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Abstract

Background: Methane represents 16 % of total anthropogenic greenhouse gas emissions. It has been estimated
that ruminant livestock produce ca. 29 % of this methane. As individual animals produce consistently different quantities
of methane, understanding the basis for these differences may lead to new opportunities for mitigating ruminal methane
emissions. Metagenomics is a powerful new tool for understanding the composition and function of complex microbial
communities. Here we have applied metagenomics to the rumen microbial community to identify differences in the
microbiota and metagenome that lead to high- and low-methane-emitting cattle phenotypes.

Methods: Four pairs of beef cattle were selected for extreme high and low methane emissions from 72 animals,
matched for breed (Aberdeen-Angus or Limousin cross) and diet (high or medium concentrate). Community analysis was
carried out by qPCR of 16S and 18S rRNA genes and by alignment of Illumina HiSeq reads to the GREENGENES database.
Total genomic reads were aligned to the KEGG genes databasefor functional analysis.

Results: Deep sequencing produced on average 11.3 Gb per sample. 16S rRNA gene abundances indicated that archaea,
predominantly Methanobrevibacter, were 2.5× more numerous (P = 0.026) in high emitters, whereas among bacteria
Proteobacteria, predominantly Succinivibrionaceae, were 4-fold less abundant (2.7 vs. 11.2 %; P = 0.002). KEGG analysis
revealed that archaeal genes leading directly or indirectly to methane production were 2.7-fold more abundant in high
emitters. Genes less abundant in high emitters included acetate kinase, electron transport complex proteins RnfC and
RnfD and glucose-6-phosphate isomerase. Sequence data were assembled de novo and over 1.5 million proteins were
annotated on the subsequent metagenome scaffolds. Less than half of the predicted genes matched matched a domain
within Pfam. Amongst 2774 identified proteins of the 20 KEGG orthologues that correlated with methane emissions, only
16 showed 100 % identity with a publicly available protein sequence.

Conclusions: The abundance of archaeal genes in ruminal digesta correlated strongly with differing methane emissions
from individual animals, a finding useful for genetic screening purposes. Lower emissions were accompanied by higher
Succinovibrionaceae abundance and changes in acetate and hydrogen production leading to less methanogenesis, as
similarly postulated for Australian macropods. Large numbers of predicted protein sequences differed between high- and
low-methane-emitting cattle. Ninety-nine percent were unknown, indicating a fertile area for future exploitation.
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Background
Methane is a greenhouse gas (GHG) with a global warm-
ing potential 28-fold that of carbon dioxide [1]. It is re-
sponsible for 16 % of total anthropogenic greenhouse gas
emissions [2]. Ruminants are the major producers of me-
thane emissions from anthropogenic activities, accounting
for 37 % of total GHG from agriculture in the UK [3].
Lowering methane emissions has therefore become a
major priority in ruminant livestock production, with
many different strategies having been proposed to miti-
gate emissions, including different dietary formulations,
chemical and biological feed additives, chemogenomics
and antimethane vaccines [4–6]. Research is also under
way to determine the extent to which the animal itself has
control over its ruminal microbiota, with the intention
that, if the trait is heritable, low-methane livestock pheno-
types may form the basis of a breeding programme to pro-
duce ruminants with a smaller environmental footprint [7].
If any of the strategies proves to be successful, benefits
may be anticipated in energy retention by the animal [3, 8].
Methane, although considered to be an atmospheric

pollutant, is a natural product of anaerobic microbial
fermentation [9]. The rumen is an anaerobic microbial
ecosystem in which a dense mixture of protozoa, bacteria
and anaerobic fungi convert carbohydrates to short-chain,
volatile fatty acids (VFA), which are absorbed by the ani-
mal and used in energy metabolism and protein synthesis.
Hydrogen is formed as a result of fermentation, and it is
used by methanogenic archaea to reduce CO2 to methane
[10]. Hydrogenotrophic methane production is quantita-
tively the most important source of methane, although
methylotrophic methanogenesis also occurs, forming me-
thane from molecules like methylamine [11].
Deep sequencing of DNA extracted from complex mi-

crobial communities enables many aspects of microbial
ecology to be determined. Metagenomics allows the abun-
dance of all genes present in the microbial community to
be determined and metabolic pathways to be predicted.
The first reports of metagenomic analysis of ruminal
digesta demonstrated the power of the technology, focus-
sing in functional terms on fibrolytic enzymes [12–14].
Since then, several further reports have appeared, applying
various metagenomics methods again to fibrolytic enzymes
[15–17], and to lipases [18, 19], virulence and antibiotic re-
sistance genes [20], polyphenol oxidase [21], CRISPR ele-
ments [22] and secretome proteins [23].
In the present paper, we apply metagenomics to ana-

lyse the root causes of different methane emissions in
high- and low-emitting beef cattle. A recent metage-
nomic analysis of high- and low-emitting sheep found
correlations between the metatranscriptome rather than
gene abundance and methane emissions in sheep [24], con-
trary to the expectation that methanogenic activity should
be proportional to the abundance of methanogenic archaea

and/or H2-producing microorganisms [25]. Several other
studies have failed to find such a relationship [6, 26–28].
The present study was undertaken to investigate the com-
parative metagenomics of high- and low-emitting beef
steers. The animals were selected as pairs of the high-
est and lowest emitters from an experimental group
comprising two cattle breeds each receiving one of
two diets differing in concentrate content. Hydrogen
and methane emissions from the whole group were re-
ported previously [29], as was a preliminary correl-
ation between methane emissions and the ratio of
total ruminal archaea to total bacteria [30]. Unlike the
other studies, archaeal gene abundances in ruminal
digesta, including 16S rRNA genes, corresponded with
the extreme differences in methane emissions from
beef cattle. Furthermore, distinctive differences in the
microbiomes and metagenomes of high- and low-
emitting cattle were identified.

Results
Methane emissions
Thirty-six Aberdeen Angus and 36 Limousin cross bred
steers received one of two diets, one mainly concentrate-
based and the other a forage-concentrate-based diet, with
forage:concentrate ratios (DM basis) of 8:92 and 48:52, re-
spectively. All cattle came from the same breeding herd
population and were kept in the identical farm environ-
ment throughout their lifetimes. Methane emissions were
measured in respiration chambers and samples of ruminal
digesta were obtained at slaughter 1–2 weeks afterwards
[30]. Four pairs of digesta samples for each breed/diet com-
bination were selected, based on being which were obtained
from animals showing the highest and lowest CH4 emis-
sions when expressed in terms of DM intake (Table 1). On
average, the high emitters produced 1.88× more CH4 than
low emitters. Average feed intake was similar between high
and low emitters, at 10.59, SE 1.03, kg DM intake/d and
10.68, SE 1.03, kg DM intake/d, respectively.

Microbial community analysis
qPCR of specific regions of 16S and 18S rRNA genes
enabled a characterisation of the broad features of the
microbiome (Table 1). Although protozoa and Clos-
tridium Cluster IV bacteria were on average 1.71× and
1.52× more abundant, respectively, in high emitters
and Clostridium Cluster IV and Bacteroidetes were 0.72×
and 0.71× as abundant, the only difference that was statis-
tically significant (P = 0.011) was a 2.40× higher archaeal
abundance in high emitters. The proportion of the abun-
dance of archaeal to bacterial 16S rRNA genes (the A:B
ratio(30)) was on average 3 % in low emitters and 9 % in
the high emitters. Bacteroidetes comprised 33.4 % of the
bacteria, while Clostridium Cluster IV and XIVa were 23.4
and 18.3 %, respectively. Proteobacteria appeared to be
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less abundant in high emitters, but DNA from one sample
proved impossible to amplify to produce an acceptable
melt curve.
Genomic DNA extracted from the same samples was

also submitted for deep sequencing using the Illumina
HiSeq platform. Reads mapping to 16S rRNA gene se-
quences were assigned to taxonomic groups at kingdom,
phylum and genus levels (Table 2). Archaeal abundance
was, as with qPCR above, calculated relative to bacterial
abundance. As with qPCR, the archaea were more abun-
dant (2.49×; P = 0.046) in the high emitters, reflected in
similar differences in Euryarchaeota at the phylum level
and Methanobrevibacter at genus level. Methanobrevi-
bacter abundance varied from 1.9 to 11.0 % compared to
total bacterial counts and was 2.54× more abundant
(P = 0.017) in high emitters. Methanosphaera were much
less abundant (0.01 to 0.13 %), while Methanobacterium
(0 to 0.03 %) were not identified or of very low abundance
still (Table 2).Methanosphaera were 2.44× more abundant
(P = 0.014) in high emitters. Thermoplasmata-related ar-
chaea were less abundant than other archaeal genera and
their abundance was greater in the high emitter in only
three of the four pairs.
Among the bacteria, Firmicutes and Bacteroidetes were

not different, in contrast to Proteobacteria, which were
0.24× less abundant in the high emitters (P = 0.002). Ana-
lysis of the Proteobacteria was only resolved to family level
(Additional file 1: Table S1) due to short reads. Succinivi-
brionaceae were the most abundant in all samples, aver-
aging 88 % of Proteobacteria reads, average 97 % in low
emitters and 79 % in high emitters. Synergistetes were
1.95× more abundant in high emitters (P = 0.022). At
genus level, Desulfovibrio was the genus whose abundance
differed most significantly (P = 0.001), being twice as
numerous in the high emitters. Others that were different
included Megasphaera, which was only 0.08× as abundant

in high emitters (P = 0.006). Mitsuokella and Dialister
were lower and Mogibacterium and Pyramidobacter
higher (P < 0.05) in high emitters compared to low
emitters.
The richness and relative abundance of the bacteria and

archaeal genera did not change significantly between low
and high emitting animals. Mean Shannon index was 3.17
for high and 2.98 for low emitting animals respectively.
Mean Chao1 index estimated 170 genera for high and
172 low emitting animals respectively (Additional file 2:
Table S2).

Gene abundance analysis
Reads were mapped to gene sequences in the KEGG [31]
database and analysed (a) in a directed manner towards
genes involved directly in methanogenesis, (b) in a directed
manner towards genes involved in alternatives to methano-
genesis, (c) in a directed manner towards genes involved in
methane oxidation, and (d) in a global manner to compare
the abundances of all annotated genes in the metagenome.
The whole KEGG dataset can be seen in Additional file 3:
Table S3. Statistical P values in Additional file 3: Table S3
are uncorrected for multiple comparisons. When the data
are discussed within their biological context, uncor-
rected P values are quoted below. When multiple test-
ing was accounted for in a partial least squares analysis,
few significant differences due to KEGG genes were found
(Table 3), but many of these were genes associated with
methanogenesis or archaea, below. The genes identified in
Table 3 to be important explained the variation in me-
thane emissions by 88 %.
(a) Genes directly involved in methanogenesis. Genes

encoding enzymes that are directly involved in methano-
genesis [24] were analysed for their abundance in high-
and low-emitting cattle (Fig. 1). With the exception of the
very low-abundance formate dehydrogenase β subunit

Table 1 Estimation of abundance of 18S and 16S rRNA genes by qPCR in four pairs of steers with extreme methane emissions

AA/Conc L/Conc AA/Med L/Med Mean P value Ratio
(H/L)Low High Low High Low High Low High Low High

CH4 (g/kg DM intake) 7.63 18.14 9.29 20.13 17.41 32.42 19.37 30.37 13.43 25.26 1.88

qPCR of 16S and 18S rRNA genes (copies/ng DNA)

Protozoa 9395 8315 464 18865 500 24480 20940 1768 7825 13357 0.613 1.71

Bacteria 923503 1026155 964081 572312 891432 575574 563798 595201 835704 692311 0.329 0.83

Archaea 23269 72076 21459 40242 19662 54880 37006 75912 25349 60777 0.011 2.40

Cluster IV 110080 278085 114411 76922 135520 221092 175738 236213 133937 203078 0.201 1.52

Cluster XIVa 193249 119584 173592 99130 181399 89060 97723 155352 161491 115782 0.279 0.72

Bacteroidetes 337544 276658 215824 299295 342174 134542 274886 122765 292607 208315 0.277 0.71

Proteobacteria 3341 a 9783 1446 21270 2085 4350 2489 11801a 2007a 0.192 0.17

Comparison of methane emissions (g/kg DM intake) and the abundance of various bacterial taxa as determined by qPCR for 4 pairs of steers matched for breed
and diet. AA Aberdeen Angus, L Limousin. Conc, high concentrate diet; Med, mixed forage: concentrate diet. DMI dry matter intake
aSample produced an abnormal melt curve. The mean was based on the three other pairs
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Table 2 Estimation of abundance of 16S rRNA genes in ruminal metagenomic sequences from four pairs of steers with extreme
methane emissions (% of mapped reads)

AA/Conc L/Conc AA/Med L/Med Mean

Low High Low High Low High Low High Low High P value Ratio (H/L)

Domain

Bacteria 98.84 97.72 99.24 95.08 98.82 96.60 97.07 95.60 98.49 96.25 0.0455 0.98

Archaea 1.16 2.28 0.76 4.92 1.18 3.40 2.93 4.40 1.51 3.75 0.0455 2.49

Bacteria

Phylum/Class

Firmicutes 45.25 43.11 48.81 40.47 43.93 46.31 39.50 52.74 44.37 45.66 0.9866 1.03

Bacteroidetes 36.21 40.06 25.70 45.33 34.53 36.47 49.98 31.64 36.61 38.38 0.3975 1.05

Proteobacteria 11.93 3.71 17.15 4.44 13.17 1.92 2.56 0.83 11.20 2.73 0.0015 0.24

Actinobacteria 1.88 1.38 1.90 1.10 1.01 1.02 0.57 1.17 1.34 1.17 0.1309 0.87

Cyanobacteria 1.69 1.41 2.11 0.78 0.07 0.42 0.10 0.17 0.99 0.69 0.2421 0.70

Tenericutes 0.73 2.27 1.79 1.27 1.65 2.48 0.86 1.87 1.25 1.97 0.2425 1.57

Spirochaetes 0.46 3.65 1.27 0.54 1.39 0.89 0.55 1.15 0.92 1.56 0.5873 1.70

Lentisphaerae 0.38 0.38 0.17 0.05 0.01 0.84 0.27 0.81 0.21 0.52 0.2491 2.50

TM7 0.12 0.31 0.06 0.05 0.50 0.38 0.60 0.49 0.32 0.31 0.5073 0.96

Synergistetes 0.10 0.15 0.07 0.18 0.02 0.08 0.07 0.12 0.07 0.13 0.0215 1.95

Verrucomicrobia 0.03 0.80 0.03 0.27 0.59 2.69 1.16 2.48 0.45 1.56 0.0695 3.44

Fibrobacteres 0.02 0.09 0.13 0.04 1.65 1.92 0.05 0.85 0.46 0.73 0.2181 1.57

Genus

Prevotella 54.11 38.09 45.60 57.30 50.04 39.96 56.00 30.41 51.44 41.44 0.3067 0.81

Butyrivibrio 10.74 6.20 5.93 7.12 1.68 7.79 6.56 17.44 6.23 9.64 0.3757 1.55

Succiniclasticum 5.59 6.26 14.34 11.05 6.83 4.21 6.34 4.84 8.28 6.59 0.1097 0.80

Bulleidia 5.51 1.14 3.66 3.05 0.56 0.29 0.21 0.56 2.49 1.26 0.1487 0.51

Sharpea 3.69 0.13 0.50 0.53 1.93 0.31 0.05 0.33 1.54 0.33 0.1228 0.21

Ruminococcus 2.94 10.29 3.25 1.42 3.92 18.43 11.30 13.30 5.35 10.86 0.1288 2.03

YRC22 1.92 7.53 6.80 0.60 0.35 1.85 1.98 1.58 2.76 2.89 0.9796 1.05

Acidaminococcus 1.65 0.21 2.47 0.47 0.05 0.01 0.01 0.00 1.04 0.17 0.0711 0.17

Coprococcus 1.32 2.56 2.36 1.21 2.30 1.23 1.06 1.14 1.76 1.53 0.5241 0.87

Roseburia 1.10 0.03 0.46 0.00 0.29 0.02 0.01 0.02 0.47 0.02 0.0484 0.04

Treponema 0.87 7.80 3.07 0.85 2.97 1.45 0.81 2.47 1.93 3.14 0.6840 1.63

Megasphaera 0.82 0.05 0.46 0.06 0.70 0.05 0.01 0.00 0.50 0.04 0.0056 0.08

Shuttleworthia 0.78 0.49 2.81 0.47 0.15 0.04 0.14 0.10 0.97 0.27 0.1718 0.28

Pseudoramibacter_Eubacterium 0.61 0.03 0.59 0.22 0.29 0.04 0.00 0.04 0.37 0.08 0.0118 0.22

Mogibacterium 0.51 1.32 0.33 1.15 0.56 1.84 2.12 3.34 0.88 1.92 0.0407 2.17

CF231 0.43 1.11 0.04 0.19 0.88 1.74 1.28 1.00 0.66 1.01 0.0492 1.53

Bifidobacterium 0.39 0.04 0.01 0.03 0.82 0.01 0.08 0.13 0.32 0.05 0.1569 0.17

Mitsuokella 0.38 0.20 0.12 0.04 0.04 0.00 0.01 0.00 0.14 0.06 0.0375 0.43

Lactobacillus 0.35 0.40 0.77 0.10 0.29 0.18 0.08 0.17 0.37 0.21 0.2347 0.57

Succinivibrio 0.32 3.97 0.32 0.12 0.26 0.03 0.07 0.02 0.24 1.03 0.4932 4.32

Anaerostipes 0.31 0.04 0.03 0.00 0.29 0.16 0.02 0.17 0.16 0.09 0.1915 0.56

Blautia 0.29 0.39 0.17 0.17 0.87 0.38 0.22 0.56 0.39 0.37 0.7396 0.97

[Eubacterium] 0.26 0.02 0.03 0.15 5.37 0.00 0.04 0.00 1.43 0.04 0.2619 0.03

Wallace et al. BMC Genomics  (2015) 16:839 Page 4 of 14



(Additional file 3: Table S3), the relative abundance of all
genes directly involved in methanogenesis was similar
(mean 2.82, SD 0.27, times greater in high emitting ani-
mals). The relative abundances of the genes encoding inter-
acting enzymes, coenzyme F420 hydrogenase (EC:1.12.98.1)
and heterodisulfide reductase (EC:1.8.98.1), were similar to
each other and to the genes of the main pathway (mean
2.77, SD 0.20, times greater in high emitting animals). Phos-
phoserine phosphatase (EC:3.1.3.3) was similarly more
abundant in high emitters (2.72×, P = 0.040). Most uncor-
rected P values associated with the high-low differences
were <0.05, many being much lower (Additional file 4:
Table S4).
(b) Genes directly involved in acetogenesis. Acetogen-

esis by the Ljungdahl-Wood reductive acetogenesis
pathway can be divided into three parts [32]. The first
part involves the synthesis of 5-methyl-tetrahydrofolate.
The first enzyme is an NADP-dependent formate de-
hydrogenase (EC:1.2.1.43). Only two of the 5.3 million
gene assignations mapped to this gene (Additional file 3:
Table S3). Enzymes that involve the metabolism of formate
via tetrahydrofolate (THF) intermediates to 5-methyl-
THF, including 10-formyl-THF synthetase (EC:6.3.4.3),
10-formyl-THF deformylase (EC:3.5.1.10), 10-formyl-THF
cyclohydrolase (EC:3.5.4.9), 5-formyltetrahydrofolate cyclo-
ligase (EC:6.3.3.2), 5,10-methylene-THF dehydrogenase

(EC:1.5.1.5) and 5,10-methylene tetrahydrofolate reductase
(EC:1.5.1.20 (NADPH)) were present at higher abundance,
but none differed significantly between the high and low
emitters (Additional file 4: Table S4). Reduction of CO2 to
CO initiates the capture of CO2 [32]; carbon monoxide
dehydrogenase iron sulfur subunit (K00196) was 2.22×
more abundant in high emitters (P = 0.017) and CO de-
hydrogenase maturation factor (K07321) 2.57× more
abundant, though not significantly so (P = 0.180). The
carbon monoxide dehydrogenase/acetyl-CoA synthase
reaction catalysed by EC:2.3.1.69 [33] is the only enzyme
that is thought to be unique to reductive acetogenesis
[34]; none of the reads was assigned to this gene, despite
its having been found in several ruminal bacteria [34].
(c) Genes associated with methanotrophy, methane

monooxygenase (EC:1.14.18.3) and methanol dehydro-
genase (EC:1.1.2.7), were not identified in the dataset.
(d) The KEGG data were assembled into genes with an

abundance of >0.01 % and that differed between high- and
low-emitters by uncorrected P < 0.05 (Additional file 4:
Table S4). The genes directly involved in methanogenesis
((a) above) feature significantly among the increased gene
abundances in this Table. Among the 125 genes thus iden-
tified, several hypothetical proteins appear. Among the
genes whose abundance was higher in high emitters (and
not appearing under (a)) were genes associated with

Table 2 Estimation of abundance of 16S rRNA genes in ruminal metagenomic sequences from four pairs of steers with extreme
methane emissions (% of mapped reads) (Continued)

Oscillospira 0.24 0.50 0.25 0.26 0.25 0.36 0.23 0.41 0.24 0.38 0.0816 1.58

RFN20 0.20 0.15 0.10 0.17 1.15 0.93 0.14 0.51 0.40 0.44 0.7813 1.11

Bacteroides 0.20 0.17 0.03 0.58 0.43 0.28 0.27 0.22 0.23 0.31 0.6107 1.34

Dialister 0.17 0.03 0.75 0.00 0.40 0.00 0.00 0.00 0.33 0.01 0.0491 0.02

Clostridium 0.15 0.36 0.06 0.05 2.04 0.63 0.31 0.78 0.64 0.45 0.5288 0.70

Desulfovibrio 0.13 0.29 0.21 0.34 0.11 0.27 0.16 0.34 0.15 0.31 0.0013 2.04

Pyramidobacter 0.13 0.24 0.12 0.24 0.05 0.12 0.09 0.22 0.10 0.20 0.0045 2.10

Moryella 0.12 0.70 0.09 0.48 0.32 0.51 0.49 0.88 0.25 0.64 0.0212 2.54

Selenomonas 0.12 1.29 0.33 0.98 0.55 0.68 1.13 0.34 0.53 0.82 0.2378 1.55

Catenibacterium 0.09 0.00 0.00 0.01 0.07 0.02 0.00 0.01 0.04 0.01 0.1282 0.24

Dorea 0.09 0.02 0.14 0.02 0.04 0.01 0.01 0.04 0.07 0.02 0.0671 0.31

Archaea

Euryarchaeota 1.18 2.31 0.77 4.98 1.20 3.42 2.98 4.47 1.53 3.79 0.0266 2.48

Crenarchaeota 0.01 0.01 0.00 0.04 0.00 0.04 0.02 0.01 0.01 0.02 0.2152 3.00

Methanobacteria 1.13 2.20 0.73 4.83 1.15 3.25 2.84 4.27

Methanococci 0 0 0 0 0 0 0 0

Methanobacterium 0 0 0 0 0 0 0 0

Methanobrevibacter 2.27 4.93 1.88 8.40 2.73 7.49 5.62 11.00 3.13 7.95 0.0169 2.54

Methanosphaera 0.01 0.04 0.01 0.05 0.06 0.08 0.07 0.13 0.04 0.07 0.0141 2.44

Thermoplasmata 0.02 0.07 0.03 0.03 0.10 0.06 0.12
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methane, hydrogen or archaeal energy metabolism: a
H2-dependent 5,10-methenyltetrahydromethanopterin
hydrogenase (EC:1.12.98.2) (4.31×); cobalt/nickel trans-
port system permease protein (K02007; 2.88×) would help
provide Ni to the Ni-dependent methyl reductases, hy-
drogenases and coenzyme F430 involved in methanogen-
esis; hydrogenase nickel incorporation protein HypB was
2.48× more abundant in high emitters (P = 0.004). Genes
encoding subunits of V-type H+-transporting ATPase
(EC:3.6.3.14) were 2.18–2.87× more abundant in high
emitters. Subunits of pyruvate ferredoxin oxidoreduc-
tase (EC:1.2.7.1) were on average 2.96× more abundant
in high emitters (Additional file 5: Table S5).
Among other genes associated with hydrogenase activity,

F420-non-reducing hydrogenase (EC:1.12.99.-) subunits A,
D and G were 2.64×, 3.58× and 3.01× more abundant in
high emitters. Likewise, hydrogenase expression/formation
protein (K07388) was 2.52× more abundant, along with
hydrogenase maturation protein HypF 2.54×; hydrogenase

expression/formation protein HypC 5.17×, HypD 2.66×
and HypE 2.94×. Energy-converting hydrogenase A sub-
units B 4.15×, C 3.75×, E 2.53×, G 3.00×, H 2.52×; J 2.65×,
M 2.32×, N 3.02×, O 2.11×, P 2.39×, Q 3.31× and R 3.67×
and were more abundant in high emitters as were energy-
converting hydrogenase B subunits A 4.12×, F 3.33×, H
3.60×, K 2.67×, L 2.85×, M 2.53× and N 2.59×.
Two genes of the pentose phosphate pathway tended

to be less abundant, glucose-6-phosphate isomerase
(EC:5.3.1.9, 0.615×, P = 0.054) and transketolase (EC:2.2.1.1,
0.692×, P = 0.104). Transaldolase (EC:2.2.1.2, 0.389×,
P = 0.279) was numerically less abundant, but other
enzymes of this pathway were either not identified or not
different (EC:3.1.1.17, 1.1.1.49, 3.1.1.17, .1.1.1,44, 5.1.3.1;
Additional file 4: Table S4).
Other genes that were of higher abundance in high

emitters included transcription initiation factor TFIIB
(K03124, 2.63×, P = 0.009), which is archaeal, and
transcription initiation factor TFIID TATA-box-binding

Table 3 Partial least squares estimates of KEGG genes and diet effects and the variation in methane emissions. Partial least squares
estimates of KEGG genes and diet effects in an analysis where the partial least squares factorsa explaining 87.6 % of the variation of
model effects and 87.9 % of the variation in methane emissions

KEGG ID/Diet Description bEstimate cVIP

K06001 Tryptophan synthase beta chain [EC:4.2.1.20] 0.13310 1.233

Diet conc Concentrate based diet −0.14695 1.204

Diet mixed Mixed forage-concentrate diet 0.14695 1.204

K02118 V/A-type H+-transporting ATPase subunit B [EC:3.6.3.14] 0.07984 1.151

K02117 V/A-type H+-transporting ATPase subunit A [EC:3.6.3.14] 0.08564 1.133

K00638 Chloramphenicol O-acetyltransferase [EC:2.3.1.28] 0.06182 1.082

K00200 Formylmethanofuran dehydrogenase subunit A [EC:1.2.99.5] 0.06042 1.070

K03531 Fell division protein FtsZ 0.07526 1.065

K00201 Formylmethanofuran dehydrogenase subunit B [EC:1.2.99.5] 0.04859 1.049

K00399 Methyl-coenzyme M reductase alpha subunit [EC:2.8.4.1] 0.03843 1.021

K00123 Formate dehydrogenase, alpha subunit [EC:1.2.1.2] 0.03417 1.013

K03388 Heterodisulfide reductase subunit A [EC:1.8.98.1] 0.02734 0.997

K14126 F420-non-reducing hydrogenase subunit A [EC:1.12.99.-] 0.00384 0.933

K01079 Phosphoserine phosphatase [EC:3.1.3.3] 0.03424 0.932

K00401 Methyl-coenzyme M reductase beta subunit [EC:2.8.4.1] 0.00484 0.909

K00527 Ribonucleoside-triphosphate reductase [EC:1.17.4.2] 0.03449 0.898

K02337 DNA polymerase III subunit alpha [EC:2.7.7.7] −0.05338 0.886

K02837 Peptide chain release factor RF-3 0.00883 0.852

K01893 Asparaginyl-tRNA synthetase [EC:6.1.1.22] −0.06673 0.812

K00925 Acetate kinase [EC:2.7.2.1] −0.00903 0.812

K00656 Formate C-acetyltransferase [EC:2.3.1.54] −0.00834 0.787

K02948 Small subunit ribosomal protein S11 −0.00400 0.734

Genes in bold type are archaeal genes associated with methane production
aTwo factors were significant in the partial least squares analysis
bEstimates based on predictors and responses to be centred and scaled to have mean 0 and standard deviation 1
cVariable Importance for Projection (VIP) statistic of Wold [67], which summarizes the contribution of a variable marker to the model
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protein (K03120; 4.31×, P = 0.027), which is present in all
domains. The enzymes NADH dehydrogenase (EC:1.6.99.3,
2.60×, P = 0.018) and (R)-2-hydroxyacid dehydrogenase
(EC:1.1.1.272, 4.09×, P = 0.024) were also more abundant in
high emitters.
Genes that were less abundant in high emitters included

electron transport complex proteins RnfC (K03615, 0.357×,
P = 0.010) and RnfD (K03614, 0.550×, P = 0.027), and F-
type H+-transporting ATPase subunit a (EC:3.6.3.14,
0.620×, P = 0.028) (Additional file 4: Table S4). Acetate
kinase was lower (EC:2.7.2.1, 0.559×, P = 0.024) and
there were trends for the related enzymes, phosphate
acetyl transferase (EC:2.7.2.1, acetyl-CoA:phosphate
acetyltransferase, 0.596×, P = 0.066) and pyruvate kin-
ase (EC:2.7.1.40, 0.366×, P = 0.074) also to be lower

(Additional file 4: Table S4). Others included saccharopine
dehydrogenase (NAD+, L-lysine forming) (EC:1.5.1.7,
0.549×, P = 0.039) and replicative DNA helicase
(EC:3.6.4.12, 0.555×, P = 0.015].
The positions of several genes on the KEGG metabolic

pathways involved in and related to methanogenesis are
highlighted in Additional file 6: Figure S1.

De novo assembly and gene prediction
Metagenomic data were assembled de novo, and predicted
genes and proteins were annotated using Pfam [35]. Across
all eight samples, there were 1,500,390 predicted proteins,
of which a Pfam domain could be assigned to 729,736
(48.6 %). Of those, 97,214 were DUF domains – “domain
of unknown function”. Therefore a domain could not be

Fig. 1 The metagenomic abundance of key elements of the methane production pathway Centre pane: the methane production pathway, plus
ancillary reactions, showing enzyme classification (EC) numbers. Left pane: the abundance of each of the relevant EC numbers in our data set. Bar
charts show percentage of reads mapped to each enzyme in the 8 samples, 4 pairs of cattle matched for breed (AA = Aberdeen Angus; L = Limousin
cross) and diet (High or Medium concentrate). Grey bars are cattle selected for high methane production, white bars are cattle selected for
low methane production. For every single enzyme, within each pair, the abundance of the enzyme is higher in high methane producers than
in low methane producers. Right pane: heatmap of KEGG orthologues for the EC numbers involved in methane production (lines connect the
heatmap to the methane production pathway indicating which K0 numbers represent the given enzymes). The heatmap shows pairs of cattle matched
for breed (AA= Aberdeen Angus; L = Limousin cross) and diet (High or Medium concentrate). Blue represents low abundance and yellow represents high
abundance. Within each pair, the high methane emitters are to the right and the low methane emitters to the left. A clear pattern emerges – within each
pair, these K0 numbers are more abundant (yellow) in the high methane emitters than in the low methane emitters
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assigned to over half of the predicted proteins, and a puta-
tive function to almost 58 %.
Of the 20 KEGG orthologues in Table 3 significantly as-

sociated with methane emissions, 2774 putative full length
members were discovered in our data set (Table 4). These
were searched against NR using BLAST [36]. Of the 2774
predicted proteins, only 16 (0.6 %) gave an exact match in
NR, and only 34 (1.2 %) showed 100 % amino acid conser-
vation. Furthermore, only 407 (14.7 %) showed 90 % iden-
tity with a protein in NR and only 990 (35.7 %) showed
90 % amino acid conservation.
Predicted proteins, and their domains, are available as

a Meta4 database [37] at http://www.ark-genomics.org/
tools/meta4

Discussion
In the present study, ruminal digesta samples from beef
cattle with extreme high and low emissions, identified
from an earlier 72-animal study [29, 30], were used to
pinpoint key differences in their microbial communities
and metagenomes that might help explain the methane
phenotype and thereby offer new avenues to explore means
of mitigation. Methane emissions correlated with archaeal
abundance in the rumen based on 16S rRNA genes and
the abundance of other archaeal genes, particularly those
involved directly or indirectly with methanogenesis, was
greater in high methane emitters. Differences in other
members of the rumen microbial community pointed for
the first time to a role of Succinovibrionaceae in low

Table 4 Counts of predicted rumen metagenomic proteins and their KO group. Summary of 2774 predicted proteins from the 8
metagenomic rumen samples. KEGG ID is the predicted K0 group. Columns show the number of full length candidates within each
K0 group, the number which have 100 % identical matches in NR, the number showing 100 % conservation with a protein in NR,
the number with a 90 % identical match, and the number showing at least 90 % conservation with a protein in NR

KEGG ID Description # full length
candidates

# 100 %
identical in NR

# 100 %
conserved in NR

# 90 %
identical NR

# 90 %
conserved in NR

K06001 Tryptophan synthase beta
chain [EC:4.2.1.20]

194 1 1 32 78

K02118 V/A-type H+-transporting ATPase
subunit B [EC:3.6.3.14]

337 2 4 65 169

K02117 V/A-type H+-transporting ATPase
subunit A [EC:3.6.3.14]

105 21

K00638 Chloramphenicol O-acetyltransferase
[EC:2.3.1.28]

76 3 3 7 25

K00200 Formylmethanofuran dehydrogenase
subunit A [EC:1.2.99.5]

57 2 8

K03531 Cell division protein FtsZ 167 3 4

K00201 Formylmethanofuran dehydrogenase
subunit B [EC:1.2.99.5]

20 3 7

K00399 Methyl-coenzyme M reductase alpha
subunit [EC:2.8.4.1]

1 1 1

K00123 Formate dehydrogenase, alpha
subunit [EC:1.2.1.2]

3 1

K03388 Heterodisulfide reductase
subunit A [EC:1.8.98.1]

352 1 1 26 75

K14126 F420-non-reducing hydrogenase
subunit A [EC:1.12.99.-]

6 1 4

K01079 Phosphoserine phosphatase [EC:3.1.3.3] 0 0 0 0 0

K00401 Methyl-coenzyme M reductase beta
subunit [EC:2.8.4.1]

2

K00527 Ribonucleoside-triphosphate
reductase [EC:1.17.4.2]

120 24 57

K02337 DNA polymerase III subunit
alpha [EC:2.7.7.7]

108 5 12

K02837 Peptide chain release factor RF-3 569 2 5 103 271

K01893 Asparaginyl-tRNA synthetase [EC:6.1.1.22] 437 3 54 155

K00925 Acetate kinase [EC:2.7.2.1] 132 1 1 23 38

K00656 Formate C-acetyltransferase [EC:2.3.1.54] 101 18 54

K02948 Small subunit ribosomal protein S11 178 6 16 49 57
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methane emissions in ruminants; bacterial gene abun-
dances were consistent with this interpretation. The results
of protein mapping analysis from metagenomic sequences
highlight that the majority of genes and proteins had no
homologues in public databases and that there are many
differences between high- and low-emitting beef cattle that
could be useful for exploitation.
Previous qPCR analysis of the whole 72-animal experi-

mental group suggested a correlation, albeit rather weak,
between archaeal abundance and methane emissions from
individual animals [30]. It might be argued that the extreme
animals, as investigated here, might give a better impression
of what opportunities might be available for modulating
methane emissions. The differences in methane emissions,
expressed per kg DM intake, between selected low and high
emitters were substantial (1.88×), thus the causes of these
differences might be more easily identified. Post-mortem
digesta sampling was used here, following our previous dis-
covery that the abundance of archaea relative to bacteria
was similar in live cattle when leaving the respiration cham-
bers and when digesta were sampled at slaughter ca. two
weeks later [30].
The rumen microbial community comprises mainly cili-

ate protozoa, anaerobic bacteria and fungi and archaea.
Methanogenesis in the rumen occurs predominantly by
the hydrogenotrophic route, i.e. 4H2 + CO2 = CH4 + 2H2O
[5, 6]. The first three microbial groups provide the H2,
and the archaea carry out methanogenesis. It therefore
seems intuitive that methane emissions should correspond
to some extent with archaeal abundance in the rumen,
from where 87 % of enteric emissions originate in the
digestive tract [38]. Yet, except for our previous stud-
ies [30], proof of such a correlation has proved elusive
[6, 24, 26–28, 39]. The higher proportion of archaea in
high emitters in the present study was similar whether
calculated from qPCR or deep sequencing reads of 16S
rRNA genes. The large difference between high and
low emitters may explain why differences in gene abun-
dance may become more evident. Shi et al. [24] found
differences in the ruminal transcriptome but not the meta-
genome that correlated with sheep emitting different
amounts of methane. We would submit that there are
strong theoretical reasons why methane emissions should
be proportional to the abundance of archaea present in
the rumen of individual animals rather than transcript
abundances. The biomass yield of the archaea must nor-
mally be directly proportional to the methane produced,
since, with minor possible exceptions such as alcohol
utilization [4], methanogenesis is the only mechanism of
ATP synthesis available to the archaea. Furthermore, the
cytochrome-containing genera [40] have not been re-
ported in the rumen [41], so the molar growth yields of
the different genera that are found in the rumen are likely
to be similar. Uncoupling between methanogenesis and

ATP synthesis [42, 43] could explain a lack of correspond-
ence between archaeal abundance and methane emissions.
Such uncoupling occurs at high H2 partial pressures in
some archaea [44], but is not known in ruminal ar-
chaea as far as we are aware. Furthermore, the partial
pressure of H2 in the rumen is always low [45]. Sev-
eral different archaeal genera have been found in the
rumen in different species of ruminant in different
geographical locations [41]. As found here by examin-
ing 16S rRNA reads from the metagenomes, Metha-
nobrevibacter usually predominates [41, 46, 47]. The
abundance of Methanobrevibacter varied from 1.9 to
11.0 % compared to bacterial abundance.
A greater abundance of archaea in high emitters would

be expected to be a response to rather than the root
cause of the difference in emissions, unless major differ-
ences in H2 emissions were found, which was not the
case [29]. The availability of H2 limits the rate of ruminal
methanogenesis under some circumstances [45]. Thus,
methane emissions might be expected to be at least partly
dependent on the abundance of H2-producing microorgan-
isms. Ciliate protozoa are major producers of H2, produced
by mitochondrion-like organelles known as hydrogeno-
somes [48]. They were generally more abundant in high
emitters, but the differences were not statistically signifi-
cant. Kittelmann et al. [49] also did not find links between
protozoa and methane. The bacterial Firmicutes phylum, of
which the main ruminal members are Clostridium Clusters
IV and XIV, would contain more H2 producers, particularly
Clostridium Cluster IV in which the main ruminal commu-
nity members are the highly cellulolytic Ruminococcus and
several Eubacterium spp. [50, 51], than the Bacteroidetes,
which generally are net H2 utilisers [51]. Trends in this
direction occurred, but as observed with the whole animal
group [29, 30] no statistically significant differences in their
abundance were observed. Stronger associations between
methane emissions and abundance of H2-producing bac-
teria in sheep have been reported by Kittelmann et al. [49],
who distinguished three ‘ruminotypes’. The high me-
thane emitters generally had a greater community of
H2-producing bacteria than low emitters.
Highly significant differences were observed in the

abundances of some bacterial taxa based on 16S rRNA
sequences extracted from the metagenome. Proteobac-
teria were 4-fold more abundant in low emitters. The
predominant Proteobacteria belonged to the family Suc-
cinivibrionaceae. This observation has a curious corres-
pondence with the abundance of Succinivibrionaceae in
the digestive tract of the Tammar wallaby (9 % of total
bacteria) [52], which was considered to be the main rea-
son why the Tammar wallaby produces one quarter of
the methane emissions of cattle [52, 53]. Succinivibrio-
naceae were just as abundant in the low-emission beef
cattle investigated here as in the wallaby. These bacteria
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produce succinate as a main fermentation product, thus
trapping metabolic hydrogen rather than releasing it as
H2. It may be that the main Succinivibrionaceae species
are different in the two animal hosts; indeed, Pope et al.
[52] did not find any of the major wallaby species of Succi-
nivibrionaceae in cattle. Nonetheless, the finding that Succi-
nivibrionaceae were much more numerous in low-emitting
cows is consistent with the wallaby observations and offers
a possible strategy for lower methane emissions from ru-
minant livestock.
Other significant differences in bacteria may not be ex-

plained directly in terms of methane emissions, but possible
related causes of the differences are of interest. Desul-
fovibrio, like archaea, are H2 utilisers, using H2 to re-
duce sulphate to sulphide [54, 55]; their 2-fold higher
abundance in high emitters might therefore be linked
with a greater availability of H2. Megasphaera is a genus
associated with adaptation of the ruminal community to
low pH [56, 57]. Their greater abundance in low emitters
could be indicative of a less stable pH in these animals.
(Ruminal pH was not measured here, because such mea-
surements made post mortem have limited or no value).
Dialister, from the phylum Firmicutes, family Selenomo-
nadales, which also were much more abundant in low
emitters, might fall into a similar category based on their
metabolic properties [58]. Ruminal methanogenesis is
highly sensitive to low pH [59, 60], thus the cause of the
greater abundance of these bacterial genera in low emit-
ters may be consistent with a low-pH inhibition of archaea
in these animals. Two unrelated genera that were more
abundant in high emitters were Mogibacterium and Pyra-
midobacter, both of which are asaccharolytic [61, 62].
Why such a characteristic should enrich for bacteria
with this type of metabolism in high methane emit-
ters is unclear. Quinella spp., which were found to be
more abundant in low-emitting sheep [49], were not
resolved in our taxonomic analysis. However, at the
family level, the Veillonellaceae, of which Quinella is a
member, were considerably more numerous in the low-
emitting cattle.
Relatively low values of Shannon diversity reflected the

low taxonomic richness and dominance of genera such
as Prevotella and Butyrivibrio within the bacteria and
Methanobrevibacter within the archaea. The lack of any
significant difference in diversity statistics between the
high and low emitting animals indicated that the generic
taxonomic composition of the microbiome was not al-
tered as a result of the breed, diet or methane emission
profile. However, it is likely that these measurements of
diversity were not sensitive enough to detect differences
in microbiome populations associated with methane
profiles. Correspondence analysis carried out on larger
sample numbers [49] or detailed analyses such as the
quantitative PCR carried out here, was required to reveal

more subtle changes in the key microbial species in-
volved in methanogenesis.
Bacterial gene abundances that differed in low and high

emitters included several involved in acetate formation and
pyruvate metabolism. Acetate kinase (EC:2.7.2.1), which ca-
talyses the conversion of acetyl phosphate to acetate with
the formation of ATP, was 0.56× as abundant in high emit-
ters. Phosphotransacetylase (EC:2.3.1.8) forms acetyl phos-
phate from acetyl CoA; its abundance was similarly lower
(0.60×) in high emitters. A possible alternative route for
acetate formation, acetate thiokinase (EC:6.2.1.1), was un-
changed. Pyruvate ferredoxin oxidoreductase (EC:1.2.7.1),
which forms acetyl CoA from pyruvate while reducing fer-
redoxin, showed a higher abundance of its α, β, γ an δ sub-
units by 2.9, 2.7, 3.2 and 3.2×, respectively, in high emitters.
In contrast, pyruvate formate lyase, an alternative route of
acetyl CoA formation from pyruvate, had much lower
abundance (0.32×) in high emitters. Thus, the ruminal
microbiota in high methane emitters metabolised pyru-
vate differently to low emitters, favouring the pyruvate
formate lyase – acetate kinase route. Perhaps significantly,
this is the route by which pyruvate is converted to acetate
used by Succinivibrionaceae isolate WG-1 from the
Tammar wallaby [52]. Two genes of the pentose phos-
phate pathway characteristic of the wallaby species WG-1
[52] and WG-2 [53] also tended to be more abundant in
low emitters.
It was notable that genes which catalyse methane oxida-

tion [63] were absent, suggesting that significant methane
oxidation does not occur in beef cattle. Reverse methano-
genesis remains a possibility, however [64]. Although some
genes associated with reductive acetogenesis, such as car-
bon monoxide dehydrogenase iron sulfur subunit and CO
dehydrogenase maturation factor, were more abundant in
high emitters, the only enzyme that is thought to be unique
to reductive acetogenesis, carbon monoxide dehydrogen-
ase/acetyl-CoA synthase (EC:2.3.1.69) [33, 34] was not
present, despite its having been found in several ruminal
bacteria [34].
Multiple comparison analysis was not carried out here,

for simple reasons. In Table 2, for example, 16 out of 52
P values are significant at P < 0.05, which clearly exceeds
the false positive rate. As this was an exploratory study,
rather than one which aimed to test specific hypotheses,
we considered that a multiple testing adjustment of indi-
vidual P values, such as a Bonferroni correction, would
severely inflate the false negative rate. We therefore pre-
ferred to present unadjusted P values, leaving it to the
reader to bear in mind that a few (2–3) of them can be
expected to be false positives, though most will not.
Among the aims of the type of methane research

described here are to find proxies for estimating me-
thane emissions – the respiration chambers used in
the present experiments are expensive and laborious,
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unsuited to large numbers of animals - and to identify
targets for interventions to lower methane emissions.
Here, comparisons of metagenomic profiles identified
differences that characterise high- and low-emitting ani-
mals. Table 3 describes the cumulative contribution of a
group of genes on methane emissions, considering the
correlations among gene effects. Thereby, the effect of
each gene is estimated independently from those of all
other genes in the model. The order of importance of
the genes may reflect therefore more the independent
regulatory effects of each gene on methane emissions.
Thus, there are several possible strategies for identify-
ing proxies and targets.
Our results demonstrate that the rumen is still a hugely

unexplored environment containing many novel enzymes,
which could be of significant interest to the agricultural
and biotechnology markets. From just 8 samples and a lit-
tle under 88 Gb of sequencing data, we were able to pre-
dict over 1.5 million proteins, the majority of which we
were unable to assign function to. Predicting the function
of proteins such as these (those with no hits in public
databases) will be a major challenges facing biologists in
the next decade. Of the proteins we could assign some
function to, the vast majority were novel, with over 99 %
of them having no exact matches within NR, and the
majority showing conservation levels below 90 %. We can
predict their function through homology to enzymes
and proteins of known function; however, undoubt-
edly they will differ in their ability to catalyse reac-
tions, and some may be more efficient at their task,
which would be of profound interest to a range of re-
searchers and companies in biotechnology. By releas-
ing all 1.5 million proteins, with predicted domains, as
a Meta4 database, we allow researcher to explore a
dataset of huge importance and impact.

Conclusion
In conclusion, the results presented here demonstrate
that the abundance of archaea and their constituent
genes corresponds strongly with methane emissions by
the host animal. The gene abundances can now be used
individually or collectively as proxies for methane emis-
sions in genetic screening studies. The discovery that
pyruvate and acetate metabolism and the numbers of
Succinivibrionaceae differ between low and high emitters
may bring insight into how metabolic pathways and the
microbial community might be manipulated to lower
methane emissions and thus lessen the environmental
footprint of ruminant livestock production.

Methods
Animals, experimental design and diets
This study was conducted at the Beef and Sheep Re-
search Centre of SRUC (6 miles south of Edinburgh,

UK) in summer 2011. The experiment was approved by
the Animal Experiment Committee of SRUC and was
conducted in accordance with the requirements of the
UK Animals (Scientific Procedures) Act 1986. Full de-
tails of the methodology of animal experimentation have
been provided previously [29, 30]. Only an outline is
given here.
Thirty-six Aberdeen Angus and 36 Limousin cross bred

steers received one of two diets, one mainly concentrate-
based and the other a forage-concentrate-based diet, with
forage:concentrate ratios (DM basis) of 8:92 and 48:52,
respectively. The composition of the diets is given in
Additional file 7: Table S6. Feed samples were analysed
for DM, ash, CP, ADF and NDF according to standard
methods [65]. Gross energy of feeds was performed on
dried samples by adiabatic bomb calorimetry. All cattle
came from the same breeding herd population and
were kept in the identical farm environment through-
out their lifetimes.
Eighteen animals of each breed received each diet. Me-

thane emissions were measured individually for 48 h in
respiration chambers. Samples of ruminal digesta were
recovered at slaughter up to 2 weeks later. The highest
and lowest emitter, expressed as g methane per kg DM
intake, were identified from each of the breed/diet com-
binations and the stored DNA was subjected to qPCR of
16S rRNA genes and to deep sequencing.

qPCR of 16S and 18S rRNA genes
Sample storage and DNA extraction were carried out
using methods described and authenticated in previ-
ous studies, as described by Rooke et al. [29]. Primers
used for amplification of 16S and 18S rRNA genes,
amplification protocols, calibration and calculation of
gene abundance were also the same as those reported
by Rooke et al. [29].

Deep sequencing and KEGG analysis
Illumina TruSeq libraries were prepared from genomic
DNA and sequenced on an Illumina HiSeq 2500 instru-
ment by Edinburgh Genomics. 100-bp paired-end reads
were generated, resulting in between 8.6 and 14.5 Gb
per sample (between 43.4 and 72.7 million paired reads).
For 16S rRNA gene analysis, the genomic reads were

aligned to the GREENGENES database [66] using Novoalign
(www.novocraft.com). Parameters were adjusted such that
all hits were reported that were equal in quality to the best
hit for each read, and allowing up to a 10 % mismatch across
the fragment. Taxa were assigned to each read as follows.
Where a read hit a single entry in the GREENGENES data-
base, the full taxonomy for that hit was taken. Where a read
hit multiple entries in the GREENGENES database, the
lowest common taxon was taken. The number of reads
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that matched at each of Kingdom, Phylum and Genus
were counted, normalised to the total number of hits
and expressed as a percentage.
The genus abundance table, based on counts, was used

to generate diversity statistics for the microbiome in
each sample. Shannon index [67] was used as a measure
of richness and evenness and Chao1 index [68] to calcu-
late the estimated total number of prokaryotic genera.
For functional analysis, a similar approach was taken.

The genomic reads were aligned to the KEGG genes data-
base using the same parameters, read counts for KEGG
orthologues summed and normalised to the total number
of hits. We first aligned reads directly to KEGG genes
allowing for up to a 10 % mismatch. The KEGG Ortholo-
gue groups (KO) of all hits that were equal to the best hit
were examined. If we were unable to resolve the read to a
single KO, the read was ignored; otherwise, the read was
assigned to the unique KO.

Calculations and statistical analysis
Microbial 16S rRNA abundances were compared using
paired t-tests. Comparisons of gene abundances were
carried out as follows. Firstly, a generalized linear model
analysis (GLM, Version 9.1 for Windows, SAS Institute
Inc., Cary, NC, USA) was performed, fitting diet effects
(P < 0.05) and one KEGG gene each time. Breed showed
non-significant effects (P > 0.1) on methane emissions
per kg DM intake and therefore was not fitted in the
model. Secondly, a partial least squares analysis (PLS,
Version 9.1 for Windows, SAS Institute Inc., Cary, NC,
USA) was carried out fitting all KEGG genes identified
in the GLM analysis to have P < 0.1 (including diet ef-
fects) in order to account for multiple testing and the
correlations among all these model effects. Model effects
with a variable importance for projection (VIP) criteria
[69] of <0.8 were removed from the model because Wold
[69] indicates that those effects contribute little to the pre-
diction. No further PLS analyses were carried out even
when a few genes moved below VIP values of 0.8.

Metagenomic assembly and gene prediction
Each sample was assembled de novo using MetaVelvet [70]
and a kmer of 51. From the resulting scaffolds, microbial
genes were predicted using Prokka [71], and compared to
Pfam [35] using HMMER [72]. All protein predictions and
annotations were uploaded to a Meta4 database [37]. We
applied a P-value cut-off of 0.01 to the resulting domain
predictions and counted the number of protein predictions
which were assigned domains.
We then searched for members of the 20 KEGG ortho-

logous groups from Table 3 in our dataset. Specifically, for
each of the 20 KEGG orthologous groups in Table 3, we
searched for predicted proteins that had a similar domain
structure and which were greater than or equal to the

length of the smallest protein in the group. These were
then compared to the NR database using BLAST [36].

Availability of supporting data
Predicted proteins, and their domains, are available as a
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tools/meta4. Raw data are available in the European
Nucleotide Archive under accession PRJEB10338.

Additional files

Additional file 1: Table S1. Analysis of reads of 16S rRNA assigned to
Proteobacteria (DOCX 15 kb)

Additional file 2: Table S2. Diversity statistics based on microbial genus
abundance in high and low methane emitting cattle. (DOCX 12 kb)

Additional file 3: Table S3. KEGG dataset in order of average gene
abundance. (XLSX 1400 kb)

Additional file 4: Table S4. KEGG dataset in order of the ratio of gene
abundance, high:low emitters. (XLSX 443 kb)

Additional file 5: Table S5. Gene abundance of genes of pyruvate
metabolism in low and high methane steers. (DOCX 14 kb)

Additional file 6: Figure S1. KEGG pathways associated with methane
metabolism. Highlighted EC gene numbers are those genes that differed
significantly between high and low emitting cattle. Red – genes that had
higher abundance in high emitters; blue - genes that had lower
abundance in high emitters. (DOC 22 kb)

Additional file 7: Table S6. Ingredient composition (fresh weight
basis; g/kg) of high- concentrate and mixed forage: concentrate diets.
(DOCX 11 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RJW helped design the study, interpret the results and co-authored the
manuscript. JAR, CAD, JJH, DWR, AW contributed to the design of the study,
carried out the experiment, helped interpret the results and co-authored the
manuscript. MW helped with study design, carried out all bioinformatic analyses,
helped interpret the results and co-authored the manuscript; RR designed the
experiment and study, carried out genetic analysis, helped interpret the results
and co-authored the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
The Rowett Institute of Nutrition and Health and SRUC are funded by the
Rural and Environment Science and Analytical Services Division (RESAS) of
the Scottish Government. The project was supported by Defra and the DA
funded Agricultural Greenhouse Gas Inventory Research Platform, the Technology
Strategy Board (Project No: TP 5903–40240) and the Biotechnology and Biological
Sciences Research Council (BBSRC; BB/J004243/1, BB/J004235/1). Our thanks are
due to the excellent support staff at the SRUC Beef and Sheep Research Centre,
Edinburgh, and to Silvia Ramos Garcia for help in interrogating the data.
MW and RR contributed equally to the paper and should be considered as
joint last authors.

Author details
1Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn,
Aberdeen AB21 9SB, UK. 2SRUC, West Mains Road, Edinburgh EH9 3JG, UK.
3Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of
Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK.

Received: 7 April 2015 Accepted: 8 October 2015

Wallace et al. BMC Genomics  (2015) 16:839 Page 12 of 14

http://www.ark-genomics.org/tools/meta4
http://www.ark-genomics.org/tools/meta4
dx.doi.org/10.1186/s12864-015-2032-0
dx.doi.org/10.1186/s12864-015-2032-0
dx.doi.org/10.1186/s12864-015-2032-0
dx.doi.org/10.1186/s12864-015-2032-0
dx.doi.org/10.1186/s12864-015-2032-0
dx.doi.org/10.1186/s12864-015-2032-0
dx.doi.org/10.1186/s12864-015-2032-0


References
1. Intergovernmental Panel on Climate Change. Climate change 2014.

Synthesis report 2014.
2. Intergovernmental Panel on Climate Change. Guidelines for National

Greenhouse Gas Inventories 2006 Vol. 4 Agriculture, Forestry and Other
Land Use.

3. Cottle DJ, Nolan JV, Wiedemann SG. Ruminant enteric methane mitigation:
a review. Anim Prod Sci. 2011;51:491–514.

4. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM,
et al. The genome sequence of the rumen methanogen Methanobrevibacter
ruminantium reveals new possibilities for controlling ruminant methane
emissions. PLoS One. 2010;5:e8926.

5. Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from
microbe to the farm scale. Animal. 2010;4:351–65.

6. Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and
methanogenesis in ruminants. Animal. 2010;4:1024–36.

7. Hayes BJ, Lewin HA, Goddard ME. The future of livestock breeding: genomic
selection for efficiency, reduced emissions intensity, and adaptation. Trends
Genet. 2013;29:206–14.

8. Hegarty RS, Goopy JP, Herd RM, McCorkell B. Cattle selected for lower
residual feed intake have reduced daily methane production. J Anim Sci.
2007;85:1479–86.

9. Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson.
1998 Marjory Stephenson Prize Lecture. Microbiology. 1998;144:2377–406.

10. Hungate RE. Hydrogen as an intermediate in the rumen fermentation.
Archiv Mikrobiol. 1967;59:158–64.

11. Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, et al.
Methylotrophic methanogenic Thermoplasmata implicated in reduced
methane emissions from bovine rumen. Nature Commun. 2013;4:1428.

12. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D,
Santos VAPMD, et al. Novel hydrolase diversity retrieved from a
metagenome library of bovine rumen microflora. Environ Microbiol.
2005;7:1996–2010.

13. Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale
EA, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen
microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci
U S A. 2009;106:1948–53.

14. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, et al.
Metagenomic discovery of biomass-degrading genes and genomes from
cow rumen. Science. 2011;331:463–7.

15. Bao L, Huang Q, Chang L, Sun Q, Zhou J, Lu H. Cloning and characterization
of two β-glucosidase/xylosidase enzymes from yak rumen metagenome.
Appl Biochem Biotechnol. 2012;166:72–86.

16. Rashamuse KJ, Visser DF, Hennessy F, Kemp J, Roux-van der Merwe MP,
Badenhorst J, et al. Characterisation of two bifunctional cellulase-xylanase
enzymes isolated from a bovine rumen metagenome library. Curr Microbiol.
2013;66:145–51.

17. Gruninger RJ, Gong X, Forster RJ, McAllister TA. Biochemical and kinetic
characterization of the multifunctional β-glucosidase/β-xylosidase/α-
arabinosidase, Bgxa1. Appl Microbiol Biotechnol. 2014;98:3003–12.

18. Liu K, Wang J, Bu D, Zhao S, McSweeney C, Yu P, et al. Isolation and biochemical
characterization of two lipases from a metagenomic library of China Holstein
cow rumen. Biochem Biophys Res Commun. 2009;385:605–11.

19. Privé F, Newbold CJ, Kaderbhai NN, Girdwood SG, Golyshina OV, Golyshin
PN, et al. Isolation and characterization of novel lipases/esterases from a
bovine rumen metagenome. Appl Microbiol Biotechnol 2015; PMID:
25575887.

20. Singh KM, Jakhesara SJ, Koringa PG, Rank DN, Joshi CG. Metagenomic
analysis of virulence-associated and antibiotic resistance genes of microbes
in rumen of Indian buffalo (Bubalus bubalis). Gene. 2012;507:146–51.

21. Beloqui A, Pita M, Polaina J, Martínez-Arias A, Golyshina OV, Zumárraga M,
et al. Novel polyphenol oxidase mined from a metagenome expression
library of bovine rumen: biochemical properties, structural analysis, and
phylogenetic relationships. J Biol Chem. 2006;281:22933–42.

22. Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, et al.
Phage-bacteria relationships and CRISPR elements revealed by a
metagenomic survey of the rumen microbiome. Environ Microbiol.
2012;14:207–27.

23. Ciric M, Moon CD, Leahy SC, Creevey CJ, Altermann E, Attwood GT, et al.
Metasecretome-selective phage display approach for mining the functional
potential of a rumen microbial community. BMC Genomics. 2014;15:356.

24. Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, et al. Methane
yield phenotypes linked to differential gene expression in the sheep rumen
microbiome. Genome Res. 2014;24:1517–25.

25. Ross EM, Moate PJ, Marett L, Cocks BG, Hayes BJ. Investigating the effect of
two methane-mitigating diets on the rumen microbiome using massively
parallel sequencing. J Dairy Sci. 2013;96:6030–46.

26. Machmüller A, Soliva CR, Kreuzer M. Effect of coconut oil and
defaunation treatment on methanogenesis in sheep. Reprod Nutr
Devel. 2003;43:41–55.

27. Zhou M, Hernandez-Sanabria E, Guan LL. Assessment of the microbial
ecology of ruminal methanogens in cattle with different feed efficiencies.
Appl Environ Microbiol. 2009;75:6524–33.

28. Popova M, Martin C, Eugène M, Mialon MM, Doreau M, Morgavi DP. Effect
of fibre- and starch-rich finishing diets on methanogenic Archaea diversity
and activity in the rumen of feedlot bulls. Anim Feed Sci Technol.
2011;166–167:113–21.

29. Rooke JA, Wallace RJ, Duthie C-A, McKain N, de Souza SM, Hyslop JJ, et al.
Hydrogen and methane emissions from beef cattle and their rumen
microbial community vary with diet, time after feeding and genotype. Br J
Nutr. 2014;112:398–407.

30. Wallace RJ, Rooke JA, Duthie C-A, Hyslop JJ, Ross DW, McKain N, et al.
Archaeal abundance in post-mortem ruminal digesta may help predict
methane emissions from beef cattle. Sci Rep. 2014;4:5892.

31. Wixon J, Kell D. The Kyoto encyclopedia of genes and genomes-KEGG.
Yeast. 2000;17:48–55.

32. Ragsdale SW. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit
Rev Biochem Molr Biology. 1991;26:261–300.

33. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL. A Ni-Fe-Cu
center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA
synthase. Science. 2002;298:567–72.

34. Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M,
et al. Functional gene analysis suggests different acetogen populations in
the bovine rumen and tammar wallaby forestomach. Appl Environl
Microbiol. 2010;76:7785–95.

35. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The
Pfam protein families database. Nucl Acids Res. 2012;40(Database
issue):D290–301.

36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215:403–10.

37. Richardson EJ, Escalettes F, Fotheringham I, Wallace RJ, Watson M. Meta4: a
web application for sharing and annotating metagenomic gene predictions
using web services. Frontiers Genet. 2013;4:168.

38. Murray RM, Bryant AM, Leng RA. Rates of production of methane in the
rumen and large intestine of sheep. Br J Nutr. 1976;36:1–14.

39. Zhou M, Hernandez-Sanabria E, Guan LL. Characterization of variation in
rumen methanogenic communities under different dietary and host feed
efficiency conditions, as determined by PCR-denaturing gradient gel
electrophoresis analysis. Appl Environ Microbiol. 2010;76:3776–86.

40. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. Methanogenic
archaea: ecologically relevant differences in energy conservation. Nature Rev
Microbiol. 2008;6:579–91.

41. Janssen PH, Kirs M. Structure of the archaeal community of the rumen. Appl
Environ Microbiol. 2008;74:3619–25.

42. Neijssel OM, Teixeira de Mattos MJ. The energetics of bacterial growth:
a reassessment. Mol Microbiol. 1994;13:172–82.

43. Hobson PN, Wallace RJ. Microbial ecology and activities in the rumen: Part
II. Critical Rev Microbiol. 1982;9:253–320.

44. Schönheit P. Bioenergetics and transport in methanogens and related
thermophilic archaea. In: Kates M, Kushner DJ, Matheson AT, editors. The
biochemistry of archaea (archaebacteria). London: Elsevier Science
Publishers; 1993. p. 113–72.

45. Janssen PH. Influence of hydrogen on rumen methane formation and
fermentation balances through microbial growth kinetics and fermentation
thermodynamics. Anim Feed Sci Technol. 2010;160:1–22.

46. Tymensen LD, McAllister TA. Community structure analysis of methanogens
associated with rumen protozoa reveals bias in universal archaeal primers.
Appl Environ Microbiol. 2012;78:4051–6.

47. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al.
Simultaneous amplicon sequencing to explore co-occurrence patterns of
bacterial, archaeal and eukaryotic microorganisms in rumen microbial
communities. PLoS One. 2013;8:e47879.

Wallace et al. BMC Genomics  (2015) 16:839 Page 13 of 14



48. Yarlett N, Coleman GS, Williams AG, Lloyd D. Hydrogenosomes in known
species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett.
1984;21:15–9.

49. Kittelmann S, Pinares-Patiño CS, Seedorf H, Kirk MR, Ganesh S, McEwan JC,
et al. Two different bacterial community types are linked with the low-methane
emission trait in sheep. PLoS One. 2014;9:e103171.

50. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of
inulin on the human gut microbiota: stimulation of Bifidobacterium
adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009;101:541–50.

51. Stewart CS, Flint HJ, Bryant MP. The rumen bacteria. In: Hobson PN, Stewart
CS, editors. The rumen microbial ecosystem. London: Chapman and Hall;
1997. p. 10–72.

52. Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, et al.
Isolation of Succinivibrionaceae implicated in low methane emissions from
Tammar wallabies. Science. 2011;333:646–8.

53. Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, et al.
Adaptation to herbivory by the Tammar wallaby includes bacterial and
glycoside hydrolase profiles different from other herbivores. Proc Natl Acad
Sci. 2010;107:14793–8.

54. Howard BH, Hungate RE. Desulfovibrio of the sheep rumen. Appl Microbiol.
1976;32:598–602.

55. Huisingh J, McNeill JJ, Matrone G. Sulfate reduction by a Desulfovibrio
species isolated from sheep rumen. Appl Microbiol. 1974;28:489–97.

56. Counotte GHM, Prins RA. Regulation of rumen lactate metabolism and the
role of lactic acid in nutritional disorders of ruminants. Vet Sci Commun.
1978;2:277–303.

57. Henning PH, Horn CH, Steyn DG, Meissner HH, Hagg FM. The potential of
Megasphaera elsdenii isolates to control ruminal acidosis. Anim Feed Sci
Technol. 2010;157:13–9.

58. Jumas-Bilak E, Jean-Pierre H, Carlier J-P, Teyssier C, Bernard K, Gay B, et al.
Dialister micraerophilus sp. nov. and Dialister propionicifaciens sp. nov.,
isolated from human clinical samples. Int J System Evol Microbiol.
2005;55:2471–8.

59. Lana RP, Russell JB, Van Amburgh ME. The role of pH in regulating ruminal
methane and ammonia production. J Anim Sci. 1998;76:2190–6.

60. Russell JB. The importance of pH in the regulation of ruminal acetate to
propionate ratio and methane production in vitro. J Dairy Sci. 1998;81:3222–30.

61. Downes J, Vartoukian SR, Dewhirst FE, Izard J, Chen T, Yu WH, et al.
Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum
‘Synergistetes’ isolated from the human oral cavity. Int J Syst Evol Microbiol.
2009;59:972–80.

62. Nakazawa F, Sato M, Poco SE, Hashimura T, Ikeda T, Kalfas S, et al.
Description of Mogibacterium pumilum gen. nov., sp. nov. and
Mogibacterium vescum gen. nov., sp. nov., and reclassification of
Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum
gen. nov., comb. nov. Int J Syst Evol Microbiol. 2000;50:679–88.

63. McDonald IR, Bodrossy L, Chen Y, Murrell JC. Molecular ecology techniques
for the study of aerobic methanotrophs. Appl Environ Microbiol.
2008;74:1305–15.

64. Wang F-P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K-U, et al. Methanotrophic
archaea possessing diverging methane-oxidizing and electron-transporting
pathways. ISME J. 2014;8:1069–78.

65. Ministry of Agriculture Fisheries and Food. The analysis of agricultural
materials : a manual of the analytical methods used by the Agricultural
Development and Advisory Service. 3rd ed. London: HMSO; 1986.

66. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al.
Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

67. Shannon CE. A mathematical theory of communication. Bell System
Technical Journal. 1948;27:379–423.

68. Chao A. Nonparametric-estimation of the number of classes in a population.
Scand J Statist 1984;11:265–70.

69. Wold S. PLS for multivariate linear modelling. In: van de Waterbeemd H,
editor. Chemometric Methods in Molecular Design. Weinheim: VCH; 1994.

70. Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of
Velvet assembler to de novo metagenome assembly from short sequence
reads. Nucl Acids Res. 2012;40:e155.

71. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
2014;30:2068–9.

72. Eddy SR. A new generation of homology search tools based on probabilistic
inference. Genome Inform. 2009;23:205–11.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Wallace et al. BMC Genomics  (2015) 16:839 Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	Methane emissions
	Microbial community analysis
	Gene abundance analysis
	De novo assembly and gene prediction

	Discussion
	Conclusion
	Methods
	Animals, experimental design and diets
	qPCR of 16S and 18S rRNA genes
	Deep sequencing and KEGG analysis
	Calculations and statistical analysis
	Metagenomic assembly and gene prediction

	Availability of supporting data
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



