstructed from the map 2007-04-02 of inferred

autonomous systems relationships provided by CAIDA [30].

Relationships among autonomous systems are usually in the form

of business agreements, generally simplified to customer-provider,

peer-to-peer and sibling-to-sibling. In a purely directed version of

the network, where links represent net flow of payments for

services provided, relations between siblings immediately cancel

out since they administratively belong to the same organization.

Peer-to-peer relations are however not trivial because they just

freely exchange traffic between themselves and their customers but

not up in the hierarchy. Anyway, we assume here that the later are

balanced in both directions so as a first approximation we neglect

them as well. On the other hand, customer-provider relationships

are unambiguously represented by directed edges from customer

to provider. We are left with a purely directed network of 24545

nodes and 45914 directed links, after removing 4312 (8.55%) peer-

to-peer and 236 (0.47%) sibling-to-sibling relations (nevertheless,

we have checked that the consideration of these links as

bidirectionals does not alter qualitatively the results). The in-

degree distribution is very broad and well described by a power

law with characteristic exponent 2.1. The out-degree distribution

is strongly bounded and decays extremely fast with a maximum

out degree of 24.

Synaptic neuronal structure of Caenorhabditis

elegans. Network representations of brains display neurons as

vertices and connection between pairs are present whenever a

synapse or gap junction has been observed. We use the updated

data set [27] compiled for the analysis of the relation between

neuronal placement and wiring costs. [26] The pharyngeal system

comprises 20 neurons and is almost totally disconnected from the

rest of the network. It is excluded along unconnected neurons, as

well as connections of the somatic nervous system to non-neural

cells. We further restrict to chemical synapses excluding gap

junctions, very different from the previous in nature and function.

For simplicity, the polarity and the multiplicity of the connections

are not taken into account but directionality is. Most synapses are

directed in nature, but 233 reciprocal connections have been

detected out of a total number of 1961. We take them into account

as bidirectional connections. The network also contains 279

neurons as nodes. As reported previously, it turns out to be a

small-world network [36] with tails of the cumulative distribution

of degrees for both incoming and outgoing neuronal links that

have been reported to be well approximated by exponential decays

[37]. See Supporting Information Table S3 for validation of our

semidirected network reconstruction in relation to neurons

functional types.

Metabolism of Escherichia coli. Metabolism admits a

natural bipartite network representation where metabolites and

the biochemical reactions they take part in are represented as two

different classes of nodes, linked whenever one metabolite

participates in one reaction. It is however more convenient to

work with the one mode projection restricted to node metabolites,

where substrates in a reaction are connected to products [38]. It

has been argued that it is more meaningful to restrict to the most

relevant biochemical transformations in every reaction and

remove carrier metabolites such as water, ADP, or ATP [39,40].

Depending on the purpose of the investigation, it is however

important to keep all the reactants. In our study, we are interested

in the global organization of the connectivity structure of the

system so that all elements providing connectivity are relevant. We

keep all metabolites as nodes and connect all substrates in a

reaction to all products. Irreversible reactions give place to

directed links from substrates to products, and reversible reactions

generate instead bidirectional links, so that the reversibility

information of the bioreactions is encoded in the network. As a

representative token, we use the in silico reconstruction of the

bacterium E. coli [28] compiled by the Systems Biology Research

Group at UCSD available at the BiGG database [29] (other

metabolic networks will be extensively analyzed elsewhere). The

list of metabolic reactions of this organism has been curated so to

clean it free of transported reactants just carried from the

extracellular media to the periplasm or from it to the
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cytoplasm–or viceversa- without suffering any transformation, that

would have produced self-loops in the final network

representation. It contains 1024 metabolites as nodes and 4283

links, of which 634 are bidirectional.

Randomization as a null model
The appropriate null model to find opportune baselines for the

detection of anomalies in percolated landscapes corresponds to the

maximally random realization of the networks that preserves the

degrees of the nodes. For purely directed networks without

bidirectional links–such as the Internet customer-provider rela-

tionships network-, it is achieved at the stationary state of a

rewiring process that at each time step randomly selects a couple of

links and exchange their ending points [41] avoiding the formation

of multiple and self-connections and bidirectional links. In this

way, the incoming degree and the outgoing degree of nodes is

preserved.

If bidirectional links are present–as for the semidirected network

representations of the nervous system of C. elegans and of the

metabolism of E. coli-, directed and bidirectional links should be

treated separately. Following the methodology used in [42], the

rewiring algorithm described in the previous paragraph is applied

just to the subset of directed links present in the network, and

complemented with the usual rewiring procedure in undirected

networks applied independently to the subset of bidirectional links,

avoiding equally the formation of multiple and self-connections.

The randomized networks preserve in this form the in-degree, the

out-degree, and the bidirectional degree of the nodes.

Notice that these rewiring processes are not able to destroy

structural degree–degree correlations which correspond to con-

straints ensuring the realizability of the network [43] and are so

unavoidable. The comparison of real networks with their

randomized counterparts makes therefore possible to determine

to which extent the measured values are due to global organizing

principles and not to random assemblages affected by finite-size

effects. In this work, the randomized versions are produced out of

100 randomized realizations.

Calculation of loads as random-walk betweenness
In order to calculate the random-walk betweenness of the edges

at the interfaces, we slightly modify the original proposal of a

centrality measure for vertices [34]. The percolated landscape is

explored by means of two symmetric random walks on the

unweighted directed network with homogeneous diffusion prob-

abilities and absorbing sinks in the nodes of the SCC. Nodes in the

IN act as sources of diffusive particles -either units of energy,

packets of information, economic goods, monetary units, etc.–

which spread from neighbor to neighbor following outgoing links

(also bidirectional if they are present), each chosen with equal

probability among the possibilities. The hopping process is stopped

whenever the diffusive particle arrives to a node in the SCC

following a given link in the ITF, which receives the annotation.

The symmetric process originates particles in the nodes of the

OUT, which travel backwards following incoming links (also

bidirectional edges if present) selected with equal probability

among the possibilities, and the diffusion is equally stopped

whenever a node in the SCC is reached through a particular link

in the OTF, which receives the annotation. By repeating the

processes a sufficient number of times for each source node, it is

possible to obtain the probability vector that a traveling unit

originated at one of the peripheral components uses the edge j in

the corresponding interface to reach the core. After multiplying by

the size of the source component in number of nodes NP, the

resulting vector bI
j informs about the structural load that each link

in the interface supports. Vector bI
j

.
NP corresponds to a

normalized probability distribution whenever tendrils or tubes

are not considered. Those appendices act as cul-de-sac which

receive part of the diffusion unloading partially the interfaces.

Structural efficiency of weighted networks
The definitions for the structural efficiency average degrees can

be easily extrapolated to the case of weighted networks [31], where

the intensities of the interactions are also considered as weights.

The structural efficiency average weights per node can be

expressed as

SwBT~
WI

NP

SwB,dw1T~
WI ,nl

NP,dw1
,

where WI in the first average represents the sum of the weights on

the edges at the interface and the normalization is again the

number of corresponding peripheral nodes, while WI,nl in the

second average represents the sum of the weights on the non-leaf

edges at the interface and the normalization corresponds to the

number of peripheral nodes at distances of the core larger than 1.

In the same way, the loads of single edges at the interfaces can

also be calculated as a random walk-betweenness taking into

account weights. It would be necessary to modify the exploratory

random walks so that the diffusion probabilities are proportional to

the weights of the edges selected to expand the process.

Supporting Information

Table S1 Statistics of the Internet, C. elegans, and E. coli node

and edge network components. Values of the sizes of the different

node and edge components of the Internet customer-provider

network of relationships at the autonomous system level, the

nervous system of the worm C. elegans, and the metabolism of the

bacterium E. coli, along the values for their randomized

counterparts (values are average standard deviation rounded off

to the first significant figure). The sizes of the main components

are given in absolute number of nodes and links. When present,

bidirectional links are counted as single. See Fig. 2 in the main text

for a graphical representation.

Found at: doi:10.1371/journal.pone.0003654.s001 (0.04 MB

DOC)

Table S2 Details of the interfaces and peripheral components of

the Internet, C. elegans, and E. coli network representations.

Decomposition of the interfaces and the peripheral node

components. Values for the randomized versions of the networks

are also provided (average standard deviation rounded off to the

first significant figure). Edges at the interfaces and nodes at the

components are separated into leafs (l) and non-leafs (nl), and

nodes directly connected to the core (d = 1) are distinguished from

those at larger distances (d.1). When present, bidirectional links

are counted as single.

Found at: doi:10.1371/journal.pone.0003654.s002 (0.04 MB

DOC)

Table S3 Distribution of C. elegans neurons by function type

among the different node components. To check that our

production of the semidirected network is consistent and

meaningful we computed the distribution of neurons by function

type among the different node components. C. elegans neuronal

functional organization is similar to most other metazoans and

basically consists of sensory neurons (se), interneurons (in), and
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motor neurons (mo). We follow the classification in [1], which

separates these cells into the three main groups and their crossings.

Our statistical analysis reveals a structured overlap between the

node components and the functional organization of neurons by

type. Interestingly and according to rational expectations, the IN is

mainly formed by sensory neurons while the OUT primarily

consists of motor neurons, apart from interneurons present in

both. Neurons in the SCC span all the classes with similar

proportions.

Found at: doi:10.1371/journal.pone.0003654.s003 (0.03 MB

DOC)
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