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Multivalent macromolecular interactions underlie dynamic 
regulation of diverse biological processes in ever-changing 
cellular states. These interactions often involve binding of 
multiple proteins to a linear lattice including intrinsically 
disordered proteins and the chromosomal DNA with many 
repeating recognition motifs. Quantitative understanding 
of such multivalent interactions on a linear lattice is crucial 
for exploring their unique regulatory potentials in the 

cellular processes. In this review, the distinctive molecular 
features of the linear lattice system are first discussed with 
a particular focus on the overlapping nature of potential 
protein binding sites within a lattice. Then, we introduce 
two general quantitative frameworks, combinatorial and 
conditional probability models, dealing with the overlap 
problem and relating the binding parameters to the 
experimentally measurable properties of the linear lattice-
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protein interactions. To this end, we present two specific 
examples where the quantitative models have been applied 
and further extended to provide biological insights into 
specific cellular processes. In the first case, the conditional 
probability model was extended to highlight the significant 
impact of nonspecific binding of transcription factors to 
the chromosomal DNA on gene-specific transcriptional 
activities. The second case presents the recently developed 
combinatorial models to unravel the complex organization of 
target protein binding sites within an intrinsically disordered 
region (IDR) of a nucleoporin. In particular, these models 
have suggested a unique function of IDRs as a molecular 
switch coupling distinct cellular processes. The quantitative 
models reviewed here are envisioned to further advance for 
dissection and functional studies of more complex systems 
including phase-separated biomolecular condensates.

Keywords: biological linear lattice, combinatorial model, 

conditional probability model, multivalent binding, 

overlapping binding site

INTRODUCTION

Recent advances in cutting-edge biotechnologies have pro-

vided opportunities to observe unprecedented molecular 

details of various biological processes (Ha et al., 2022; Mah-

amid et al., 2016; Oikonomou and Jensen, 2017; Sigal et al., 

2018). Interpretation of such observations requires quantita-

tive models dissecting the underlying macromolecular inter-

actions. In turn, the quantitative information allows further 

understanding and prediction of spatiotemporal regulation 

of specific cellular processes in dynamically changing environ-

ments. The complexity of macromolecular interactions ranges 

from simple 1:1 binding to formation of phase-separated 

condensates with multivalent binding among two or more 

components (Banani et al., 2017; Lyon et al., 2021; Shin and 

Brangwynne, 2017). In contrast to the 1:1 binding, multiva-

lent interactions are difficult to describe with the simple mass 

action law but modeled with more sophisticated frameworks 

accounting for the presence of various molecular states (Bu-

jalowski, 2006; Freire et al., 2009; Wyman and Gill, 1990). 

Furthermore, the quantitative models are often formulated 

with large numbers of parameters, and exemplary cases 

determining these parameters with suitable in vitro model 

systems and methods are exceedingly rare.

	 A linear or one-dimensional lattice is a relatively tractable 

multivalent system found in numerous cellular processes. 

Linear lattices present multiple binding motifs or domains to 

interact with diverse proteins or multiple copies of identical 

proteins (Fig. 1) (Cortese et al., 2008; Dunker et al., 2005; 

Fung et al., 2018). For instance, in many signaling pathways, 

scaffold proteins such as axin, BRCA1, and Ste5 recruit var-

ious target proteins via specific binding sites (Choi et al., 

1994; Mark et al., 2005; Wodarz and Nusse, 1998). These 

scaffold-driven higher-order assemblies are predicted to colo-

calize and increase the local concentrations of the target pro-

teins and thereby facilitate their interactions for efficient inte-

gration and propagation of diverse signals in the cell (Fig. 1A) 

(Noutsou et al., 2011; Xue et al., 2013). Another example is 

the intrinsically disordered regions (IDRs) of some nucleopo-

rins (Nups) present in the nuclear pore complex (NPC) (Fig. 

1B) (Frey and Gorlich, 2007; Radu et al., 1995). The Nup IDRs 

mediate massive yet selective molecular transport between 

the nucleus and cytoplasm through specific interactions with 

karyopherin (Kap) proteins carrying macromolecular cargos 

(Koh and Blobel, 2015; Schoch et al., 2012). These interac-

tions are achieved by multiple interspersed phenylalanine-gly-

cine (FG) motifs on an IDR capturing several Kap molecules 

(Bayliss et al., 2000).

	 Finally, nucleic acids are the most prominent linear lat-

tice systems in the cell. In particular, the chromosomal DNA 

presents the enormous amount of repeating phosphate 

groups along its backbone, creating electrostatic potentials 

for nonspecific protein-DNA interactions (Fig. 1C) (Berg et 

al., 1981; Stracy et al., 2021). Such polyelectrolyte effect is 

a major driving force (Lohman et al., 1980; Record et al., 

1976), particularly at low salt concentrations, for formation 

of nucleosomes (Shrader and Crothers, 1989; Widom, 1999) 

as well as for binding of chromatin architectural proteins such 

as HMG (high mobility group)-box proteins with little spec-

ificities for DNA base sequences (Dragan et al., 2004). Even 

specific DNA binding proteins typically engage their cationic 

amino acid side chains to neutralize DNA phosphate charges 

(Jen-Jacobson et al., 2000; Privalov et al., 2011). Thus, these 

proteins are expected to interact with nonspecific sites that 

are present in overwhelming excess over specific site in the 

chromosomal context. In addition, as the copy numbers of 

many transcription factors (TFs) are considered greater than 

Fig. 1. Schematic illustration of the representative linear lattice 

systems in cellular processes. (A) Scaffold proteins recruiting 

diverse binding partners in signal transduction. (B) IDRs in the 

NPC binding multiple Kaps in nucleocytoplasmic transport. (C) 

Nonspecific sites on the chromosomal DNA for transcription 

factor binding.
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those of their corresponding specific binding sites on DNA, 

the majority of these factors may exist in vivo as nonspecifical-

ly bound states (Bintu et al., 2005; Kao-Huang et al., 1977). 

The physiological impact of the nonspecific protein-DNA in-

teraction is substantial as demonstrated in the classical study 

by the von Hippel group (von Hippel et al., 1974) as well as 

in the recent seminal work by the Phillips group (Brewster et 

al., 2014). Both groups used Escherichia coli lac repressor as 

a model system to investigate the interplay among the copy 

numbers of TFs and their binding sites on DNA, the specificity 

ratio, and the inducer binding affinity in bacterial gene ex-

pression. The quantitative models proposed in these studies 

accurately described and predicted the expression profiles of 

the genes under the repressor regulation by incorporating 

nonspecific protein-DNA interactions as a “sink” for RNA poly-

merase and lac repressor.

	 Taken together, numerous protein-protein and pro-

tein-nucleic acid interactions can be perceived as multivalent 

interactions mediated by linear lattices. Thus, quantitative 

models for linear lattice systems are indispensable in under-

standing a broad range of biological processes and may be 

further extended to dissect more complex systems including 

phase-separated biomolecular condensates. In this review, 

we go over two general mathematical frameworks, combi-

natorial and conditional probability models, for quantitative 

description of linear lattices. Prior to the detailed derivation of 

these models, the molecular features of multivalent interac-

tions on a linear lattice will be qualitatively discussed in light 

of how they are fundamentally different from 1:1 binding or 

discrete-site systems. The derivation will be supplemented in 

Supplementary Information with some detailed mathematical 

procedures omitted but not immediately evident in the origi-

nal articles. In the end, a couple of practical examples will be 

discussed where the models have been further extended and 

applied to highlight their physiological significance. The alter-

native methods of sequence generating functions and trans-

fer matrix may be referred to the original and case studies for 

handling multiple binding modes, heterogeneous lattices, 

and lattice conformational changes (Bujalowski et al., 1989; 

Lifson, 1964; Schellman, 1974; Teif, 2007).

MOLECULAR FEATURES OF MULTIVALENT 
INTERACTIONS ON LINEAR LATTICES

It is straightforward to derive the quantitative models for the 

linear lattices that utilize discrete regions or domains to bind 

multiple distinct target proteins with the interaction stoichi-

ometry of 1:1 for each target. In the absence of cooperativity 

among bound targets, the binding of each target can be han-

dled, independent of binding of other targets, by the simple 

mass action law yielding a quadratic equation as a function 

of total concentrations of the lattice and the corresponding 

target. An advanced model has been derived by constructing 

a partition function for a linear lattice with cooperativities 

among bound targets (Cho et al., 2021).

	 Complexity arises when a target protein occupies two or 

more binding motifs on a linear lattice. We consider a linear 

lattice with a total of M motifs and a target protein occluding 

n consecutive motifs (Fig. 2) (Epstein, 1978; McGhee and 

von Hippel, 1974). The binding motif can be any repeating 

unit including a base-pair or phosphate on DNA and a short 

peptide motif or a PTM (post-translational modification) 

moiety on an intrinsically disordered protein (IDP). As DNA 

or proteins have particular directions in denoting their motifs 

(5’ to 3’ end or N to C-terminus), target proteins are assumed 

to be polar as well in recognizing the motifs. It is further as-

sumed that there is no partial binding where a target protein 

Fig. 2. Molecular features of multivalent interactions on a linear 

lattice (M = 9) where a protein occupies any n (= 3) consecutive 

motifs. (A) The number of potential overlapping binding sites on 

a naked lattice (left panel) is greater as compared to a discrete-

site system (right panel) with the same stoichiometry (N). (B) The 

number of potential binding sites eliminated upon binding of a 

protein depends on where the protein occupies on the lattice 

(left panel). In contrast, binding of a protein to the discrete-site 

system invariably eliminates only one potential binding site (right 

panel). (C) Possible configurations of the linear lattice with two 

proteins bound (left panel). Many configurations are futile for the 

last protein binding, resulting in apparent negative cooperativity 

among bound proteins. In contrast, all  corresponding 

configurations in the discrete-site system are competent for 

binding (right panel).
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occludes less than n motifs. Then, the target binding stoichi-

ometry (N) is the greatest integer less than or equal to M/n 

(N = [M/n]). A fundamental nature of the linear lattice sys-

tem becomes evident when a target protein binds to a naked 

lattice (left panel in Fig. 2A). Because the target protein oc-

cupies n consecutive motifs, any motifs except the rightmost 

n-1 positions can be starting points for target binding. Thus, 

potential target binding sites overlap and the number of such 

overlapping sites equals M – n + 1, obviously greater than the 

stoichiometry [M/n]. In contrast, for a conventional system in 

which a target protein binds discrete and isolated sites (right 

panel in Fig. 2A), the number of binding sites is simply equal 

to the stoichiometry N = [M/n].

	 As the linear lattice subsequently binds more target pro-

teins, its overlapping nature generates additional features 

further deviating from the discrete-site system. The number 

of potential binding sites eliminated upon binding of a pro-

tein depends on where the protein occupies on the lattice. 

When a protein binds to a gap exactly n motifs long between 

prebound proteins on the lattice, only one potential site is re-

moved. Instead, if a gap is longer than 3n – 2 motifs, binding 

of a protein to this region can eliminate as many as 2n – 1 

sites. For instance, binding of a protein with the site size of n 

= 3 to the three leftmost motifs on a linear lattice with a total 

of nine motifs eliminates three potential binding sites (the 

second figure in the left panel of Fig. 2B). Alternatively, if the 

protein occupies the three motifs at the center of the lattice, 

five potential binding sites are eliminated (the third figure in 

the left panel of Fig. 2B). However, in the discrete-site sys-

tem, protein binding invariably eliminates only one potential 

binding site (right panel in Fig. 2B). Finally, it is difficult to 

completely saturate the linear lattice since the overlapping 

protein binding increasingly accumulates gaps with less than 

n motifs that are futile for binding. This point is explicitly 

illustrated in Fig. 2C (left panel) listing all possible configu-

rations of the linear lattice with [M/n] – 1 proteins bound. 

Among them, many are futile configurations with the n free 

(unoccupied) motifs scattered over the lattice and must rear-

range the bound proteins to create a site with n consecutive 

motifs for the last protein binding. Such a rearrangement or 

reduction in number of lattice configurations corresponds to 

a loss of mixing entropy, culminating in apparent negative 

cooperativity among bound proteins. In contrast, the number 

of available binding sites is independent of the configuration 

of bound proteins in the discrete-site system (right panel in 

Fig. 2C). In summary, because of the overlapping nature of 

multivalent linear lattice-target interactions, a linear lattice 

initially presents binding sites greater than the stoichiometry 

and thereby enhances protein binding as compared to a dis-

crete-site system. However, with density of bound proteins 

increased, the effect of the overlapping binding is reversed, 

attenuating saturation of the linear lattice.

	 The following sections review the quantitative models pen-

etrating the overlap problem of the linear lattice to yield the 

mathematical formulations relating the binding parameters 

to experimentally measurable properties of the lattice-target 

interactions. A core element of each model is the compu-

tation of the number of possible configurations for a given 

density of bound proteins on a lattice.

QUANTITATIVE FRAMEWORK FOR LINEAR LATTICE-
PROTEIN INTERACTIONS: COMBINATORIAL MODEL

A complete set of parameters for description of linear lat-

tice-protein interactions consists of the binding stoichiom-

etry (N), binding constant (K), and cooperativity (ω) among 

bound proteins. As discussed above, the binding stoichiome-

try (N) is determined by the numbers of all motifs on a lattice 

(M) and those occupied by a target protein (n, termed site 

size) (N = [M/n]). The binding constant (K) corresponds to 

the affinity between a protein and a site n motifs long. Co-

operativity can arise from pairwise interactions between any 

two proteins bound to a linear lattice. Although there are in 

principle iC2 pairs on a lattice with i (≥2) proteins bound, the 

models discussed in this review formulate cooperativity only 

for the interaction between nearest neighbors (i.e., a pair of 

contiguously bound proteins without any intervening free 

motifs). Thus, the cooperativity parameter (ω) is equivalent 

to an equilibrium constant for formation of a direct “contact 

Fig. 3. Calculation of the number of distinct lattice configura­

tions with i proteins bound and j contact points. (A) Three 

distinct types of protein binding sites on a linear lattice and the 

definitions of K and ω. (B) Dissection of a linear lattice into two 

distinct physical elements, runs and unattached free motifs. The 

i – j – 1 leftmost runs are attached at their righthand end with 

a free motif (termed attached free motif). (C) Creation of the 

distinct lattice configurations by combining the two elements.
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point” between a pair of bound proteins. Then, under these 

definitions, a linear lattice presents three distinct types of 

protein binding sites (Fig. 3A): 1) an isolated site with the 

binding constant K; 2) a singly contiguous site with the bind-

ing constant Kω; 3) a doubly contiguous site with the binding 

constant Kω2. If ω > 1 (or 0 < ω < 1), the nearest neighbor 

interaction is favorable (or unfavorable) and the protein bind-

ing is positively (or negatively) cooperative. For ω = 1, bound 

proteins are independent of each other and the binding is 

noncooperative.

	 A fundamental relationship between the binding param-

eters and experimental variables can be derived by con-

structing a partition function for a linear lattice (Freire et al., 

2009; Wyman and Gill, 1990). The partition function is a 

sum of relative probabilities or statistical weights of all possi-

ble protein-bound states of a linear lattice with a free lattice 

assigned as a reference state of unit relative probability (i.e., 

statistical weight = 1). Then, the statistical weight of a lattice 

with i proteins bound and j contact points among them is 

given by (K[P])iωj where [P] is the free protein concentration. 

However, in order to account for the presence of multiple 

configurations for a given set of (i, j), the statistical weight 

must be multiplied by the degeneracy term PM(i, j), the num-

ber of distinct ways to distribute i proteins on a lattice with M 

motifs and j contact points. Then, the partition function (Z) is 

given by the following equations:

	 𝑍𝑍 =∑∑𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑗𝑗)(𝐾𝐾,𝑃𝑃-)𝑖𝑖𝜔𝜔𝑗𝑗
𝑖𝑖−1

𝑗𝑗=0

𝑁𝑁

𝑖𝑖=0
 

  

	 (1)

	 The average number of proteins bound per lattice (or bind-

ing density, ν), which is a principal quantity to be measured in 

all binding experiments, can be formulated from the partition 

function:

𝜐𝜐 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕,𝑃𝑃- = {∑∑𝑖𝑖𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑗𝑗)(𝐾𝐾,𝑃𝑃-)𝑖𝑖𝜔𝜔𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

𝑁𝑁

𝑖𝑖=0
} × {∑∑𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑗𝑗)(𝐾𝐾,𝑃𝑃-)𝑖𝑖𝜔𝜔𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

𝑁𝑁

𝑖𝑖=0
}
−1

 

  

	(2)

	 Likewise, the average number of contact points per lattice 

can be calculated from a partial derivative of the partition 

function:

𝑗𝑗 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = {∑∑𝑗𝑗𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑗𝑗)(𝐾𝐾,𝑃𝑃-)𝑖𝑖𝜔𝜔𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

𝑁𝑁

𝑖𝑖=0
} × {∑∑𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑗𝑗)(𝐾𝐾,𝑃𝑃-)𝑖𝑖𝜔𝜔𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

𝑁𝑁

𝑖𝑖=0
}
−1

 

  

	 (3)

	 The final task in constructing the partition function is to 

derive the expression for PM(i, j). Here we follow the original 

combinatorial derivation of PM(i, j) (Epstein, 1978), high-

lighting the concept behind the mathematical procedures. A 

linear lattice with i proteins bound and j contact points may 

be dissected into two physical elements. The first element 

is a “run” defined as a distinct cluster of contiguously bound 

proteins, and the number of runs can be calculated as i – j 

(Fig. 3B). Because there is at least one free motif between 

runs, each of the i – j – 1 leftmost runs must be attached 

with a free motif on the right side. The second element is the 

remaining free motifs and there are M – ni – (i – j – 1) unat-

tached free motifs (≡ Nu). Then, the number (≡ Nc) of ways 

of mixing these two elements to create the distinct lattice 

configurations equals the number of distributing i – j runs 

(accompanied with the i – j – 1 attached free motifs) and Nu 

unattached free motifs into Nu + i – j slots (Fig. 3C):

	 𝑁𝑁𝑐𝑐 =
(𝑁𝑁𝑢𝑢 + 𝑖𝑖 − 𝑗𝑗)!
𝑁𝑁𝑢𝑢! (𝑖𝑖 − 𝑗𝑗)!  

  

	 (4)

	 In this expression, all runs have been treated as identical 

elements, regardless of the actual number of bound proteins 

in each run. Therefore, in order to complete the derivation of 

PM(i, j), the function Nc must be multiplied by the number (≡ 

Np) of distinct ways to distribute i proteins into i – j runs:

	 𝑁𝑁𝑝𝑝 =
(𝑖𝑖 − 1)!

𝑗𝑗! (𝑖𝑖 − 𝑗𝑗 − 1)! 

  

	 (5)

	 The equation Np is mathematically equivalent to the num-

ber of partitions of the integer i into i – j positive integers. 

Finally, PM(i, j) is derived as the following equation:

 𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑗𝑗) = 𝑁𝑁𝑐𝑐𝑁𝑁𝑝𝑝 =
(𝑀𝑀 − 𝑛𝑛𝑛𝑛 + 1)! (𝑖𝑖 − 1)!

(𝑀𝑀 − 𝑛𝑛𝑛𝑛 − 𝑖𝑖 + 𝑗𝑗 + 1)! (𝑖𝑖 − 𝑗𝑗)! 𝑗𝑗! (𝑖𝑖 − 𝑗𝑗 − 1)! 

  

	 (6)

	 For noncooperative binding (ω = 1), the number of contact 

points j becomes irrelevant and PM(i, j) reduces to PM(i), the 

number of ways of mixing i proteins and M – ni free motifs to 

build distinct lattice configurations:

	 𝑃𝑃𝑀𝑀(𝑖𝑖) =
(𝑀𝑀 − 𝑛𝑛𝑛𝑛 + 𝑖𝑖)!
(𝑀𝑀 − 𝑛𝑛𝑛𝑛)! 𝑖𝑖!  

  

	 (7)

	 Then, the partition function for noncooperative binding 

can be written in a simplified form:

	 𝑍𝑍 =∑𝑃𝑃𝑀𝑀(𝑖𝑖)(𝐾𝐾,𝑃𝑃-)𝑖𝑖
𝑁𝑁

𝑖𝑖=0
 

  

	 (8)

	 In practice, the total lattice and protein concentrations ([L]

tot and [P]tot), rather than the free protein concentration ([P]), 

are known experimental variables. The total concentrations 

are related to each other and other binding parameters 

through a simple mass balance equation:

	 ,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 = ,𝑃𝑃- + 𝜐𝜐,𝐿𝐿-𝑡𝑡𝑡𝑡𝑡𝑡 

  

	 (9)

	 For a given set of binding parameters and reactant concen-

trations, this mass balance equation can be solved for [P] by 

the numerical procedures such as the Newton-Raphson and 

the bisection method (Hamming, 1986). In turn, this solution 

allows calculation of the relative probabilities of all lattice con-

figurations and the ensemble-averaged quantities including 

Eqs. 2 and 3. Thus, the combinatorial method is straightfor-

ward and intuitive in constructing a partition function which 

illustrates distribution among various protein-bound states of 

a linear lattice as a function of lattice and protein concentra-

tions. However, this method is difficult to apply to a very long 

linear lattice (i.e., M >> n) because the number of possible 

lattice configurations may be too large and potentially cause 

an overflow problem in computation.
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QUANTITATIVE FRAMEWORK FOR LINEAR 
LATTICE-PROTEIN INTERACTIONS: CONDITIONAL 
PROBABILITY MODEL

Several quantitative frameworks have been proposed to treat 

an “infinitely” long linear lattice (M >> n), particularly relevant 

for proteins nonspecifically binding the chromosomal DNA. 

Among these frameworks, we review the conditional proba-

bility model originally presented in the seminal work by Mc-

Ghee and von Hippel (1974). In this model, the conditional 

probabilities have been formulated for the particular states 

(free or bound) of two consecutive motifs on a linear lattice. 

For instance, the conditional probability ff (or fb1) is defined 

as, given a randomly chosen free motif, the probability of the 

subsequent righthand side motif being free (or bound by the 

left end of a protein) (Supplementary Fig. S1). In addition, 

the conditional probability bnf (or bnb1) is defined as, given a 

motif bound by the right end of a protein, the probability of 

the subsequent motif being free (or bound by the left end of 

a protein) (Supplementary Fig. S1). The conditional probabil-

ities were then used to derive an expression for the average 

number of free binding sites per lattice at a given binding 

density. This elegant approach yielded a modified form of the 

Scatchard equation:

	
𝜐𝜐

,𝑃𝑃- = 𝐾𝐾 ∙ *𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 

𝜃𝜃
,𝑃𝑃- = 𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [

(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅
2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]

𝑛𝑛−1
∙ [1 − (𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅

2(1 − 𝑛𝑛𝑛𝑛) ]
2
 

𝑅𝑅 =  √,1 − (𝑛𝑛 + 1)𝜃𝜃-2 + 4𝜔𝜔𝜃𝜃(1 − 𝑛𝑛𝑛𝑛) 

 

  

	 (10a)

	

𝜐𝜐
,𝑃𝑃- = 𝐾𝐾 ∙ *𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 

𝜃𝜃
,𝑃𝑃- = 𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [

(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅
2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]

𝑛𝑛−1
∙ [1 − (𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅

2(1 − 𝑛𝑛𝑛𝑛) ]
2
 

𝑅𝑅 =  √,1 − (𝑛𝑛 + 1)𝜃𝜃-2 + 4𝜔𝜔𝜃𝜃(1 − 𝑛𝑛𝑛𝑛) 

 

  

	 (10b)

	

𝜐𝜐
,𝑃𝑃- = 𝐾𝐾 ∙ *𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 

𝜃𝜃
,𝑃𝑃- = 𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [

(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅
2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]

𝑛𝑛−1
∙ [1 − (𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅

2(1 − 𝑛𝑛𝑛𝑛) ]
2
 

𝑅𝑅 =  √,1 − (𝑛𝑛 + 1)𝜃𝜃-2 + 4𝜔𝜔𝜃𝜃(1 − 𝑛𝑛𝑛𝑛) 

 

  

	 (10c)

where θ corresponds to the average number of proteins 

bound per motif (i.e., θ = ν/M).

	 Referring to Supplementary Information for the detailed 

mathematical procedures of the derivation, we focus on a 

few intuitive limiting cases leading to the interpretations of 

this equation consistent with the molecular features of the 

linear lattice system (McGhee and von Hippel, 1974).

	 1) In the case of ω = 1 (noncooperative binding), by using 

L’Hospital’s rule, the equation can be reduced to the follow-

ing (see Supplementary Information for detailed mathemati-

cal procedures):

	 lim𝜔𝜔→1
 (𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [

(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅
2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]

𝑛𝑛−1
∙ [1 − (𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅

2(1 − 𝑛𝑛𝑛𝑛) ]
2

) = 𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [ 1 − 𝑛𝑛𝑛𝑛
1 − (𝑛𝑛 − 1)𝜃𝜃]

𝑛𝑛−1
 

  
	lim𝜔𝜔→1

 (𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [
(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅

2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]
𝑛𝑛−1

∙ [1 − (𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅
2(1 − 𝑛𝑛𝑛𝑛) ]

2
) = 𝐾𝐾(1 − 𝑛𝑛𝑛𝑛) [ 1 − 𝑛𝑛𝑛𝑛

1 − (𝑛𝑛 − 1)𝜃𝜃]
𝑛𝑛−1

 

  

	 (11)

	 Note that, for n = 1 (no overlap between bound pro-

teins), the equation further reduces to the original Scatchard 

equation θ/[L] = K (1 – θ) in which the term (1 – θ) simply 

represents the fraction of free motifs. Because the squared 

bracket term in Eq. 11 is always less than unity for n ≥ 2, the 

fraction of free motifs competent for binding is smaller than 

the total fraction of free motifs 1 – nθ. Therefore, this result 

quantitatively supports that, even without genuine interac-

tions among bound proteins (i.e., ω = 1), apparent negative 

cooperativity arises from the overlap among potential binding 

sites and consequent futile gaps shorter than n motifs.

	 2) In the case of ω = 0 (infinite negative-cooperativity), Eq. 

10b reduces to the following expression:

	
𝜃𝜃
,𝑃𝑃- = 𝐾𝐾 ∙ *1 − (𝑛𝑛 + 1)𝜃𝜃+ [1 −

(𝑛𝑛 + 1)𝜃𝜃
(1 − 𝑛𝑛𝑛𝑛) ]

𝑛𝑛
 

  

	 (12)

	 This reduced form simply corresponds to Eq. 11 with n = n 

+ 1. The increased binding site size demonstrates that, if the 

interaction between bound proteins is extremely unfavorable, 

there is apparently no contact point between any adjacently 

bound proteins. Instead, they are separated by a persistent 

free motif. This result clearly demonstrates the fundamental 

relationship between binding site size and cooperativity.

	 3) Further insight can be provided at the molecular level 

from the partial derivatives of Eqs. 10b and 11 with respect 

to θ at the limiting condition of θ → 0 (see Supplementary 

Information for detailed mathematical procedures):

	 𝜕𝜕(𝜃𝜃 ,𝑃𝑃-⁄ )
𝜕𝜕𝜕𝜕 𝜃𝜃=0

= 𝜕𝜕(𝜐𝜐 ,𝑃𝑃-⁄ )
𝜕𝜕𝜐𝜐 𝜐𝜐=0

= 𝐾𝐾(2𝜔𝜔 − 2𝑛𝑛 − 1) 

  

	
(13)

	 Based on Eq. 10a, the partial derivative can be interpreted 

as a net change in the average numbers of all three types 

(Fig. 3A) of binding sites, weighted by their corresponding 

binding constants, upon binding of one protein to a naked 

(ν = 0) lattice. As illustrated in Fig. 2B, the binding of a pro-

tein to a sufficiently long region eliminates a total of 2n – 1 

potential binding sites. In addition, the binding converts the 

two adjacent isolated binding sites into two singly contiguous 

binding sites (2∙ Kω). Hence, a total of (2n – 1) + 2 isolated 

binding sites has been eliminated (– (2n + 1)∙K). Likewise, the 

partial derivative of Eq. 11 at θ → 0 is given by:

	 𝜕𝜕(𝜃𝜃 ,𝑃𝑃-⁄ )
𝜕𝜕𝜕𝜕 𝜃𝜃=0

= −𝐾𝐾(2𝑛𝑛 − 1) 

  

	 (14)

	 Therefore, in the noncooperative case, the binding of one 

ligand to a naked lattice simply eliminates 2n – 1 potential 

binding sites.

	 Taken together, although the conditional probability 

method is based on the different conceptual framework as 

compared to the combinatorial approach, the final formula-

tion provides intuitive interpretations fully consistent with the 

molecular features of the linear lattice systems. In practice, 

Eq. 10b is rearranged and incorporated into a mass balance 

equation relating the binding parameters to the total concen-

trations of lattice motif and protein ([M]tot and [P]tot):

	 ,𝑃𝑃- = 𝜃𝜃
𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

𝑓𝑓𝑓𝑓 = [
(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅

2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]  

𝐶𝐶 = [1 −
(𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅
2(1 − 𝑛𝑛𝑛𝑛) ] 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 = ,𝑃𝑃- + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜃𝜃

𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

  

	 (15a)

	

,𝑃𝑃- = 𝜃𝜃
𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

𝑓𝑓𝑓𝑓 = [
(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅

2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]  

𝐶𝐶 = [1 −
(𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅
2(1 − 𝑛𝑛𝑛𝑛) ] 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 = ,𝑃𝑃- + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜃𝜃

𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

  

	 (15b)

	

,𝑃𝑃- = 𝜃𝜃
𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

𝑓𝑓𝑓𝑓 = [
(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅

2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]  

𝐶𝐶 = [1 −
(𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅
2(1 − 𝑛𝑛𝑛𝑛) ] 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 = ,𝑃𝑃- + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜃𝜃

𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

  

	 (15c)

	

,𝑃𝑃- = 𝜃𝜃
𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

𝑓𝑓𝑓𝑓 = [
(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅

2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]  

𝐶𝐶 = [1 −
(𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅
2(1 − 𝑛𝑛𝑛𝑛) ] 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 = ,𝑃𝑃- + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜃𝜃

𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

  

	 (15d)
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,𝑃𝑃- = 𝜃𝜃
𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

𝑓𝑓𝑓𝑓 = [
(2𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) + 𝜃𝜃 − 𝑅𝑅

2(𝜔𝜔 − 1)(1 − 𝑛𝑛𝑛𝑛) ]  

𝐶𝐶 = [1 −
(𝑛𝑛 + 1)𝜃𝜃 + 𝑅𝑅
2(1 − 𝑛𝑛𝑛𝑛) ] 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 = ,𝑃𝑃- + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

,𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜃𝜃

𝐾𝐾(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 + 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

  

	 (15e)

Eq. 15e can be numerically solved for θ at given values of [M]

tot and [P]tot. When interactions of proteins with short linear 

lattices (e.g., DNA oligomers) are analyzed, the equation can 

be partially corrected for the assumption of infinite lattice 

length by applying an “end effect” constant, (M – n + 1) / M, 

to the term ff n-1 (Tsodikov et al., 2001).

APPLICATION AND EXTENSION OF THE 
QUANTITATIVE MODELS

Competition among multiple binding modes in pro­
tein-nucleic acid interactions
Spatiotemporal regulation of transcription is achieved by 

interactions between TFs and their specific binding sites on 

DNA. Because of the enormous number of nonspecific sites 

on the chromosomal DNA, binding of TFs to these regions 

must be taken into account to accurately predict the oc-

cupancy of the specific sites and thereby the transcription 

profiles of the corresponding genes (Brewster et al., 2014; 

von Hippel et al., 1974). In order to recapitulate the essential 

features of the competition between specific and nonspecific 

DNA binding, the conditional probability model was extend-

ed and applied to a hypothetical two-component (TF and in-

finitely long DNA with a few embedded specific sites) system. 

While the 1:1 interaction between TF and a specific site is ful-

ly described by the binding constant Ksp, the nonspecific bind-

ing is characterized by the binding site size n (in base-pairs), 

the binding constant Kns, and the cooperativity parameter ω. 

Then, combining Eq. 10b with the mass-action law for the 

1:1 specific binding, the TF concentrations of free, specifical-

ly, and nonspecifically bound forms ([TF], [TF]sp,b, [TF]ns,b) can 

be derived as the following equations:

	 ,𝑇𝑇𝑇𝑇- = 𝜃𝜃
𝐾𝐾𝑛𝑛𝑛𝑛(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

,𝑇𝑇𝑇𝑇-𝑠𝑠𝑠𝑠,𝑏𝑏 = 𝐾𝐾𝑠𝑠𝑠𝑠
,𝐷𝐷𝑠𝑠𝑠𝑠-𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇-
1 + 𝐾𝐾𝑠𝑠𝑠𝑠,𝑇𝑇𝑇𝑇-

 

,𝑇𝑇𝑇𝑇-𝑛𝑛𝑛𝑛,𝑏𝑏 = 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

 

	 (16a)

	

,𝑇𝑇𝑇𝑇- = 𝜃𝜃
𝐾𝐾𝑛𝑛𝑛𝑛(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

,𝑇𝑇𝑇𝑇-𝑠𝑠𝑠𝑠,𝑏𝑏 = 𝐾𝐾𝑠𝑠𝑠𝑠
,𝐷𝐷𝑠𝑠𝑠𝑠-𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇-
1 + 𝐾𝐾𝑠𝑠𝑠𝑠,𝑇𝑇𝑇𝑇-

 

,𝑇𝑇𝑇𝑇-𝑛𝑛𝑛𝑛,𝑏𝑏 = 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

 

	 (16b)

	

,𝑇𝑇𝑇𝑇- = 𝜃𝜃
𝐾𝐾𝑛𝑛𝑛𝑛(1 − 𝑛𝑛𝑛𝑛)𝑓𝑓𝑓𝑓𝑛𝑛−1𝐶𝐶2 

,𝑇𝑇𝑇𝑇-𝑠𝑠𝑠𝑠,𝑏𝑏 = 𝐾𝐾𝑠𝑠𝑠𝑠
,𝐷𝐷𝑠𝑠𝑠𝑠-𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇-
1 + 𝐾𝐾𝑠𝑠𝑠𝑠,𝑇𝑇𝑇𝑇-

 

,𝑇𝑇𝑇𝑇-𝑛𝑛𝑛𝑛,𝑏𝑏 = 𝜃𝜃,𝑀𝑀-𝑡𝑡𝑡𝑡𝑡𝑡 

 

 

	 (16c)

where [Dsp]tot and [M]tot are the total concentrations of the 

specific site and the nonspecific binding motif (base-pair), re-

spectively. Substituting Eq. 16a for [TF] in Eq. 16b, the mass 

balance equation for the total TF concentration ([TF]tot = [TF] 

+ [TF]sp,b + [TF]ns,b) can be numerically solved for θ. The final 

outcome of the calculation is the fractional occupancy of the 

specific site (Ysp = [TF]sp,b/[Dsp]tot) as a function of total con-

centration ratio between TF and the specific site ([TF]tot/[Dsp]

tot ranging from 0 to 10) (upper panels in Figs. 4A and 4B). In 

the calculation, the ratio Ksp/Kns (termed specificity ratio) (Fig. 

4A) or the total nonspecific motif concentrations (Fig. 4B) 

was varied over orders of magnitude while the nonspecific 

binding site size and cooperativity were fixed at the constant 

values for simplicity (n = 10, ω = 1).

	 At a given specificity ratio and a total motif concentration, 

as the concentration ratio [TF]tot/[Dsp]tot is increased, the 

fractional occupancy of the specific site by TF monotonically 

increases with an apparent hyperbolic feature (upper panels 

in Figs. 4A and 4B). However, the underlying distribution of 

TF exhibits a dynamic shift from specifically to nonspecifically 

bound states (bottom panels in Figs. 4A and 4B). For higher 

specificity ratio or lower nonspecific motif concentrations, the 

specific complex is predominant in the regime [TF]tot/[Dsp]tot 

< 1, leading to a steep rise in occupancy of the specific site. 

Consequently, the transition to the nonspecifically bound 

state is achieved at higher concentration ratio. Therefore, 

under these conditions, a relatively small amount of TF is re-

quired to saturate the specific site and thereby fully activate 

transcription. Conversely, for lower specificity ratio or higher 

nonspecific motif concentrations, the nonspecific binding 

significantly competes with the specific binding even at low 

[TF]tot/[Dsp]tot (bottom panels in Figs. 4A and 4B), attenuating 

saturation of the specific site (upper panels in Figs. 4A and 

4B). These simulations suggest that, since protein-DNA in-

teractions are generally sensitive to many cellular conditions 

such as salt concentration and osmotic stress, changes in 

these variables potentially fine-tune the specificity ratio of TFs 

and thereby the corresponding transcription levels. Further-

more, a change in chromosome packing may indirectly affect 

the TF-specific site interaction by altering the nonspecific site 

concentrations. Taken together, nonspecific protein-DNA in-

teractions, via change in either specificity ratio or abundance 

of nonspecific sites, can modulate the occupancies of specific 

TF binding sites and consequently reprogram the gene-spe-

cific transcriptional activities.

	 Competitions between specific and nonspecific binding or 

among multiple nonspecific binding modes have been ob-

served in numerous in vitro protein-DNA interactions as well 

(Bujalowski et al., 1988; Rajendran et al., 1998). Even studies 

using short oligonucleotides have shown similar competitions 

due to significantly low specificity ratios (Holbrook et al., 

2001; Koh et al., 2008). In order to accurately determine a 

specific binding constant, the linear lattice models must be 

applied or further advanced to tease apart the contributions 

from multiple binding modes to the observed binding signal 

(Tsodikov et al., 2001).

Competition among distinct target proteins for binding to 
an intrinsically disordered protein
IDPs often utilize short peptide motifs to recruit multiple 

distinct targets or multiple copies of an identical target (Cum-

berworth et al., 2013; Hong et al., 2020; Wright and Dyson, 

2015). These IDPs are collectively termed hubs and involved 

in signal transduction and macromolecular transport. A rep-

resentative example is Nup153, a subunit of the NPC, that 

contains a long C-terminal IDR (~600 amino acids in length) 

(Krull et al., 2004). The IDR presents multiple FG-motifs to 

interact with Kaps carrying macromolecular cargos into and 

out of the nucleus. Multiple hydrophobic pockets on the Kap 

surface are the primary binding sites for the FG-motifs (Bayliss 

et al., 2000).

	 A recent thermodynamic study has developed an advanced 

combinatorial model to demonstrate that the Nup153 IDR 

comprises a high-affinity 1:1 binding site and a series of 
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low-affinity sites for binding of multiple Kaps (Fig. 4C) (Cho et 

al., 2021). Calorimetric data of various protein concentrations 

and IDR lengths were scrutinized to further show that the 

overlapping binding of Kaps to the low-affinity sites results in 

apparent negative cooperativity. Because the Nup153 IDR po-

tentially interacts with nuclear proteins involved in transcrip-

tion and chromatin organization (Kadota et al., 2020; Kasper 

et al., 1999), this study has constructed composite combina-

torial models to test how the multivalent Kap binding would 

be affected by competitive binding of nuclear proteins (Fig. 

4C). Remarkably, the simulation has revealed that the Kap 

occupancy of the low-affinity region can be fine-tuned by 

changing the location of the competitor binding site (Fig. 4C). 

This delicate modulation arises from the molecular feature of 

the overlapping binding: The number of potential Kap bind-

ing sites eliminated by the competition is determined by the 

position of the competitor binding site (Fig. 2B). Therefore, 

assuming that the Kap occupancy is a proxy for the trans-

port activity of the NPC, it is conceivable that the Nup153 

IDR functions as a molecular switch coupling specific nuclear 

processes to distinct transport states. For instance, a strong 

promoter may be coupled to the NPC activity in such a way 

Fig. 4. Application and extension of the quantitative models for linear lattice systems. (A and B) Effects of nonspecific protein-DNA 

interactions on transcription. Upper panels: Using an extended conditional probability model (Eq. 16), the fractional occupancy of 

specific DNA sites (Ysp = [TF]sp,b/[Dsp]tot) for binding of a hypothetical TF was calculated as a function of molar ratio [TF]tot/[Dsp]tot for various 

sets of interaction parameters. Bottom panels: The corresponding fractional distribution of TF between specifically (solid curves) and 

nonspecifically (dashed curves) bound states were calculated. In these calculations, the value of Kns (A) or the concentration of nonspecific 

motifs ([M]tot) (B) was varied with the fixed values of Ksp = 1 × 1012 M-1, n = 10 bp, and ω = 1 ([M]tot = 5 mM in (A); Kns = 1 × 105 M–1 

in (B)). (C) Quantitative model for assembly of the Nup153 IDR hub with multiple interaction partners and competitors (adapted from 

Cho et al., 2021). The Nup153 IDR presents a high-affinity 1:1 Kap binding site (purple) and a series of low-affinity sites for overlapping 

binding of multiple Kaps. Kap occupies multiple dipeptide (FG) motifs (pink vertical bars). Using advanced combinatorial models, fine-

tuning of the Kap occupancy of Nup153 IDR was predicted as a function of location of the competitor binding site. In the partition 

function Z, Z0 corresponds to the partition function of the Nup153 IDR in the absence of competition; Kc[C] represents the competitor 

binding; The terms in the brackets are the partition functions for two subregions of the low-affinity sites separated by the competitor 

binding; (1 + Ks[P]) represents the 1:1 interaction of Kap with the high-affinity site. (D) On the basis of the multivalent, overlapping IDR-

Kap interaction, the Nup153 IDR is proposed to function as a molecular switch to couple nucleocytoplasmic transport to transcription.
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that specific TFs or co-activators associated with the strong 

promoter target a location in the Nup153 IDR that consider-

ably reduces the Kap occupancy (Fig. 4D). As a consequence 

of the reduced general transport activity mediated by Kaps, 

a large amount of mRNA transcribed from the strong pro-

moter may be efficiently exported through the NPC (Fig. 4D). 

Although awaiting experimental validation, the coupling 

mechanism built upon multivalent, overlapping IDP-target 

interactions may contribute to the functional versatility of the 

IDP hubs in dynamic cellular processes. This exemplary study 

demonstrates that the original combinatorial model can be 

readily expanded by simple mathematical operations to ac-

count for additional complexities in linear lattice-protein inter-

actions including heterogeneous binding sites.

CONCLUSION

Linear lattice systems and their multivalent interactions with 

target proteins often regulate dynamic cellular processes. 

Because of the overlapping target binding sites on a linear 

lattice, quantitative understanding of such interactions re-

quires a fundamentally different framework as compared to 

simple 1:1 binding or discrete-site systems. In this review, we 

discussed the two prevalent approaches in unraveling the 

linear lattice systems, namely combinatorial and conditional 

probability models. Constructing the lattice partition func-

tions from the combinatorial approach is straightforward 

and readily expandable in data analysis and predictions as 

illustrated in the Nup153 IDR–Kap interaction. On the other 

hand, the conditional probability model provides invaluable 

physical insights consistent with the molecular features of the 

multivalent linear lattice–target interactions. Furthermore, this 

method is suitable in simulating in vivo nucleic acid systems 

of apparent infinite lattice length. These frameworks may 

serve as a cornerstone to develop sophisticated models to an-

alyze more complex cellular processes including competition 

among multiple DNA binding proteins on nucleosomal DNA 

(Segal and Widom, 2009) as well as formation of phase-sep-

arated condensates involving multiple components (Lyon et 

al., 2021).

Note: Supplementary information is available on the Mole-

cules and Cells website (www.molcells.org).
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