
ORIGINAL RESEARCH
published: 04 February 2019

doi: 10.3389/fnbeh.2019.00010

Edited by:

Cristina M. Alberini,
New York University, United States

Reviewed by:
Kristen Ellard,

Massachusetts General Hospital and
Harvard Medical School,

United States
Roee Admon,

University of Haifa, Israel

*Correspondence:
David M. Fresco
fresco@kent.edu

Received: 31 May 2018
Accepted: 15 January 2019

Published: 04 February 2019

Citation:
Scult MA, Fresco DM, Gunning FM,

Liston C, Seeley SH, García E and
Mennin DS (2019) Changes in

Functional Connectivity Following
Treatment With Emotion

Regulation Therapy.
Front. Behav. Neurosci. 13:10.

doi: 10.3389/fnbeh.2019.00010

Changes in Functional Connectivity
Following Treatment With Emotion
Regulation Therapy
Matthew A. Scult1,2, David M. Fresco3,4*, Faith M. Gunning1, Conor Liston1,5,
Saren H. Seeley6, Emmanuel García7,8 and Douglas S. Mennin9

1Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States, 2Department of Psychology &
Neuroscience, Duke University, Durham, NC, United States, 3Department of Psychological Science, Kent State University,
Kent, OH, United States, 4Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH,
United States, 5Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States, 6Department of
Psychology, University of Arizona, Tucson, AZ, United States, 7The Graduate Center, City College of New York, City
University of New York (CUNY), New York, NY, United States, 8Hunter College, City University of New York, New York, NY,
United States, 9Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York, NY,
United States

Emotion regulation therapy (ERT) is an efficacious treatment for distress disorders
(i.e., depression and anxiety), predicated on a conceptual model wherein difficult to
treat distress arises from intense emotionality (e.g., neuroticism, dispositional negativity)
and is prolonged by negative self-referentiality (e.g., worry, rumination). Individuals with
distress disorders exhibit disruptions in two corresponding brain networks including the
salience network (SN) reflecting emotion/motivation and the default mode network (DMN)
reflecting self-referentiality. Using resting-state functional connectivity (rsFC) analyses,
seeded with primary regions in each of these networks, we investigated whether ERT
was associated with theoretically consistent changes across nodes of these networks
and whether these changes related to improvements in clinical outcomes. This study
examined 21 generalized anxiety disorder (GAD) patients [with and without major
depressive disorder (MDD)] drawn from a larger intervention trial (Renna et al., 2018a),
who completed resting state fMRI scans before and after receiving 16 sessions of
ERT. We utilized seed-based connectivity analysis with seeds in the posterior cingulate
cortex (PCC), right anterior insula, and right posterior insula, to investigate whether
ERT was associated with changes in connectivity of nodes of the DMN and SN
networks to regions across the brain. Findings revealed statistically significant treatment
linked changes in both the DMN and SN network nodes, and these changes were
associated with clinical improvement corresponding to medium effect sizes. The results
are discussed in light of a nuanced understanding of the role of connectivity changes
in GAD and MDD, and begin to provide neural network support for the hypothesized
treatment model predicated by ERT.

Keywords: generalized anxiety disorder, major depressive disorder, worry, decentering, reappraisal, emotion
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INTRODUCTION

Major depressive disorder (MDD) and generalized anxiety
disorder (GAD) are two prevalent disorders with lifetime
prevalence estimates ranging from 17 to 41% for MDD and 6%
to 14% for GAD (Kessler et al., 2005; Moffitt et al., 2010). These
conditions are also highly comorbid with one another (Kessler
et al., 2003) which may account for a sub-optimal treatment
response with otherwise efficacious treatments (Farabaugh et al.,
2010, 2012). Given these high rates of diagnostic comorbidity
and shared surface level clinical features, newer systems of
nosology place MDD and GAD in a shared group that is
commonly called the ‘‘Distress Disorders’’ (Watson, 2005). In
addition, transdiagnostic approaches (e.g., Mennin et al., 2013;
Mennin and Fresco, 2014; Barlow et al., 2017) have sought
to identify common underlying disorder processes that cut
across classification systems predicated primarily on symptom
presentation (e.g., Nolen-Hoeksema et al., 2008; Watkins,
2008).

One candidate transdiagnostic feature common to
distress disorders, especially MDD and GAD, is negative
self-referentiality (e.g., worry, depressive rumination)
which often takes the form of repetitive or perseverative
reactive cognitive processes (Mennin and Fresco, 2013;
Olatunji et al., 2013; Ottaviani et al., 2016). Negative
self-referentiality characterizes the mental activity of individuals
when they experience a discrepancy between their current
emotional/motivational state and a representation of the future
(i.e., planning), the past (i.e., failures/losses), or an idealized
self (i.e., self-criticism). This self-conscious ability is normative
and crucial for managing a world in which there is ambiguity
and uncertainty (e.g., Mennin and Fresco, 2014). However,
the tendency to engage in self-referential mental activity can
become negatively reinforced via a perceived reduction in
aversive emotions (Borkovec et al., 2004; Nolen-Hoeksema
et al., 2008) especially during highly contrasting emotional states
(i.e., positive emotions followed by negative emotions; Newman
and Llera, 2011). Further, the propensity to engage in negative
self-referentiality can result in considerable deficits in behavioral
learning (Lissek, 2012; Whitmer and Gotlib, 2013).

Increasingly, findings from basic and affective science
are converging on the neurobehavioral underpinnings of
normative and disordered self-referentiality and its association
with disorders such as MDD and GAD. For instance,
considerable evidence identifies aberrant or excessive neural
activity particularly in the default mode network (DMN;
Hamilton et al., 2012, 2013; Whitfield-Gabrieli and Ford, 2012;
Chen and Etkin, 2013; Andreescu et al., 2014). Similarly,
task-based studies examining trait levels of worry or depressive
rumination (Paulus and Stein, 2010; Hamilton et al., 2011)
or instructions to worry or ruminate (Cooney et al., 2010;
Paulus and Stein, 2010; Ottaviani et al., 2016) demonstrate focal
activations in nodes of the DMN.

Another important transdiagnostic feature that marks distress
disorders is known variously as neuroticism (e.g., Barlow
et al., 2014), negative affectivity (e.g., Watson et al., 1988)
or dispositional negativity (e.g., Shackman et al., 2016). This

construct reflects a tendency to experience frequent and
intense negative emotions including anxiety, fear, irritability,
anger, or sadness, in response to various sources of stress
(Barlow et al., 2014). Shackman et al. (2016) proposed
that dispositional negativity is a definable construct reflected
at many neurobehavioral levels of analysis (e.g., neural,
peripheral, etc.) and is found broadly in nature (e.g., humans,
non-human primates, rodents, etc.). This negative emotionality
is characterized by under- and over-activation of reward and
safety/threat systems respectively, as well as their co-occurrence
(i.e., motivational conflict; Higgins, 1997; Klenk et al., 2011;
Scult et al., 2016). However, unlike healthy individuals,
individuals with distress disorders may be relatively less
effective in resolving these motivation states and conflicts.
One possible reason is that salience in one or both of
these motivational systems may increase levels of subjective
intensity and corresponding distress (Shackman et al., 2016).
Self-report indices of neuroticism clearly predict a more severe
and protracted course for mood and anxiety disorders (e.g.,
Brown, 2007; Brown and Rosellini, 2011; Barlow et al., 2014).
Further, whereas diagnostic comorbidity has long been viewed
as a predictor of an inferior treatment response (e.g., Mineka
et al., 1998), high levels of neuroticism may contribute to
the underperformance of otherwise efficacious treatments (e.g.,
Brown, 2007; Olatunji et al., 2010; Brown and Rosellini,
2011).

The salience network (SN; e.g., Craig, 2009; Menon,
2015) is involved in orienting attention to external and
internal stimuli (Menon and Uddin, 2010), and facilitates the
integration of sensory, emotional, and cognitive information
in service of optimal communication, social behavior, and
self-awareness (Menon, 2015). The insula is a central node
which helps evaluate the impact of stimuli on the body
(Paulus and Stein, 2006), including generation and regulation of
affective responses and detection of emotionally salient stimuli
(Paulus and Stein, 2010). Most research findings implicate
the right anterior insula (e.g., Critchley et al., 2004) but
increasingly, evidence also indicates a relevant role for the
posterior insula in emotional processing as well (Kuehn et al.,
2016). Negative self-referentiality including worry, may in fact
exaggerate arousal (positive or negative; Pollatos et al., 2009;
Paulus and Stein, 2010). Paulus and Stein (2010) posit that
individuals with anxiety and depression exhibit a propensity to
negatively interpret interoceptive afferents, resulting in increased
sympathetic arousal, and in turn, increased escape or avoidance
behaviors.

When examined via functional neuroimaging, patients with
GAD and MDD frequently exhibit SN abnormalities (Etkin
et al., 2009; Dutta et al., 2014; Kaiser et al., 2015). For
instance, compared to healthy individuals, depressed patients
show reduced connectivity between anterior insula and other
nodes of the SN (Manoliu et al., 2014; Yuen et al., 2014).
In task-based studies, MDD and GAD patients consistently
show hyperactivity of the anterior insula often accompanied
by increased connectivity with nodes of DN including the
posterior cingulate cortex (PCC; e.g., Paulus and Stein, 2010;
Hamilton et al., 2013; Yuen et al., 2014). Similarly, a recent
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study by Kaiser et al. (2015) found that in comparison to
healthy control participants, patients with MDD evidenced
increased connectivity of the MPFC to the insula and the
strength of this connectivity was predictive of depression
severity.

The frontoparietal control network (FPCN), with nodes
in the dorsolateral prefrontal cortex (DLPFC) and posterior
parietal cortex (PPC) is involved in ‘‘top-down control,’’
monitoring attention, and regulating sensory, and internal
networks according to current task goals (Cole et al., 2014). MDD
patients often demonstrate within-network hypoconnectivity in
FPCN, and hypoconnectivity between the FPCN and the DMN
(Mulders et al., 2015). Similarly, in MDD, hypoconnectivity
between the FPCN and the dorsal attention network [DAN;
underlying volitional deployment of attention toward stimuli
and externally-directed cognitions (Corbetta et al., 2008)]
may increase depressive rumination and decrease ability to
attend to present-moment external stimuli, and thus loss of
potential for corrective information for positive reappraisal
or access to reward (Schooler et al., 2011). Dysregulation of
FPCN may also underlie inefficiency in adaptive switching
between task-relevant and irrelevant cognitions and behaviors,
as well as deficits in top-down regulation of SN, which is
hyperactive and hyper-connected in PTSD and GAD (Rabinak
et al., 2011; Sripada et al., 2012; Sylvester et al., 2012; Wang
et al., 2016; Akiki et al., 2017). In summary, the distress
disorders, especially GAD and MDD, are prevalent and often
comorbid conditions at both a diagnostic and symptom level of
analysis. When looking beyond surface characteristics, distress
disorders exhibit excessive negative self-referentiality along
with dispositional negative emotionality. These psychological
characteristics are consistent with general hyperconnectivity
within the DMN network, hypoconnectivity within the SN
network and FPCN, and hypoconnectivity between the FPCN
and DMN and DAN (Schooler et al., 2011; Mulders et al.,
2015; Williams, 2016). Efforts focused on correcting these
circuit-level abnormalities through targeted psychological and
pharmacological interventions may result in a more efficacious
treatment response.

Using this formulation of distress disorders as a conceptual
model, Mennin and Fresco developed emotion regulation
therapy (ERT), a theoretically-derived, mechanism focused
treatment that integrates findings from affect science with
principles from cognitive behavioral therapy (i.e., CBT;
see Mennin et al., 2013) to target and normalize these
neurobehavioral deficits (Fresco et al., 2013; Mennin and Fresco,
2015; Mennin et al., 2018; Renna et al., 2018b). ERT targets
three hypothesized mechanisms: (1) motivational mechanisms,
the functional purpose and inclinations of emotional response
tendencies; (2) regulatory mechanisms, the ability to alter
emotional responses both at less elaborative/attentional levels
and more verbally elaborative and effortful levels including the
ability to decenter (i.e., the meta-cognitive ability to observe
items that arise in the mind with distance and perspective;
present sample; Fresco et al., 2007; Bernstein et al., 2015) and
reappraise (i.e., reinterpreting the meaning to change emotional
trajectory; Ochsner and Gross, 2005); and (3) contextual

learning, the use of flexible and adaptive behavioral repertoires,
Using a motivational framework (i.e., identifying reward- and
risk-based impulses), ERT instructs patients to engage inmindful
emotion regulation skills to counteract negative self-referential
processing (e.g., worry, rumination, and self-criticism) in service
of pursuing intrinsically rewarding and goal-directed actions in
their lives.

Three recently published trials of ERT attest to its efficacy
in treating GAD and MDD (Mennin et al., 2015, 2018; Renna
et al., 2018a). Following promising results from an initial
open trial (Mennin et al., 2015), Mennin et al. (2018) found
that GAD patients (with and without MDD) treated with
20 sessions of ERT vs. an attentional control intervention)
evidenced statistically and clinically meaningful improvement
on clinical indicators of GAD and MDD, worry, rumination,
comorbid disorder severity, functional impairment, quality of
life, as well as hypothesized mechanisms reflecting mindful
attentional, metacognitive, and overall emotion regulation.
The gains were maintained in post-treatment assessments
3- and 9-months following the end of treatment. In a
secondary analysis of these trial data, Renna et al. (2018b)
examined ERT-linked changes in behavioral tasks of flexible
and sustained attention. Findings indicated that improvements
in a specific form of attentional flexibility, conflict adaptation,
predicted increases in mindful observing abilities whereas
gains in sustained attention were related to mindful non-
reactivity, clinical improvement, and decreased functional
impairment.

Building on these encouraging efficacy findings, Renna et al.
(2018a) utilized a 16-session format of ERT in an open trial
design with an ethnically diverse sample of young adults.
This trial, which is the parent study for the current study,
reported impressive and durable efficacy in reducing worry,
rumination, self-reported and clinician rated GAD and MDD
severity, and social disability, while increasing quality of life,
attentional flexibility, decentering/distancing, reappraisal, and
trait mindfulness. In an initial secondary analysis of these
trial data, we reported that baseline patterns of resting state
functional connectivity (rsFC) within the DMNand SN predicted
clinical response to ERT (Fresco et al., 2017). Specifically,
higher baseline insula connectivity with parietal cortex, and
aMPFC connectivity with precuneus and occipital cortex were
associated with decreases in worry. Higher baseline PCC
connectivity with the rostral ACC, and insula connectivity with
lateral occipital cortex, central opercular cortex and dMPFC
was associated with increases in decentering, while aMPFC
connectivity with occipital pole was associated with decreases
in decentering. Findings from this study implicated disruptions
in the default and SNs as promising targets of treatment for
GAD with and without co-occurring MDD but did not test
how these networks might change as a result of treatment
with ERT.

Beyond ERT, recent trials utilizing forms of mindfulness
meditation have examined patterns of treatment linked rsFC
change in their respective samples. In particular, Creswell et al.
(2016) randomized subjectively-stressed unemployed adults to
a 3-day intensive program of either mindfulness meditation,
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modeled after themindfulness-based stress reduction curriculum
(Kabat-Zinn, 2009), or a well equated relaxation curriculum.
Participants completed a resting state scan before and after
the intensive intervention. Seed-based change in functional
connectivity using a seed in the PCC revealed that the
mindfulness intervention, but not the relaxation intervention,
was associated with increased connectivity between the PCC
and left DLPFC. Comparable findings were reported by
King et al. (2016) who randomized combat veterans with
post-traumatic stress disorder to either 16 weeks of mindfulness-
based exposure therapy (MBET), which was derived from
mindfulness based cognitive therapy (Teasdale et al., 2000)
and prolonged exposure therapy (Foa et al., 2007) or to
a present-centered group therapy (PCGT; (Schnurr et al.,
2003), a well equated comparator frequently used in PTSD
trials. Consistent with Creswell et al. (2016), the PCC seed
revealed that MBET but not PCGT was associated with the
strength of functional connectivity between the left DLPFC,
the right DLPFC, and the dorsal anterior cingulate cortex
(dACC). Further, the strength of activation in the PCC-left
DLPFC at post treatment was correlated with post-treatment
PTSD avoidance symptoms (r = 0.623) and hyperarousal
symptoms (r = 0.675) in patients receiving MBET but
not PCGT. These findings combined with results from
meta-analysis showing that individuals with depression tend
to have decreased connectivity between PCC and DLPFC
nodes compared to healthy controls (Mulders et al., 2015)
raises the possibility that interventions for depression that
include mindfulness meditation exercises, such as ERT, may
lead to clinical improvement in part by increasing PCC-DLPFC
connectivity.

The present study is drawn from a larger intervention trial
(Renna et al., 2018a) and the baseline rsFC prediction study
from the subset of the sample (Fresco et al., 2017). Findings
from aforementioned trials with mindfulness interventions
demonstrated changes in intrinsic functional connectivity in the
DMN. Given these findings and our own baseline prediction
findings, we sought to examine whether ERT would demonstrate
similar patterns of rsFC changes in DMN and SN. Using
seed-based connectivity analysis with seeds in the PCC, right
anterior insula, and right posterior insula, we sought to
identify patterns of ERT-linked rsFC changes of nodes within
these networks across the brain and whether these changes
would be associated with clinical improvement and ERT
model related mechanism variables (e.g., attention control,
decentering, and cognitive reappraisal) as well as reductions
in MDD and GAD severity. Specifically, we hypothesized
that ERT would be associated with decreased connectivity
of nodes within the DMN, and that these changes would
in turn be associated with decreased rumination. Increased
connectivity of nodes within the SN would be expected to
be associated with decreased depression and anxiety severity.
Increased connectivity between nodes of the DMN and nodes
of the FPCN would be expected to be associated with decreased
depression and anxiety severity and improvements in attentional
and metacognitive regulation (Mulders et al., 2015; Williams,
2016).

MATERIALS AND METHODS

Participants
Participants were 25 treatment-seeking young adults, a
subsample of the 31 patients treated in Renna et al. (2018a)
who were drawn from an undergraduate and graduate student
population in a large urban commuter-based university.
Participants completed 16 weeks of ERT (Mennin and Fresco,
2014) and completed fMRI scans before and after treatment,
with an average length of time between treatment and scan of
less than 2 weeks. Participants were recruited through direct
referrals from an on-campus counseling center, fliers posted
throughout campus, e-mail announcements sent to the entire
student body, and through research staff handing out business
cards to students on campus. Four patients were excluded for
technical issues that arose during MRI acquisition that resulted
in unusable MRI data. The final sample had a mean age of
21.8 years old (SD = 2.6, range 18–27). Sixteen participants
were female (76.2%). Seven participants identified as Hispanic
and 14 as non-Hispanic. Additionally, participants identified
primarily as White (8), followed by Asian (5), Other/mixed race
(7), and Black (1).

Inclusion/Exclusion Criteria
The main eligibility criterion was the presence of a primary
or secondary GAD diagnosis. In the current study, 16 patients
had a primary diagnosis of GAD (primacy based on symptom
severity). Sixteen patients also met criteria for MDD; 14 patients
met criteria for at least one additional anxiety disorder
diagnosis. Other diagnoses included social anxiety disorder
(n = 10), panic disorder (n = 6), specific phobia (n = 4),
obsessive compulsive disorder (n = 3), post-traumatic stress
disorder (n = 1). Participants were required to be stabilized
on any psychotropic medications for a period of at least
3 months prior to the start of treatment (n = 1 receiving
antidepressant medication) and could not be enrolled in
any other form of psychological treatment during the acute
phase of ERT (16 weeks). Participants were not taking any
other medications at the time. Finally, participants had to
be free of active suicidal ideation/intent, psychosis, bipolar I
disorder, primary anorexia or bulimia nervosa, somatoform
disorders, or substance and alcohol dependence. Given the
use of fMRI assessment, other exclusionary criteria included
standard MRI contraindications (e.g., ferromagnetic implants;
head trauma with loss of consciousness; tattoos above the elbow;
pregnancy).

Diagnostic Assessment
Current and lifetime psychiatric disorders were assessed with
the Structured Clinical Interview for DSM-IV (SCID; First
et al., 2002). Graduate students and senior research assistants,
extensively trained on the diagnostic assessment protocol
administered this assessment. A principal investigator and
an independent assessor, both of whom were blind to the
participant’s diagnoses assigned at the intake interview, then
confirmed participants’ diagnoses. Reliability was high, with
kappa ratings ranging from 0.708 to 1.000, demonstrating
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good to excellent reliability. Reliability for diagnoses of
GAD was 100%, whereas MDD was 87.10%. Independent
assessors, who remained blind to treatment status of patients,
assessed clinical improvement at mid-treatment, post-acute
treatment, as well as 3-, and 9-months following the end of
treatment.

Treatment
ERT consists of 16-session individual weekly sessions completed
within a 20-week span. The first half of the treatment
(Phase I) emphasizes psychoeducation and cultivating mindful
emotion regulation skills. Participants receive instruction in
attention regulation (i.e., orienting, allowing) andmeta-cognitive
regulation (i.e., decentering, and cognitive reappraisal) skills.
In particular, clients are instructed on how to better attend
to emotional and motivational cues that arise in daily life
so that these cues are noticed with greater acuity and closer
to when they first arise. This cue detection is supported by
a variety of meditation practices that improve attention and
metacognitive capacities that patients are asked to practice daily.
Briefer versions of these meditation practices are also introduced
so that they can be utilized in both predicted and impromptu
stressful situations as an alternative to negative self-referentiality
and behavioral responses associated with escape or avoidance.
The second half of treatment (Phase II) focuses on context
engagement, which involves developing a proactive approach
towards life with the goal of living more consistently with one’s
values through the use of imaginal exposures and internal dialog
tasks. Here, therapists direct patients in conducting in-session
exposure exercises where patients envision a situation, goal, or
outcome that they desire but is presently missing from their
lives. This imaginal exposure serves to elucidate the motivational
inclinations for reward and approaching a goal as well as the
motivations associated with protecting one’s self from the threat
associated with taking the action and/or costs associated with not
succeeding. By giving voice to these motivational inclinations,
patients learn to decenter from the intensity of these pulls and
derive a behavioral response that reflects an optimal balance
of risk and reward. More information regarding the structure
and specific components of ERT are described elsewhere (see
Fresco et al., 2013; Mennin and Fresco, 2014; Renna et al.,
2017).

Clinicians consisted of seven doctoral students in clinical
psychology who were trained to administer ERT and received
2 h of weekly supervision. The modal number of cases treated
by each clinician was three (M = 2.75; range = 1–4). To establish
adherence to the treatment protocol, all treatment sessions were
audio recorded, and a team of research assistants, not involved
in the administration of ERT or assessment of treatment effects,
coded 40% of all cases, with 25% of these cases reviewed by a
second coder to establish reliability. Reliability rates between the
coders were 100%. Coders rated the accuracy of the frequency
and skillfulness of actions taken by the study therapists.
Overall, skillfulness ratings of the therapists coded were 98.4%
(range = 95%–100%), while frequency of actions consistent with
the treatment protocol was 91.2% (range = 71%–100%). The
adherence ratings for this trial indicate that therapists uniformly

delivered ERT with a high degree of adherence and fidelity.
Examination of treatment effects associated with particular
clinicians revealed equivalence for self-report and clinician-
assessed clinical outcomes (p’s > 0.70) across the seven trial
therapists.

Each diagnosis reaching clinical or subclinical thresholds
was assigned a clinical severity rating (CSR) score from 0 to
8, based on criteria outlined in and adapted from the Anxiety
Disorders Interview Schedule for DSM-IV (ADIS; Brown et al.,
1994). Diagnostic criteria at the subclinical threshold for a
given disorder are reflected by a CSR less than four. A CSR
of four or above indicates that all criteria for a diagnosis were
endorsed at the clinical threshold, with higher scores indicating
greater severity. Interviewers were trained to assign these scores
as per ADIS guidelines based on number and frequency of
symptoms endorsed, while also taking into account related
levels of distress and impairment attributed to the disorder
symptomatology.

Clinical Outcomes
Clinician assessed severity for GAD and MDD were determined
by an independent assessor using the ADIS CSR rating for
GAD and MDD. Details on assessment and training of these
independent assessors and the deriving of these ratings are
available in Renna et al. (2018a).

The Penn State Worry Questionnaire (PSWQ; Meyer et al.,
1990) is a 16-item self-report measure of pathological worry with
scores ranging from 16 to 80. Cronbach’s alpha in the current
sample was good (α = 0.80).

The Brooding subscale of Response Styles Questionnaire (RS;
Treynor et al., 2003; Armey et al., 2009) is a five-item measure
of self-reported rumination free of depression symptom content.
Internal consistency for the RS in the current study was moderate
at 0.63.

The Attentional Control Scale (ACS; Derryberry and Reed,
2002) is a 20-item measure with two subscales that assess the
degree to which an individual is able to shift and sustain/focus
their attention. Higher scores indicate greater ability to control
one’s attention. Internal consistency in the current study at
pre-treatment was strong (α = 0.85 for entire scale, α = 0.80 for
Focusing Attention, α = 0.73 for Shifting Attention).

The Experiences Questionnaire-Decentering Subscale
(Decentering; Fresco et al., 2007) is an 11-item measure
assessing the meta-cognitive strategy of decentering often
defined as viewing oneself as separate from their emotional
experience. Cronbach’s alpha in the current sample was good
(α = 0.80).

The Emotion Regulation Questionnaire—Reappraisal subscale
(ERQ-R; Gross and John, 2003) is a six-itemmeasure of cognitive
reappraisal that demonstrated strong internal consistency in the
current study at pre-treatment (α = 0.86).

The Mood and Anxiety Symptom Questionnaire-Short
Form (MASQ-SF; Clark and Watson, 1991) is a 62 item
measure assessing anxiety and depression symptoms. The
four factors derived from the MASQ represent: General Distress
Anxiety (MASQ–GDA), Anxious Arousal (MASQ–AA), General
Distress Depression (MASQ–GDD), and, Anhedonic Depression
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(MASQ–AD). Cronbach’s alpha for the MASQ subscales in the
current study ranged from moderate to strong at pre-treatment
(α’s = 0.61–0.91).

Procedure
The Institutional Review Board of the college approved all aspects
of the study. Participants provided written informed consent for
all procedures at the outset of study. At the initial intake visit
participants were assessed for current and lifetime psychiatric
history via the SCID interview and also completed a battery
of self-report questionnaires delivered in paper-and-pencil
format. Prior to the start of treatment, participants completed
an independent assessment with a different interviewer who
re-assessed the diagnoses that were of clinical threshold at the
initial intake. Finally, participants completed the fMRI scan.
Following the first eight sessions (i.e., mid-treatment) and after
16 sessions (i.e., post-treatment), participants returned to the
lab to complete another independent assessment and self-report
questionnaire packet. They also completed another fMRI session
post-treatment. Participants were compensated for all research
related study visits.

Analytic Plan
MRI Data Acquisition Imaging data were collected on a 3.0T
Siemens Allegra head-dedicated MRI scanner with a standard
quadrature head coil at the NYU Center for Brain Imaging
in New York, NY, USA. Scan sessions lasted 90 min during
which participants completed a resting state fMRI scan, and an
anatomical scan, and three task-based scans (not examined in
the current study). The resting state scan was always acquired
prior to the task-based scans. During the 6-min resting-state
sequence, participants were asked to keep their eyes open
while a white crosshair was displayed on a black screen.
The resting-state scan comprised 180 contiguous whole-brain
functional volumes, acquired using a multi-echo echo planar
imaging (EPI) sequence (repetition time = 2,000 ms; echo
time = 30 ms; flip angle = 90◦; 33 slices; matrix = 64 × 64; voxel
size = 3 × 3 × 4 mm). High-resolution T1-weighted MPRAGE
structural images (TR = 2,500 ms; TE = 3.93 ms, flip = 8◦,
1× 1× 1 mm voxels) were acquired to facilitate localization and
coregistration of functional data.

MRI Data Preprocessing
MRI preprocessing was undertaken in AFNI (Cox, 1996)
following the steps detailed in Power et al. (2017). To correct
for subject movement, FD and DVARS were calculated before
any other preprocessing steps were performed. Despiking was
performed using AFNI’s 3dDespike for the entire volume. Slice
time correction was performed using 3dTShift, shifting all signals
to the time when the volume began to be collected, specifying
interleaved acquisitions with an odd number of slices, and using
the heptic Lagrange polynomial interpolation. The scanner was
already steady-state at initial acquisition, so no volumes were
skipped at the beginning of the scan. Realignment was conducted
with 3dvolreg, using the first volume of a scan as the reference.

Registration of fMRI data to atlas space was conducted next.
AFNIs @auto_tlrc command was used to register the first volume
of the fMRI scan to each subject’s MP-RAGE, and all fMRI scans

were registered to the first volume of the fMRI scan in the motion
correction step. Registrations were then concatenated to a single
transform, which was transformed into AFNIs TT_N27 atlas
space and resampled to 3 mm isotropic voxels. All T1-weighted
images underwent automated segmentation using FreeSurfer
version 6.0, implemented with the recon-all command.

Time-series images for each participant were further
processed to limit the influence of motion and other artifacts.
Motion regressors were created using each subject’s six motion
correction parameters (three rotation and three translation) and
their first derivatives (Jo et al., 2013; Satterthwaite et al., 2013)
yielding 12 motion regressors. White matter and cerebrospinal
fluid nuisance regressors were created using CompCorr (Behzadi
et al., 2007). Images were bandpass filtered to retain frequencies
between 0.008 and 0.1 Hz, and volumes exceeding 0.25 mm
frame-wise displacement or 1.55 standardized DVARS (Power
et al., 2014; Nichols, 2017) were censored. Nuisance regression,
bandpass filtering and censoring for each time series was
performed in a single processing step using AFNI’s 3dTproject.
One patient was excluded from subsequent analyses due to not
passing QA procedures. Additionally, one subject’s baseline
scan and another subject’s follow-up scan were excluded for not
passing QA procedures, but each of their corresponding scans
were included in the group-level rsFC analyses.

Resting State Functional Connectivity
(rsFC): Seed-Based Analyses
To investigate changes in connectivity of nodes within the DMN
and SN, particular seeds within the DMN (PCC) and SN (Insula)
were chosen. Specifically, ROIs were defined based on Fresco
et al. (2017). For the PCC, a 2 mm sphere was created around
the coordinates (−8, −56, 26). The right anterior insula and
right posterior insula seeds (K = 2 clusters per hemisphere)
were created by Kelly et al. (2012) and downloaded for the
present study from the 1,000 Functional Connectomes Project1.
For each seed, mean timeseries were extracted and used to
create whole brain Z-transformed correlation maps for each
participant. Group level analyses were conducted using AFNIs
3dLME (Chen et al., 2013) testing pre- to post-treatment change
in rsFC. 3dLMEwas chosen to be able to account for missing data
in repeated measures designs.

Correction for multiple comparisons was conducted
using AFNI’s 3dClustSim (version 17.3.06) for cluster-size
thresholding based on Monte Carlo simulation. An initial,
uncorrected, statistical threshold of p < 0.01 with option NN1
(faces must touch) was chosen (Cox et al., 2017). Based on
this threshold, the number of comparisons in our imaging
volume and the smoothness of our imaging data, as measured
by 3dFWHMx -acf, a minimum cluster size of nine voxels was
required to have a corrected p ≤ 0.05 with 2-sided thresholding.

Significant clusters were saved as a mask and mean parameter
estimates from the clusters were extracted from pre- and post-test
scans using 3dROIstats to be entered into statistical models in
IBM SPSS Statistics 24 (Chicago, IL, USA).

1http://fcon_1000.projects.nitrc.org
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Associations Between Change in Resting
State Functional Connectivity With Clinical
Variables
Time 2 rsFC and clinical variables were regressed onto
their Time 1 counterparts and the unstandardized residual
was saved as a new variable. We examined the zero order
correlations among rsFC change indices with clinical change
indices. Given the small sample size of the study, we
elected to interpret correlations of at least a medium effect
size (r > 0.30; Cohen, 1992) and made note of when
these correlations also reached conventional probability values
(p< 0.05).

RESULTS

ERT Linked Clinical Improvement
Mean levels of clinical variables pre- and post-therapy are
shown in Table 1. The results for the subsample of participants
included in the current article are comparable to those
found in the parent study (Renna et al., 2018a). Participants
demonstrated a significant decrease in clinician assessed severity
of GAD and MDD symptoms as well as in rumination and
worry. Participants also demonstrated a significant increase
in emotion regulation skills of attentional control (both
shifting and focusing), decentering, and reappraisal. All clinical
indicators exceeded conventions for large effect sizes (Hedges
g > 0.80).

ERT Linked Change in rsFC
The posterior cingulate seed demonstrated increased
connectivity from pre- to post-treatment with five cortical
regions consisting of the middle occipital gyrus [Right
Brodmann Area (BA) 19], precuneus (Right BA 7), cuneus
(Right BA 17), precentral gyrus/motor cortex (Left BA 6) and
premotor areas/DLPFC (Right BA 8/9). The anterior insula seed
evidenced increased connectivity with precuneus (Left BA 18),
while the posterior insula seed showed increased connectivity
with anteromedial PFC/dACC (Left BA 32/10) and decreased
connectivity with midbrain (Table 2 and Figure 1).

Association of rsFC Change to Clinical
Improvement
Table 3 displays zero order correlations between residual change
in functional connectivity and clinical outcomes attributable
to ERT. Few statistically significant associations were found
between the residual change in extracted cluster values and
residual change in clinical improvement or measures of emotion
regulation. However, findings did reveal a pattern of correlations
between rsFC change and clinical outcomes above the threshold
for a medium effect size and/or probability values less than
0.05, that may achieve traditional statistical significance with
a large sample. For instance, three of the clusters associated
with the PCC seed evidenced moderately larger correlation
coefficients. In particular, increases in functional connectivity
between the PCC-Middle Occipital Gyrus cluster was positively

TABLE 1 | Means and standard deviations of emotion regulation therapy (ERT) linked clinical outcomes.

Pre-treatment Post-treatment t(df) p Hedge’s g

GAD CSR 5.8 (0.7) 3.4 (0.9) 10.0 (20) <0.001 2.73
MDD CSR 4.4 (1.0) 2.3 (1.6) 5.1 (16) <0.001 1.48
Rumination 14.8 (2.8) 10.2 (4.2) 4.5 (20) <0.001 1.26
Worry 70.4 (6.4) 48.9 (12.6) 8.4 (20) <0.001 2.08
MASQ-GDA 31.0 (5.8) 19.8 (5.1) 7.2 (20) <0.001 1.97
MASQ-GDD 41.6 (8.2) 23.1 (9.7) 6.1 (20) <0.001 1.98
Attentional control 44.5 (8.8) 51.6 (7.9) 4.0 (20) 0.001 0.82
Reappraisal 20.3 (7.6) 29.3 (8.0) 3.8 (20) 0.001 1.11
Decentering 24.9 (6.8) 38.2 (9.3) 5.4 (20) <0.001 1.57

Note: GAD, Generalized Anxiety Disorder; CSR, Clinician Severity Rating; MDD, Major Depressive Disorder; MASQ-GDA, Mood and Anxiety Symptom Questionnaire, General Distress
Anxiety; MASQ-GDD, Mood and Anxiety Symptom Questionnaire, General Distress Depression.

TABLE 2 | Change in connectivity associated with each seed, listed by cluster size and MNI coordinates of peak voxel.

Seed With region BA Cluster size x y z Max Z

Post > Pre
PCC Middle Occipital Gyrus 19 52 43 −74 17 4.66
PCC Precuneus 7 35 13 −68 47 3.77
PCC Cuneus 17 22 16 −65 11 3.56
PCC Precentral Gyrus 6 22 −41 −5 53 4.08
PCC Pre-motor areas/DLPFC 8/9 20 40 4 35 3.65
raInsula Cuneus 18 9 −5 −71 29 3.93
rpInsula Anteromedial PFC/dACC 10/32 10 −5 46 17 4.13
Pre > Post
rpInsula Midbrain n/a 9 13 −29 −25 −4.24

The top five significant clusters are presented for each seed. Note: BA, Brodmann Area; PCC, Posterior Cingulate Cortex; raInsula, Right Anterior Insula; rpInsula, Right Posterior
Insula; DLPFC, Dorsolateral Prefrontal Cortex; dACC, Dorsal Anterior Cingulate Cortex.
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FIGURE 1 | Change in connectivity associated with each seed. Regions
demonstrating pre-post emotion regulation therapy (ERT) change in resting
state functional connectivity (rsFC). (A) The posterior cingulate seed showed
increased connectivity with middle occipital gyrus (43, −74, 17), precuneus
(13, −68, 47), cuneus (16, −65, 11), precentral gyrus (−41, −5, 53; not
shown) and premotor areas/dorsolateral prefrontal cortex (DLPFC; 40, 4, 35).
(B) The anterior insula seed showed increased connectivity with the cuneus
(−5, −71, 29). (C) The posterior insula seed increased connectivity with
anteromedial PFC/dorsal anterior cingulate cortex (dACC; −5, 46, 17) and
decreased connectivity with midbrain (13, −29, −25). Cluster are significant
after cluster-based correction for multiple comparisons (>9 contiguous
voxels). Yellow scale indicates positive z-scores, and blue scale indicates
negative z-scores.

correlated with ERT linked gains in attentional control,
decentering, and cognitive reappraisal. Similarly, increases in
functional connectivity between the PCC and Precentral Gyrus
(Motor Strip) were negatively correlated with ERT linked
reductions in GAD severity, anxiety and depression distress,
and rumination, as well as gains in decentering and cognitive
reappraisal. Increases in functional connectivity between the
PCC and premotor areas/DLPFC were negatively correlated
with reductions in MDD severity and positively correlated with
gains attention control, decentering, and cognitive reappraisal.
Finally, functional connectivity of the PCC with the cuneus
was associated with ERT-linked gains in attentional control,
whereas, PCC connectivity with the precuneus was associated
with ERT-linked gains in reappraisal. On balance, rsFC clusters
emerging from right anterior insula and right posterior insula
seeds were not meaningfully correlated with ERT linked changes
on clinical indicators.

DISCUSSION

This study represents the first investigation of changes in
rsFC following treatment with ERT, a theoretically-derived,
mechanism focused treatment for distress disorders that was
developed to target and normalize negative motivational
salience and subsequent self-referential processes as reflected
in hypothesized neurobehavioral deficits in the DMN and
SN (i.e., hyperconnectivity within the DMN network,
hypoconnectivity within the SN network and FPCN, and
hypoconnectivity between the FPCN and DMN). In this study
drawn from a larger intervention trial (Renna et al., 2018a),
we utilized a seed-based connectivity analysis with seeds in
the PCC, right anterior insula, and right posterior insula.
Findings revealed changes in connectivity of nodes in the
DMN and SN networks with other nodes in these networks
and with other cortical regions post-therapy compared to
pre-therapy. Five clusters derived from the PCC seed and
three clusters derived from insula seeds were retained and
examined in relation to ERT linked improvements in clinical
indicators of GAD and MDD severity, worry, rumination, as
well as mechanistic emotion regulation variables (e.g., focusing
and shifting attention, decentering, cognitive reappraisal).
Meaningful and theoretically consistent correlations emerged
between PCC seeded clusters and clinical variables of moderately
large effect size, but because of the relatively small sample size
of the study, only a few achieved conventional thresholds of
statistical significance.

Following treatment with ERT, the PCC seeds revealed
increased connectivity with a region that includes pre-motor
cortex and posterior DLPFC, findings consistent with two recent
trials that utilized mindfulness-based interventions (Creswell
et al., 2016; King et al., 2016). In these studies, increased
connectivity between the PCC and DLPFC was associated
with post-treatment PTSD symptoms (King et al., 2016) and
reduced serum inflammatory markers (Creswell et al., 2016).
Similarly, increased DLPFC function has also been associated
with reappraisal (Ochsner et al., 2002; Scult et al., 2017b),
and with decreased anxiety (Scult et al., 2017a). The present
results also found a trend for this increase in PCC-pre-
motor/DLPFC connectivity to parallel decreases inMDD severity
and depression distress, and increases in attentional control
and emotion regulation. These results fit with previous work
showing a unique functional coupling of DLPFC and PCC in
instances of cognitive control (Smith et al., 2016), suggesting that
the ERT intervention may have enhanced cognitive control of
emotional processing through increasing PCC-DLPFC coupling
at rest. Increasing connectivity of other brain regions such as
the medial PFC (Etkin et al., 2011) with the posterior insula
may reflect the appraisal of emotional responses via more
metacognitive processes that create an empathic distance from
the emotion itself (similar to the empathy experienced for the
distress of others; Lamm et al., 2011), and indeed this increased
connectivity showed a trend for increasing decentering in the
present results.

The increases in connectivity of the PCC with other regions
of the DMN (e.g., precuneus) were contrary to hypothesis, given
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the well-documented patterns of hyperconnectivity within the
DMN in depression (Kaiser et al., 2015) which are sometimes
normalized with antidepressant medication (Posner et al., 2013).
However, recent research suggests that a focus on overall
DMN connectivity may be overly simplistic, and that instead,
connectivity between anterior portions of the DMN may be
positively correlated with anxiety and depression symptoms
while connectivity between posterior nodes of the DMN may
be negatively correlated with depression and anxiety symptoms
(Coutinho et al., 2016). Our results of increasing connectivity of
the PCC with other posterior regions both within and beyond
the DMN (precuneus, cuneus, middle occipital gyrus) after ERT
treatment, paralleling decreases in mood and anxiety symptoms,
fit within this framework as further described below.

In particular, the present study found changes in connectivity
of brain regions involved in shifting attention towards important
situational cues. The PCC has been implicated in self-generated
thought irrespective of whether attention is focused internally
or externally, while middle occipital gyrus activity has been
associated with externally directed attention (Benedek et al.,
2016). Areas of the medial PFC overlapping with activations
found in the present study showing increased connectivity with
posterior insula, have been associated with positively valenced
self-related processing (Johnson et al., 2009). Meanwhile, the
precentral gyrus is involved in intentional motor activity (Kana
et al., 2015). One potential interpretation of these patterns of
activation is that these regions are implicated in agentic thoughts
and actions, which stands in contrast to the experience of
individuals with elevated anxiety and depression, who often
overlook overt cues for reward and have difficulty accurately
assessing environmental cues signaling danger (Renna et al.,
2017). In healthy individuals, DMN and SN activity is linked
with processing of internal and external cues that are related to
situational awareness. For example, the middle occipital gyrus
has been implicated in mentalizing or inferring the emotions
of others (Atique et al., 2011; Schurz et al., 2014), while PCC
activation has been associated with agentic control (Brewer
and Garrison, 2014). One possible explanation, therefore, is
that ERT may act by increasing the ability of individuals
to accurately shift attention to cues in the environment via
enhanced connectivity of regions related to perceptual processing
and mentalizing (Ganis et al., 2004; Schurz et al., 2014), which
in turn, leads to the alleviation of anxious and depressive
symptoms.

An important guiding principle of ERT is the contention
that refractory conditions such as distress disorders require
intervention components that target attention andmetacognitive
capacities to produce a meaningful and durable treatment
response (Fresco and Mennin, 2019). Several reported findings
herein are potentially consistent with that premise. For instance,
we conducted some post hoc, unplanned tests of dependent
correlations (Steiger, 1980) comparing the strength of correlation
with self-report measures of attention and metacognition to
the extract clusters associated with ERT-linked neural change.
Findings revealed that rsFC change in the cuneus, an area
generally implicated in spatial attention (Simpson et al., 2011)
especially when cues may convey threat or anger (Heesink

et al., 2017), was more strongly associated with ERT-linked
changes in shifting attention as compared with indicators of
metacognitive change-decentering (t = 2.59, p = 0.02, Cohen’s
d = 1.22) and reappraisal (t = 1.82, p = 0.08, Cohen’s d = 0.86).
Conversely, rsFC change in the precuneus, a node of the
DMN implicated in self-consciousness and self-related mental
representations (e.g., Cavanna and Trimble, 2006) was more
strongly correlated with ERT-linked gains in reappraisal as
compared to gains in focused attention (t = 2.02, p = 0.04,
Cohen’s d = 1.04) and shifting attention (t = 1.61, p = 0.12,
Cohen’s d = 0.76). Finally, rsFC changes in the middle occipital
gyrus, implicated with both attention (Benedek et al., 2016)
and metacognition (Atique et al., 2011; Schurz et al., 2014)
were similarly correlated with ERT-linked gains in attention,
decentering, and reappraisal. Future research may wish to
examine these areas for future seed-based analyses, ideally with
a larger treatment sample.

There are several limitations of the present study. In
particular, this study was preliminary and lacked a control
group or treatment comparison, which raises caution in
interpreting the findings. Future research, utilizing a randomized
controlled trial design is the logical next step to determine what
changes are uniquely related to ERT. Similarly, the study was
conducted with a modest sample size and given the interest in
investigating multiple nodes within the default mode and SN
with several clinical variables of interest, larger samples will be
needed in the future to robustly test the associations between
these variables, as well as to assess moderating factors such
as sex.

Future studies will help to test the reliability of the present
results and further elucidate a mechanistic understanding of the
impact of ERT therapy on psychological and neurobiological
variables. Despite the aforementioned limitations, the present
findings add a level of nuance to the growing literature on rsFC
disruptions in GAD andMDD and highlight the potential impact
of treatment on connectivity in these disorders.
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