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Abstract: Crustaceans Munida (fam. Galatheideae, ord. Decapodi) were fished in the 

Southern Adriatic Sea and their proteolytic activities were characterized and tested for 

potential application in cheese manufacturing. Enzymes extracted from whole crustaceans, 

mainly serine proteases, showed high caseinolytic and moderate clotting activities. 

Analysis by 2D zymography of the digestive enzymes extracted from Munida 

hepatopancreas, showed the presence of several isotrypsin- and isochymotrypsin-like 

enzymes in the range of 20–34 kDa and 4.1–5.8 pI. Moreover, specific enzymatic assays 

showed the presence of aminopeptidases and carboxypeptidases A and B. Overall, 

optimum activity was achieved at pH 7.5 and 40–45 °C. Caseinolytic activity, determined 

both spectrophotometrically and by SDS gel electrophoresis, indicated higher activity on  

β-casein than on α-casein. Miniature cheddar-type cheeses and Pecorino-type cheeses were 

manufactured by adding starter, rennet and Munida extracts to milk. Reverse-phase HPLC 

and MALDI-ToF mass spectrometry showed a more complex pattern of proteolytic 

products in cheeses made using Munida instead of chymosin. Munida extracts were found 

to degrade the chymosin-derived β-casein fragment f193–209, one of the peptides 

associated with bitterness in cheese. In conclusion, Munida digestive enzymes represent a 

promising tool for development of new cheese products and shorten cheese ripening when 

used either alone or in addition to calf rennet.  
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1. The Interest for Marine Enzymes in Biotechnological Processes  

Marine enzymes represent a special class of biocatalysts since they are inside organisms living in an 

environment characterized by high pressure, high salinity, low temperature, little sunlight, i.e., in 

conditions which are very different from those of the terrestrial environment. On these grounds, marine 

enzymes might have particular physical, chemical, and catalytic properties that could be of advantage 

in several biotechnological processes [1]. 

Therefore, marine enzymes have been suggested for many industrial applications such as 

pharmaceuticals, cosmetics, nutritional supplements, molecular probes, food additives, fine chemicals, 

and agrichemicals [2–5]. In particular, the use of sea-derived enzymes in food technology is becoming 

a promising application for the development of new processes and new products, including substitution 

of rennet in cheese manufacture; removal of the oxidized flavor from milk; ripening and fermentation 

of fish products; and preparation of fish protein hydrolysates and concentrates [6–9]. 

Proteolytic enzymes have important applications in the food industry [10]. In particular, there is a 

growing interest for digestive proteases from marine sources due to their activity at low temperature 

and the availability of raw materials such as viscera for their extraction. Fish viscera are indeed a rich 

source of digestive enzymes, such as pepsin and the serine proteases, trypsin and chymotrypsin [11,12]. 

The property of the digestive enzymes from marine organisms to maintain their activity at low 

temperature might be very useful in food processing in order to avoid bacterial contamination and 

unwanted chemical reactions [13]. Serine proteases such as elastase and collagenase are digestive 

enzymes found in fishes and marine invertebrates such as crab, prawn and lobster [7,10,11]. There is a 

particular interest in studying proteolytic enzymes from marine species both as possible substitutes for 

milk-clotting enzymes and for the shortening of cheese ripening times. These potential applications are 

based on the finding that some gastric proteases from marine species may have chymosin-like 

properties [14–18]. But, most interesting in the present context, is the finding that some gastric 

proteases from marine species have chymosin-like properties [14–18] and therefore may substitute 

chymosin in milk-clotting activities and shorten cheese ripening times. 

2. The Crustaceans Munida as a Source of Digestive Enzymes for Cheese Technology 

With regard to the application of marine enzyme in the manufacture of cheese, we have introduced 

the use of the crustaceans Munida (fam. Galatheideae, ord. Decapodi) (Figure 1) as a possible source 

of milk coagulating enzymes and as adjutants in cheese ripening, and we have described and 

characterized their proteolytic pattern, as well as their ability to make cheese. 

Figure 1. Munida crustaceans.  
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Munida crustaceans live mainly in the Atlantic Ocean and deep Mediterranean bottoms [19]. They 

are not vulnerable, endangered or protected and have no commercial value, but they are occasionally 

caught and discarded at sea. Most of the specimens die during fishing targeted to other commercial 

fish, thus most of the discard is not alive. Finding another potential use for these crustaceans could 

help to augment the revenue of fishermen.  

In our studies, the Munida crustaceans were fished in the Southern Adriatic Sea, near the town of 

Bari (Italy). The crustaceans were identified and controlled at the Institute of Marine Biology of Bari, 

transported on ice to our laboratory and stored at −70 °C until use. The significant presence and 

diversity of proteases in these marine organisms can be attributed to the fact that these shellfish depend 

on their diet to provide essential amino acids and must therefore have an efficient digestive system. 

Highly active proteolytic enzymes acting on alimentary proteins have been reported in many marine 

species [20–22]. Proteolytic enzymes in the digestive organs of crustaceans have been well 

documented and characterized [18,23–29]. Marine decapod crustaceans synthesize a wide range of 

highly active proteolytic enzymes in the digestive gland: endopeptidases (trypsin and chymotrypsin) 

and exopeptidases (carboxypeptidases and aminopeptidases).  

3. The Enzymes of Whole Munida Crustaceans  

In the first experiments, enzymatic activity was extracted by breaking and homogenizing whole 

crustaceans (n = 15) with deionized water. After centrifugation, the proteolytic activity present in the 

supernatant was determined by measuring the degradation of azocasein in solution and characterized 

by zymography. 

The extract showed a optimum of proteolytic activity at pH 6.5–7.5 and at a temperature of  

55–60 °C [30]. Activity was quite stable. After 40 days at −20 °C, 75% of the initial proteolytic 

activity was still present. Studies carried out with specific substrates and inhibitors, showed the 

presence of several proteolytic enzymes, mainly serine proteinases such as trypsin and chymotrypsin.  

The premise for the application of Munida enzymes in cheese production was to determine their 

ability to degrade the caseins and to check for the presence of milk-clotting activity. The extracts 

showed high proteolytic activity on caseins, and moderate coagulant activity, determined according to 

the FIL-IDF 157/92 norm. In particular, the coagulant activity of the extracts obtained from the 

crustaceans was 150 times lower than the traditional commercial liquid calf rennet of Clerici  

(Caglio Liquido, Caglificio Clerici, Cadorago, Italy), and 80 times lower than the common lamb rennet 

pastes [30]. 

4. The Digestive Enzymes from the Hepatopancreas of Crustaceans Munida 

On the basis of preliminary data obtained from the enzyme extracts of whole crustaceans indicating 

high caseinolytic capability and moderate clotting activity [31], subsequent studies were conducted 

using the enzymes extracted from the hepatopancreas of the Munida crustaceans, in order to obtain 

extracts enriched in digestive enzymes only. For the extraction of the digestive enzymes from Munida, 

their hepatopancreas was collected from 25 individuals and homogenized in 10 mM sodium phosphate 

buffer, pH 7.0, and 100 mM NaCl. The supernatant obtained after centrifugation was passed through 

0.45 μm filters and used for the characterization of the extracted digestive enzymes. Proteolytic 
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activity was determined by measuring azocasein breakdown in solution. The extracts showed optimum 

activity at pH 7.5 and 40–45 °C, respectively. As determined by the use of specific inhibitors, most of 

the enzymes were found to be serine proteinases, but some metalloproteinases were also present. 

Further characterization of proteolytic and peptidase activities present in the hepatopancreas extracts 

was performed using specific enzymatic assays. The extracted enzymes were able to hydrolyze  

the substrates benzoyl-Arg-p-nitroanilide (BAPNA) and N-succinyl-Ala-Ala-pro-Phe-p-nitroanilide 

(SAPNA), indicating the presence of trypsin-like and chymotrypsin-like activities, respectively. 

Analysis of peptidase activities present in the Munida extracts showed the presence of 

carboxypeptidases A and B, and the presence of several aminopeptidases. Among them, the following 

amminopeptidases were detected: PepN and PepC, aminopeptidases with broad specificity; PepA, 

aminopeptidase specific for Glu/Asp residues; PepI, iminopeptidase capable of releasing an N-terminal 

proline residue; and PepX or prolyl-dipeptidil aminopeptidase, a proline-specific peptidase [31]. 

To assess the caseinolytic activity, the extracts obtained from the hepatopancreas of the  

crustaceans Munida were incubated with casein. Analysis of the digested products, performed both 

spectrophotometrically and by SDS gel electrophoresis, indicated that enzymes extracted from the 

hepatopancreas of Munida have a higher activity on β-casein than on α-casein. 

Through analysis of the peptide profile, performed by Matrix Assisted Laser Desorption Ionisation 

Time of Flight (MALDI ToF) mass spectrometry, we compared the activity of digestive enzymes of 

the Munida with that of the commercial liquid calf rennet Clerici on the fractions of α- and  

β-casein. The results obtained (Figure 2) were clearly different.  

Figure 2. Peptide profile performed by MALDI-ToF mass spectrometry analysis. MALDI 

ToF mass spectra of peptide mixture resulting from the activity of: (A) commercial rennet 

Clerici on α-casein; (B) enzymes extracted from the hepatopancreas of the crustaceans 

Munida on α-casein; (C) commercial rennet Clerici on β-casein; (D) enzymes extracted 

from the hepatopancreas of the crustaceans Munida on β-casein. 

(A) (B) 
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Figure 2. Cont. 

(C) (D) 

  

In particular, the α-casein peptide profile resulting from the activity of commercial rennet Clerici 

(spectrum A), showed only the peptide of 2763.8 Da, corresponding to the fragment αS1-casein (f1-23) 

deriving from the hydrolytic activity of chymosin on Phe23-Phe24 bond [32,33], while the peptide 

profile (spectrum B) corresponding to the action of Munida enzymes is very complex and is 

characterized by the presence of at least 20 peptides. With regard to the activity on β-casein of the 

commercial rennet Clerici, the peptide profile showed only one peak with molecular mass 1881.5 Da 

(spectrum C), corresponding to the peptide β-CN (f193–209), due to the activity of chymosin on  

β-casein at Leu192-Tyr193 [34]. This peptide, widely reported as the major cause of bitterness in  

cheeses [35–37], was not found in the peptide mixture obtained after hydrolytic treatment of β-casein 

with the digestive enzymes of Munida (spectrum D), suggesting that Munida enzymes might play an 

important role in the degradation of bitter peptides in cheese. Studies performed by MALDI-ToF mass 

spectrometry on the degradation of the bitter peptide β-CN (f193–209) by the Munida enzymes [38] 

showed that Munida enzymes are able to degrade the chymosin-derived β-casein fragment f193–209 [31]. 

Peptides deriving from its degradation might be the result of aminopeptidase activity [38,39]. 

5. Detection of Munida Proteolytic Activities by Casein Gel Zymography 

Analysis by monodimensional zymography was undertaken to determine the composition and the 

molecular mass of the digestive enzymes present in the Munida hepatopancreas. Casein was chosen as 

a substrate. 11 activated digestion bands were detected in the range of 76–18 kDa. Most of them were 

serine proteinases. This finding was consistent with the results reported for other crustaceans by other 

authors [40,41].  

To identify the Munida proteome corresponding to the proteolytic activities in more detail, the 

extracts were applied to 2D casein gel zymography, a technique that allows the specific determination 

of both molecular masses and isoelectric points of proteases in a complex protein mixture. Samples 

were prepared for the first dimension separation (IEF) in the absence of DTT in order to retain the 

enzymatic activity of the caseinolytic enzymes. Proteolytic enzymes were separated and detected after 
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the second dimension SDS gel casein zymography by staining with Coomassie blue. The resulting 

zymograms showed the presence of 12 spots (clear unstained zones) indicating the presence of 

proteolytic enzymes in the range of 20–34 kDa and 4.1 to 5.8 pI. Results showed the presence of 

several isotrypsin-like and isochymotrypsin-like enzymes. In particular, six different acidic forms of 

trypsin were detected using specific inhibitors, trypsin-like activity was higher than chymotrypsin-like 

activity [31]. Apparent molecular masses and isoelectric points were similar to those of digestive 

enzymes from other crustaceans [22,42–44]. 

6. Cheesemaking Trials Using the Enzymes Extracted from the Hepatopancreas of  

Munida Crustaceans 

Two different types of cheeses were manufactured with the digestive enzymes extracted from the 

hepatopancreas of Munida.  

6.1. Mini Cheddar-Type Cheeses 

The well-established model of miniature Cheddar-type cheeses was used to investigate whether the 

extracts from the hepatopancreas of Munida are suitable for cheese making. In a study carried out in 

collaboration with the University College of Cork, Ireland, miniature (20 g) Cheddar-type cheeses 

were produced according to the method described by Shakeel-Ur-Rehman et al. [45] by using either 

100% chymosin or 100% Munida enzymes as coagulant [46].  

Briefly, the freeze-dried Munida extract was re-suspended in 10 mM sodium phosphate buffer 

before use. After seven days, the freeze-dried extract entirely retained its activity with respect to the 

initial activity. Each preparation, diluted with water to 300 μL to have equal milk-clotting activity, was 

added to 200 mL milk. Three miniature Cheddar-type cheeses were manufactured in two batches on 

the same day using each of the two coagulants.  

Cheeses were ripened at 8 °C and collected for analysis after 2, 6 and 12 weeks. Samples were 

taken, grated and frozen at −20 °C until analysis. The efficacy of the extracts in the manufacture of 

Cheddar mini-cheeses was determined by assessing their proteolytic ability over time in comparison 

with cheese made with chymosin. The Munida extracts showed high proteolytic activity on caseins in 

miniature Cheddar-type cheese. Strong β-casein activity was observed in the first 2 weeks of ripening, 

as detected by urea-PAGE of the pH 4.6-insoluble fraction of cheeses. Breakdown products obtained 

from αS1-casein were qualitatively different from the ones obtained using chymosin as coagulant. 

Patterns of proteolysis were also obtained by reverse-phase high-performance liquid chromatography 

and MALDI-ToF mass spectrometry. In general, the products of proteolysis were more complex in 

cheeses made using the Munida extracts than in cheese made with chymosin as coagulant. Statistical 

analysis of the results clearly discriminated between the cheeses on the basis of the coagulant used. 

6.2. Ewe Mini-Cheeses 

Miniature (45 g) Pecorino-type cheeses were manufactured using the enzyme extracts obtained 

from the hepatopancreas of Munida. Briefly, heat-treated ewe’s milk (10 L) was cooled to 40 °C and 

termophilic lactic concentrated (CHOOZIT™ DVI, Danisco) was added as starter. After 30 min, a 
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lamb rennet was added (2 mL per 10 L) and the milk was divided in two parts: the first was used as a 

control, whereas lyophilized Munida extract (700 U) was added to the second. The lyophilized extract 

used for the ewe-mini-cheese retained 85% of the initial activity after 4 months. Twelve mini-cheeses 

of about 85 g were obtained. 3% NaCl was added and the cheeses were stored at 8–12 °C and 85–90% 

relative humidity for 60 days (Figure 3). Analysis of the proteolytic pattern of casein fraction, 

performed by MALDI ToF mass spectrometry, showed the differences between the control and the 

Munida mini-cheeses and demonstrated that the Munida enzymes are capable of degrading caseins in 

an original manner.  

Figure 3. Mini pecorino-cheeses. Freshly made cheeses (left) and ripened 60 days cheeses 

(right). C: control; M: Munida pecorino. 

  

7. Conclusions 

In recent years, several new milk-clotting enzymes have been investigated as alternatives to  

calf rennet. They include recombinant chymosins produced using E. coli, Kluyveromyces lactis, or 

mammalian cells as hosts [47], Rhizomucor miehei, Cryphonectria parasitica [48], recombinant lamb 

chymosin [49], bovine pepsin, fungal proteinases from Aspergillus niger [50], Rhizomucor miehei [51], 

Aspergillus Awamori [52], and Trichoderma reesei [53], yeast proteinases from Saccharomyces 

cerevisiae [54] and Candida Tropicalis [55] and proteinases extracted from plants such as  

Cynara cardunculus [56–59], Cynara humilis [60], Papilionoida spp. [61], Solanum dobium [62] and 

Centaurea calcitrapa [63–65]. Instead, only a few digestive enzymes from marine species have been 

considered for their chymosin-like characteristics as potential substitutes for rennet, for their 

chymosin-like characteristics [14–18]. More recently, it has been reported that an acidic protease 

produced by the marine yeast strain M. reukaufii W6b possess milk-clotting activity [66]. 

However, rennet substitutes as the cardoon extracts often have a much greater level of non-specific 

proteolytic activity. This may lead to an extensive degradation of milk proteins and breakdown of the 

protein network, affect the texture of cheese and cause a reduction in yield and flavor development in 

cheese. Furthermore, the acceleration of cheese ripening, due to the higher proteolytic activity of the 

rennet substitutes, may result in increased bitterness in cheese. Among the enzymes with a possible 

application in the industry, those extracted from sea organisms certainly represent an economic 

benefit, since they come from fish catch usually thrown back into the sea. In particular, their use in 

food science represents a new possibility for upgrading fish waste and low value fish species to food 

M C 
C M 
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with a high nutritional value. The advantages of marine enzymes to the food industry include the 

potential development of mild enzymatic methods in alternative to mechanical or chemical treatments, 

which may damage the product and lower its recovery rate. The property of the digestive enzymes 

from marine organisms to maintain their activity at low temperature might be very useful in food 

processing in order to avoid bacterial contamination and unwanted chemical reactions [13]. Thus, the 

use of marine enzymes in food technology is becoming a promising application for development of 

new processes and new products.  

Analysis of the proteolytic pattern of the casein fraction performed by MALDI ToF mass 

spectrometry showed that the Munida enzymes are capable of degrading caseins in an original manner. 

The hydrolytic activities on α-casein and β-casein were indeed clearly different when compared with 

those of the commercial rennet. The Munida enzymes showed a higher activity on β-casein when 

compared to α-casein. The high degree of hydrolysis on α-casein and β-casein and the moderate 

clotting activity found in the extracts of the Munida crustaceans suggest their use in the dairy industry 

both for milk clotting, as an alternative or in addition to calf rennet, and for the acceleration of cheese 

ripening, to lower the time and costs of storage and maturation of cheese.  

In addition, the peptides obtained from all caseins by the Munida enzymes might have a specific 

impact on flavor and texture characteristics of cheese. In this regard, the extracts obtained from the 

hepatopancreas were found to degrade the chymosin-derived β-casein fragment f193–209, one of the 

peptides associated with bitterness in cheese, revealing their possible application in cheese technology 

to lower the unpleasant bitter flavour in some cheeses.  

Taken together, the application in cheese biotechnology of the Munida enzymes in combination 

with different peptidases (starter) seems to be highly promising for the production of cheeses with new 

characteristics. Future studies will be oriented to the purification of the Munida enzymes extracted 

from the hepatopancreas and to the determination of the best ratio to be used with rennet. 
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