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Ocular accommodation is the process of adjusting the
eye’s crystalline lens so as to bring the retinal image into
sharp focus. The major stimulus to accommodation is
therefore retinal defocus, and in essence, the job of
accommodative control is to send a signal to the ciliary
muscle which will minimize the magnitude of defocus. In
this article, we first provide a tutorial introduction to
control theory to aid vision scientists without this
background. We then present a unified model of
accommodative control that explains properties of the
accommodative response for a wide range of
accommodative stimuli. Following previous work, we
conclude that most aspects of accommodation are well
explained by dual integral control, with a “fast” or
“phasic” integrator enabling response to rapid changes
in demand, which hands over control to a “slow” or
“tonic” integrator which maintains the response to
steady demand. Control is complicated by the
sensorimotor latencies within the system, which delay
both information about defocus and the
accommodation changes made in response, and by the
sluggish response of the motor plant. These can be
overcome by incorporating a Smith predictor, whereby
the system predicts the delayed sensory consequences
of its own motor actions. For the first time, we show
that critically-damped dual integral control with a Smith
predictor accounts for adaptation effects as well as for

the gain and phase for sinusoidal oscillations in demand.
In addition, we propose a novel proportional-control
signal to account for the power spectrum of
accommodative microfluctuations during steady
fixation, which may be important in hunting for optimal
focus, and for the nonlinear resonance observed for
low-amplitude, high-frequency input. Complete
Matlab/Simulink code implementing the model is
provided at
https://doi.org/10.25405/data.ncl.14945550.

Introduction

Accommodation refers to the ability of the eye to
change its focus between near and far distances to ensure
that images remain in sharp focus at the fovea across
a wide range of object distances. This is achieved by
changes in the convexity of the intraocular lens, brought
about by contraction of the ciliary muscle (Figure 1).
To focus on distant objects, the ciliary muscle is relaxed,
so the lens curvature and thus its optical power are
minimal; to focus on near objects, the ciliary muscle
contracts, so the lens curvature increases and so does its
optical power. Accommodation is usually controlled by
the brain as an unconscious reflexive process.
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Figure 1. (A) Accommodating on a distant object. When the
ciliary muscle is slack, tension in the suspensory zonules is
released and the intraocular crystalline lens flattens, enabling
distant objects to appear in focus on the retina (for an
emmetropic eye). Light from a nearby object, such as shown, is
therefore out of focus. (B) Accommodating on a nearby object.
The ciliary muscle has contracted, increasing the curvature of
the lens (blue arrows) to bring nearby objects into focus. Not to
scale. Modified from image by Pearson Scott Foresman, public
domain.

A full understanding of this process requires
a knowledge of (i) the optical and biomechanical
properties of the eye, (ii) how the required
accommodative response is derived from retinal and
extraretinal cues, and (iii) the neural signals controlling
the ciliary muscle to bring about this response. In this
article, we concentrate on the third of these.

We begin by discussing the basic structure of models
of neural control of accommodation. A key goal of
this section is to provide a clear review of the subject,
introducing concepts and summarizing previous work
in a way which is accessible to vision scientists without
a background in classical control theory. Accordingly,
this section incorporates a tutorial to bring such readers
up to speed.

The core of accommodative control is a negative
feedback loop attempting to null the error between
accommodative demand (i.e., the accommodation at
which the fixated object will be in sharp focus) and
response (i.e., the accommodation actually adopted).
Such feedback loops are vulnerable to instabilities
caused by the finite latencies within the control
system. A well-established strategy for avoiding such
instabilities is to predict the eye’s response to a motor

command. This requires an “efference copy” of the
signal sent to the ocular plant, along with an internal
or “forward” model of the plant, enabling the system
to predict the response to the motor signal. Control
can then be based on the predicted future input, rather
than the currently sensed input, effectively removing
the effect of the latencies. We consider the particular
form known as a Smith predictor (Abe & Yamanaka,
2003; Miall, Weir, Wolpert, & Stein, 1993; Smith, 1957),
designed for closed-loop control of systems with long
delays in the feedback. Predictive models stand in
contrast to classical models that do not take account
of the sensory consequences of the body’s own motor
actions.

Armed with this background, we next discuss
the evidence that accommodation uses a Smith
predictor, and examine empirical constraints on the
model parameters. We aim to produce a model which
can account for behavior in both steady-state and
smooth tracking, including accommodative lag/lead,
adaptation, critical damping, and Bode plots of
gain and phase. (Extending the model to reproduce
dynamics of the step response (Bharadwaj & Schor,
2005;Bharadwaj & Schor, 2006; Schor & Bharadwaj,
2004;Schor & Bharadwaj, 2006) will be covered in a
subsequent article.)

This analysis leads us to conclude that accommoda-
tive control most likely incorporates a predictor, to
avoid instabilities due to the sensorimotor latency. By
“predictor” we mean a forward model to predict the
effect of commanded accommodation changes on the
visual input. The evidence that the system predicts
changes in stimulus demand is equivocal, and our model
simply assumes that demand does not change over the
timescale of the latency.

We conclude that accommodation can be modeled
successfully as a predictive system with integral control
but that there are fairly tight constraints on the gain
and time-constant of the integral controller for the
system to be consistent with empirical data for step and
smooth tracking. Following previous work, we add a
slow, second-order integral controller to account for
adaptation effects and show that care is required when
using this dual-control with predictive models.

Most accommodation models omit noise, but noise
provides important constraints on model structure and
parameters. Predictive models can end up amplifying
internal noise when the defocus signal is removed (e.g.,
by viewing through pinholes, which is not observed
empirically). Avoiding these resonances places further
constraints on model parameters. An important
contribution of this article is that our model explicitly
includes noise.

Noise also accounts naturally for the fluctuations
seen in steady-state accommodation. These are often
called microfluctuations although they are actually
quite substantial at around ±0.5D, exceeding the depth
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of field (Campbell, Robson, & Westheimer, 1959a;
Charman & Heron, 1988; Charman & Heron, 2015;
Kotulak & Schor, 1986b). The source and purpose
of these is unclear: as well as noise, they may reflect
disturbances from the intraocular pulse, mechanical
resonances within the ocular plant, deliberate attempts
at “hunting” in order to find the best point of focus,
and/or fluctuating input from other influences on
accommodation (Charman & Heron, 1988; Charman
& Heron, 2015; Collins, Davis, & Wood, 1995; Denieul,
1982; Gray, Winn, & Gilmartin, 1993b).

In normal viewing, the power spectrum of
microfluctuations typically shows a pronounced peak
at around 2Hz. This peak is much weaker when
viewing through pinhole pupils, where the link between
accommodation and image quality is cut (“open-loop”).
This may be because in bright viewing conditions,
where the pupil stops down and depth of focus is large,
microfluctuations are of no assistance in improving
vision and might even cause ocular fatigue. In our
model, we are able to reproduce this behavior by
including an additional control signal that is driven
directly by sensed defocus and not by the output of the
Smith predictor.

Putting these different components together results
in a model where accommodation is controlled by the
sum of four separate neural signals. The model has a

total of 10 parameters (Table 2), most of which are
quite tightly constrained by the data. In the Results
section, we present simulations demonstrating that this
model can account simultaneously for a wide range of
observations.

Methods

Accommodation as a linear, time-invariant
negative feedback control system

“A complex system that works is invariably found to have
evolved from a simple system that worked. A complex system
designed from scratch never works and cannot be patched up
to make it work. You have to start over with a working simple
system.” – Gall’s Law (Gall, 1977).

In the spirit of Gall’s Law, we begin with the
simplest possible conceptual model of accommodation
(Figure 2). Viewed as a whole, the model has one
input, accommodative demand, corresponding to the
vergence of light rays from the object we wish to look
at. This is measured in diopters; the demand in diopters
corresponds to the reciprocal of the distance in meters
from the eye. For an infinitely far object, the demand is
0D; for an object at 50 cm, the demand is 2D.

Figure 2. Conceptual model of accommodation. There is a feedback loop, whereby the output (accommodation) affects the input to
the control system. The blocks labeled Accommodative Control System and Ocular Plant are shown here as “black boxes,” which take
inputs and yield outputs, without showing how the output is computed. Their transfer functions are B(s) and P(s), respectively. The
input to the overall system is the accommodative demand, reflecting the distance of the fixated object, and the output is the ocular
accommodation (i.e., where the eye is focused). Defocus error is the difference between these, demand minus accommodation.
Signals are shown in the time-domain (e.g., d(t)) and as Laplace transforms (e.g., D(s)). When the system is driven in “open-loop”
mode, the connection shown in red is effectively severed at the scissors icon, so that the input to the Accommodative Control system
becomes independent of ocular accommodation.
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The model also has one output, ocular accommo-
dation. When the eye is correctly accommodated, the
accommodation will be equal to the demand so that
the image is in focus on the posterior receptor layer
of the retina. Defocus is the difference between the
accommodative demand and the ocular accommo-
dation, all measured in diopters. It acts as an error
signal to the model. As discussed in the Introduction,
we assume that defocus is a single, signed value which
is somehow computed by the visual system from the
retinal image (e.g. using blur, higher-order aberrations,
longitudinal chromatic aberration (Burge & Geisler,
2011; Cholewiak, Love, & Banks, 2018; Fincham,
1951; Kruger, Mathews, Aggarwala, & Sanchez,
1993; Seidemann & Schaeffel, 2002; Wilson, Decker,
& Roorda, 2002) and represented as a neural error
signal; how this is achieved is beyond the scope of
this article. In our sign convention, positive defocus
error means that the eye is not accommodating enough
(i.e., the eye is focusing on a point more distant than
the object of interest, so the ocular image is focused
behind the retina). Positive defocus error should
therefore stimulate an increase of accommodation.
The accommodative control system takes the defocus
error as input and uses it to compute a neural control
signal (blue block in Figure 2). This neural signal is
then fed into the ocular plant block in Figure 2. This
block, corresponding physiologically to the ciliary
muscle, lens, and other components, converts the neural
signal into the optical power of the lens (i.e., the ocular
accommodation). This in turn affects the defocus error,
because defocus is demand minus accommodation. The
accommodative control system is designed to adjust
accommodation to minimize the defocus error signal
(Toates, 1972). Thus this is a negative feedback system.

In any negative feedback system, one faces the
question of how to choose the control signal to
minimize the error. One obvious form of error
correction is to make the corrective signal proportional
to the error. For example, a very simple form of
automotive cruise control might make acceleration
proportional to the difference between the current
and the desired speed. Other widely used possibilities
are to integrate the error over time, or to anticipate
changes by including a term scaling with the derivative.
Together, control systems of this type are called PID
(proportional-integral-derivative) controllers.

In reality, of course, defocus is not the only visual
cue to accommodation (Heath, 1956b; Maddox, 1893).
One additional component that we discuss below and
include in our models is the system’s bias towards a
particular baseline or resting accommodation (see
Rosenfield, Ciuffreda, Hung, & Gilmartin, 1993 for
a review). Factors that for simplicity we neglect in
this article include pictorial cues to distance, sensed
proximity, and crosslinks from the vergence system.
However, defocus is the only visual cue that is itself

altered by accommodation and thus the cue intrinsic to
the negative feedback loop.

Modeling neural signals as if they were in diopters
In this initial part of the article we will keep

the discussion as general as possible, without
committing to a particular model of the Ocular Plant
or Accommodative Control System blocks shown
in Figure 2. However, one detail is worth noting.
Without loss of generality we will set the overall gain of
the plant to 1, meaning that it passes a constant signal
unchanged. In reality, the neural signal is encoded in
spikes per second, and the output of the ocular plant is
accommodation in diopters. There must therefore be a
gain or conversion factor within the neural signal which
converts spikes per second into diopters, taking into
account the biomechanical gain of the plant (Gamlin,
Zhang, Clendaniel, & Mays, 1994). Without loss of
generality, we can fold this conversion factor into our
neural signals. Thus by setting the plant gain to 1, we
represent all the neural signals in the model as if they
were diopters. This makes them particularly simple to
interpret.

Closed-loop versus open-loop
The model shown in Figure 2 is “closed-loop”: that is,

the input to the accommodative control system (defocus
error) is affected by its output (ocular accommodation).
As discussed, this forms a negative feedback loop, in
which increases in defocus error stimulate changes in
accommodation that in turn reduce defocus error.

If we use the scissors shown in Figure 2 to cut the
connection shown in red, we obtain the equivalent
open-loop system, in which the output of the system
has no effect on its defocus error. It might seem
impossible to cut the connection in this way in the
living eye, but in fact all that is required to examine
the open-loop mode is to make the optical error signal
independent of the accommodative response. There
are two main ways in which this can be done. First, by
measuring accommodation and optically adding the
current accommodation state onto the current input
demand. The eye’s own optics then effectively remove
accommodation, so that the error signal forming the
input to the visual system is simply the demand applied
by the experimenter, independent of the accommodative
response. A positive non-zero open-loop error signal
continues to stimulate increases of the accommodation
response until it reaches saturation, reminiscent of a
dog chasing its tail.

Alternatively, the optical error signal can be set to
zero by using a pinhole pupil. Through small pinholes,
objects appear slightly blurred due to diffraction,
but critically, this blur is virtually independent of
the stimulus accommodative demand or the ocular
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Symbol Meaning

ω Angular temporal frequency, ω = 2π f
ϕ(f) Phase-delay of accommodation at frequency f
τ fast Time-constant of the fast leaky-integrator controller, see Equation 10
τ plant Time-constant of the ocular plant, when this is modeled as a leaky integrator, see Equation 9
τ slow Time-constant of the slow leaky-integrator controller, see Equation 12
ζ Damping coefficient, see Equation 20
â(t + Tmot ) Predicted accommodation at a time Tmot after the current time t. In this article, generally assumed equal to a(t + Tmot)

(i.e., prediction is perfect).
d̂(t + Tmot ) Predicted demand at a time Tmot after the current time t. In the no-change prediction model, this is assumed to be the

same as the last available demand, from time Tsens before the current time (i.e., d(t − Tsens))
A(s) Laplace transform of accommodation relative to rest focus
aRF Rest focus (i.e., accommodation adopted in the absence of any visual stimulus)
aSS Steady-state accommodation in response to dSS, see Equation 7
C(s) Transfer function of controller
D(s) Laplace transform of accommodative demand relative to rest focus
dSS Steady-state demand, see Equation 7
E(s) Laplace transform of defocus error, E(s) = D(s) − A(s)
f Temporal frequency
g(f) Gain of accommodation at frequency f
Gfast Steady-state gain of the fast leaky-integrator controller, see Equation 10
Gopen Steady-state open-loop gain of accommodation
Gslow Steady-state gain of the slow leaky-integrator controller, see Equation 12
Hclosed(s) Closed-loop transfer function relating demand to accommodation, see Equation 4
Hopen(s) Open-loop transfer function relating demand to accommodation, see Equation 3
j Square root of −1.
P(s) Transfer function of ocular plant
s Complex temporal frequency in Laplace domain, s = jω, see Equation 1
t Time
Tlat Total sensorimotor latency, Tlat = Tsens + Tmot
Tmot Motor latency (i.e., time taken for the neural signal controlling accommodation to travel from the brain to the ocular

plant)
Tsens Sensory latency (i.e., time taken for defocus at the retina to reach the accommodative control system in the brain)

Table 1. Symbols used in this article.

accommodation. Pinholes do not cause a “dog chasing
tail” accommodative response; rather accommodation
tends to assume its resting state. This suggests that the
visual system experiences images seen through pinholes
as having zero defocus. Thus viewing through pinholes
is a special case of open-loop in which the input is
effectively clamped to zero regardless of output. As we
shall see, examining a system in open-loop mode can
produce valuable information about its function.

Primer on control system theory
At this point, we note that vision scientists may not

be familiar with the classical control systems approach
taken in this article. This section aims to provide a
bare-bones introduction to enable such readers to
follow subsequent sections. Table 1 provides a reference
for all the symbols used throughout the article.

Linear time-invariant systems and the Laplace domain:
Linear systems are those whose outputs for a linear
combination of inputs are the same as a linear
combination of individual responses to those inputs.
For example, in Figure 2, if the system were linear, then
if demand timecourse d1(t) elicited accommodation
response a1(t), and demand d2(t) elicited a2(t), the
response to a new demand made up of a weighted sum
of these two timecourses, w1d1(t) + w2d2(t) would be
w1a1(t) + w2a2(t). A time-invariant system is one where
the same input, delayed by a time T, will always elicit
the same response, also delayed by a time T. Thus if
demand d1(t) elicited accommodation response a1(t),
demand d1(t − T) would elicit accommodation response
a1(t − T).

Where a system is both linear and time invariant
(LTI), its response can be analyzed using Laplace
transforms of the variables. The Laplace transform
turns integral and differential equations into polynomial
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equations that are much easier to solve. Time-domain
functions are converted into Laplace-domain functions
of a complex frequency variable s. We assume that all
signals are zero for times before t = 0 and write the
Laplace transform of a signal f(t) as F(s), where

F (s) =
∫ ∞

0
dt f (t) e−st (1)

We will adopt the convention where, when a
lower-case variable represents a function of time t,
the corresponding upper-case denotes its Laplace
transform as a function of s. The Laplace transform
is closely related to the Fourier transform with which
vision scientists are typically more familiar, with s
representing a complex version of angular temporal
frequency: s = jω (where we use j for the square root of
−1 throughout).

In a circuit diagram like Figure 2, the effect of an
LTI block is simply to reweight the amplitude, and/or
shift the phase, of each frequency in the input. This
means that each LTI block can be written simply
in terms of its complex transfer function H(s). As
discussed in more detail below, a transfer function H(s)
is a kind of gain, since it is the ratio of the output to
the input, for each frequency s. For example, consider
a transport delay block, whose effect is to delay the
input signal by a latency T, and which thus shifts the
phase of each frequency. If the input signal is i(t), the
output after delay is o(t) = i(t − T). Substituting this
into Equation 1, we find that

O (s) =
∫ ∞

0
dt o (t) e−st =

∫ ∞

0
dt i (t − T ) e−st

=
∫ ∞

−T
dt i (t) e−st−sT = e−sT I (s) (2)

where we used the fact that i(t) = 0 for t < 0. Thus the
transfer function of a transport delay block is H(s)
= exp(−sT). Constant signals are unaffected (H(0)
= 1); time-varying signals undergo a shift in phase
proportional to their temporal frequency.

Integrating by parts, and using the assumption that
f(0)=0, we see that

∫ ∞

0
dt

df
dt

e−st = s
∫ ∞

0
dt f (t) e−st = sF (s)

and so the Laplace transform of a derivative is just s
times the Laplace transform of the original function.
This means that differentiation can be represented very
simply in Laplace space by multiplication by s, and
integration by 1/s.

In LTI systems, one can do algebra on the Laplace
transforms in the usual way. The transfer function
for several LTI systems in parallel is the sum of the

individual transfer functions, whereas the transfer
function for several LTI systems in series is the product
of the transfer functions for the individual systems.
A mathematical trick to handle rest focus: When
viewing through pinholes, although the demand is zero,
accommodation tends not to be zero but to converge
on a “rest focus”, aRF, generally of around 1.4D
(Leibowitz & Owens, 1978; Rosenfield et al., 1993),
which is the value we shall assume for our model. A
similar default focus is also observed in darkness. To
account for this, we assume that the accommodative
control system adds onto the signal computed from
defocus a constant “bias” signal. Because we have
normalized neural signals to be expressed in diopters,
setting this bias signal equal to the rest focus ensures
that accommodation returns to the rest focus if the
defocus error is clamped at zero.

This bias signal leads to a small complication,
because it technically violates the assumption that all
signals are zero for t ≤ 0. To handle this, we express
both accommodation and demand relative to the rest
focus. We define A(s) to be the Laplace transform,
not of accommodation itself, but of accommodation
relative to rest focus, a(t) − aRF. Similarly D(s) is the
Laplace transform of demand relative to rest focus,
d(t) − aRF. With this trick, we can then analyze the
system in the Laplace domain as if there were no bias
signal (aRF = 0), and at the end simply add aRF back on
to demand and accommodation when we move back to
the time domain. All the analyses in this article use this
approach.
Open- and closed-loop transfer functions: Where
accommodation is driven in open-loop mode
(imagine Figure 2 after the scissors have cut), we have

A (s) = P (s)B (s)D (s)

where B(s) is the transfer function representing the
brain’s accommodative control system and P(s)
represents the ocular plant. As described in the previous
section, A(s) and D(s) are the Laplace transforms of
accommodation and demand relative to rest focus.
The open-loop transfer function relating output A(s)
(accommodation) to input D(s) (demand) is thus

Hopen (s) = A (s)
D (s)

= P (s)B (s) (3)

In closed-loop mode (Figure 2 with no scissors), the
input to the accommodative control system is defocus
error, E(s) = D(s) − A(s). We therefore now have

A (s) = Hopen (s) [D (s) − A (s)]
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and thus derive the closed-loop transfer function:

Hclosed (s) = Hopen (s)
1 + Hopen (s)

(4)

where

A (s) = Hclosed (s)D (s) (5)

This relationship between the open- and closed-loop
transfer functions is a standard result for a feedback
loop like the one in Figure 2.
Steady-state response, accommodative lag and lead: LTI
theory shows that the steady-state response is obtained
by evaluating the system at s = 0 (zero frequency).
So, if we apply a constant demand dss in closed-loop
mode, Equation 5 becomes

A (0) = Hclosed (0)D (0) (6)

where D(0) = dss − aRF and A(0) = ass − aRF (recalling
that accommodation and demand are defined relative
to rest focus aRF). From Equation 4, we can write
Hclosed(0) in terms of Hopen(0). It will be convenient
to introduce the notation Gopen for Hopen(0) (i.e., the
open-loop steady-state gain of the system). Putting this
together with Equation 4 and Equation 6, we find that
accommodation will eventually be

ass = aRF + Gopen

1 + Gopen
(dss − aRF ) (7)

The steady-state defocus error is

dss − ass = dss − aRF
1 + Gopen

(8)

Equation 8 shows that—regardless of the control
system or plant—the defocus error will be zero when
the demand is equal to the rest focus. This is natural
enough, because the rest focus is the value to which the
system is biased.

However, for other demands, the steady-state
error is not zero. When the demand is nearer than
the rest focus, the accommodative response remains
further than the demand, a situation referred to as
accommodative lag. Conversely when demand is further
than rest, accommodation is nearer than demand; this
is accommodative lead.

Importantly, the amount of the error depends on the
steady-state open-loop gain Gopen. This demonstrates
an important property of negative-feedback systems
which attempt to minimise error: small error requires
high open-loop gain. Because we have set the gain

of the plant to 1 (without loss of generality, as
noted above), the gain Gopen is set entirely by the
brain’s accommodative control system. Empirically,
accommodation reaches around 80% to 90% of the
demand when the demand is far from the rest focus.
From Equation 4, we have

ass − aRF
dss − aRF

= Gopen

1 + Gopen

so the observation that accommodation is around 80%
to 90% of demand implies that Gopen/(1 + Gopen) is
around 0.8-0.9 and in turn that Gopen must be in the
range of 4 to 9.
Gain and phase of response to sinusoidal inputs: A
property of any LTI system is that (after initial
onset transients have died away) its response to a
sinusoidal input is a sinusoidal output, with a gain and
phase reflecting the transfer function of the system.
Specifically, if the closed-loop transfer function is
Hclosed(s), then if accommodative demand is a sinusoidal
function of time, the accommodative response will also
be a sinusoid with the same temporal frequency f. The
amplitude of the response will be the amplitude of
the demand multiplied by the gain at that frequency,
g(f), and the phase will be delayed by ϕ(f). We will use
lower-case g(f) to denote the gain of a system at a
particular temporal frequency f, and upper-case G =
g(0) to denote the steady-state gain, as we did above for
Gopen. According to a standard result of LTI theory, the
gain and phase-delay of an LTI system at frequency f
can be obtained from the complex number represented
by its transfer function H(s) evaluated at s = 2π jf. The
gain g(f) is the magnitude of the complex number
H(2π jf) and the phase-delay ϕ(f) is its phase.

Sometimes below for brevity we will refer to
“the gain” of an LTI operator, without specifying a
frequency. In this case, we mean its steady-state gain.
For example, when we refer to “the gain” of a low-pass
filter, we mean the ratio of its steady-state output to a
constant input.

Sensorimotor latencies: a problem for control

These preliminaries out of the way, we now consider
different possibilities for the contents of the blue block
labeled Accommodative Control System in Figure 2.
We begin by expanding this block as shown in Figure 3.
We now explicitly include the rest focus signal discussed
above. But critically, Figure 3 now also shows the
system’s latency, which we have divided into two parts.
The first is an afferent-sensory latency, representing
the time taken for information about the retinal image
to travel up the optic nerve and for the brain to
compute a signed estimate of defocus, for example
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Figure 3. Expanding the conceptual model shown in Figure 2 so as to show the rest focus and sensorimotor latencies. This is the same
circuit diagram, but the block labeled Accommodative Control System has here been expanded to explicitly show the constant bias
signal accounting for the rest focus, and the latencies. There is a sensory latency Tsens before the retinal defocus signal reaches the
controller, and a further motor latency Tmot before the neural signal reaches the plant.

using longitudinal chromatic aberration or higher-order
aberrations. The second is an efferent-motor latency,
representing the time taken for the resultant neural
signal to travel from the Edinger-Westphal nucleus
down the IIIrd cranial nerve, relay in the ciliary ganglion
and reach the ciliary muscle. The motor latency is
reduced by the fact that the axons from the ciliary
ganglion to the ciliary muscle are myelinated, unusually
for postganglionic axons of the autonomous nervous
system (Tamm & Lütjen-Drecoll, 1996; Warwick,
1954). The sensory and motor latencies have been
estimated as Tsens∼200ms and Tmot∼100ms respectively
(Gamlin et al., 1994; Schor, Lott, Pope, & Graham,
1999; Wilson, 1973), and we will fix the values in our
model at these values. In Figure 3, these latencies are
shown within the Accommodative Control System (i.e.,
the brain), but the model functioning is unchanged
if, for example, part of the motor latency occurs at a
neuromuscular junction in the eye or indeed if both
latencies are merged into a single block.

Latencies are a potentially serious problem for any
control system. In the block diagram shown in Figure 3,
we can see that the defocus error only becomes available
to the block marked Controller after the sensory
latency. The controller therefore operates not on e(t),
but e(t − Tsens): the retinal defocus as it was a time Tsens
ago. This in turn reflects the accommodation due to the
neural signal sent up to a time Tsens + Tmot ago. Thus

the system suffers an overall latency of Tlat = Tsens +
Tmot. This can easily lead to overshoots and “ringing”:
oscillations in accommodation as the system is driven
beyond the correct value by the out-of-date error
signal.

Overshoots and ringing due to an out-of-date
error signal would be seen with the response to step
changes in demand, but in fact the second-order
dynamics already indicate that LTI models do not
suffice to account for the response to large step
changes; accommodative control seems to have special
mechanisms for these which are beyond the scope
of this article (Bharadwaj & Schor, 2005; Bharadwaj
& Schor, 2006; Schor & Bharadwaj, 2004; Schor &
Bharadwaj, 2005). However, an out-of-date error signal
would also affect the response to sinusoidal oscillations
in demand that we will concentrate on in this article.

Empirically, accommodation shows a low-pass
response: gain is greatest in the steady-state, and
decreases monotonically with temporal frequency
(Charman & Heron, 2000; Krishnan, Phillips, & Stark,
1973; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997;
Stark, Takahashi, & Zames, 1965). However, it is
challenging to achieve this with the circuit diagram
shown in Figure 3 and a Controller block, which
is simply a PID controller. Because of the latency,
the system can easily end up out of phase, so that
the changes in accommodation actually enhance the
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Figure 4. Predictive control. Compare with Figure 3: the Controller block has been replaced with a more complex system including two
predictive blocks (green), as well as the original Controller block (yellow). The prediction helps avoid instability because of the
sensorimotor latencies. To predict accommodation, the model includes a Virtual Plant block (forward model) to compute what
accommodation will be a time Tmot in the future (i.e., after the motor latency). If the forward model is accurate, this can in principle
predict accommodation perfectly up to t + Tmot, because accommodation is under the system’s own control. To predict demand at
time Tmot into the future, the model uses a Demand Predictor block. This requires extrapolating demand at time Tlat = Tsens + Tmot
beyond the last available estimate. This is unlikely to be entirely accurate, because demand can reflect changes in the outside world,
beyond the system’s control. Red labels indicate locations referred to in the text.

defocus rather than reducing it, as intended. This
shows up as resonances or local peaks in the gain
function, making it nonmonotonic. This is not observed
empirically.

Overcoming latencies with a predictive control system:
the Smith Predictor

The solution seems to be that the visual system
actually bases its neural control not on the currently
available sensed value of retinal defocus, but on its
internal prediction of the future retinal defocus. That
is, whereas in Figure 3 the controller operates on
the sensed defocus, which due to the sensory latency
actually represents defocus as it was some time in the
past, in a predictive model the controller operates on
the predicted future defocus (Smith, 1957). Figure 4
shows how Figure 3 can be modified so that the input
to the controller is predicted future defocus. Defocus
is the difference between the stimulus accommodative

demand and the ocular accommodation, so predicting
future defocus requires a prediction both of demand
and accommodation.

The brain is in principle able to predict
accommodation perfectly up to future times less than
the motor latency, simply based on the signals it has
already sent to the accommodative plant (Campbell
& Westheimer, 1960; Hung, Ciuffreda, Khosroyani, &
Jiang, 2002; Krishnan et al., 1973; Schor & Bharadwaj,
2004; Stark et al., 1965; Sun, Brandt, Nguyen, Wong,
& Stark, 1989). To do this, the visual system must
effectively have its own internal model of the ocular
plant, represented by the Virtual Plant block in Figure
4. Such internal models are referred to as forward models
in control systems theory. We assume that the motor
latency Tmot largely represents delays in transmitting the
control signal from the brain to the eye. We assume that
the virtual plant is located in the brain close to where the
neural control signal is generated, and thus has access to
this signal with negligible delay. Accordingly, the output



Journal of Vision (2022) 22(9):4, 1–36 Read et al. 10

of the virtual plant is predicted future accommodation
(i.e., the value that ocular accommodation will have at
a time Tmot in advance of the present). We write this
predicted future accommodation as â(t + Tmot): the
predicted accommodation at a time Tmot in the future,
where the circumflex indicates that this is an estimate of
the future accommodation. Since the accommodation
up to a time Tmot into the future is controlled by neural
signals already sent by the brain, this estimate can in
principle be perfect. It should be affected only by noise,
and by any inaccuracies in the virtual plant as a model
of the ocular plant. In the model we present here,
neither of these apply and so the prediction of future
accommodation is indeed perfect.

Predicting stimulus demand is more challenging,
since in general this reflects the motion of objects
in the outside world. Nevertheless, several studies
(Campbell & Westheimer, 1960; Charman & Heron,
2000; Krishnan et al., 1973; Phillips, Shirachi, &
Stark, 1972; Stark et al., 1965) have suggested that the
accommodation system, like vergence and other motor
systems (Erkelens, 2011; Rashbass & Westheimer,
1961), may be capable of predicting sufficiently regular
input. For example, if the demand is a square wave,
jumping between two values with a constant period,
accommodation develops a very short latency or even
changes in anticipation (Krishnan et al., 1973). How or
whether this prediction is achieved is beyond the scope
of this article; it may be performed by the cerebellum
(Ohtsuka & Sawa, 1997; Popa & Ebner, 2019) or it may
not actually occur (Águila-Carrasco & Marín-Franch,
2021; Otero, Aldaba, Díaz-Doutón, Vera-Diaz, &
Pujol, 2019). The different possibilities can be modeled
with the Demand Predictor block (Figure 4). This takes
as its input what demand is estimated to have been at
time Tsens in the past, d̂ (t − Tsens), and gives as output
what it estimates demand will be at time Tmot in the
future, d̂ (t + Tmot ). That is, it extrapolates its input
into the future by a time corresponding to the entire
sensorimotor latency, Tlat = Tmot + Tsens. In this article,
our model Demand Predictor block will simply pass
its input on unchanged, effectively assuming that the
demand will stay at its current value. This is probably
a reasonable assumption, because in many natural
viewing situations, accommodative demand probably
often changes rather little over the timescale of Tlat.
A future model could incorporate a more elaborate
form of prediction (e.g. taking account of stimulus
periodicity), but that is beyond the scope of this article.

Having introduced the key elements of the predictive
model—the virtual plant and the demand predictor—we
now discuss how it works. To help with this, we have
annotated the signals in Figure 4 and marked some
reference points with red letters. Let’s start at A with
the output of the virtual plant. As we saw above,
this represents the brain’s prediction of what ocular

accommodation will be at time Tmot in the future:
â(t + Tmot ). Our model brain uses this predicted future
accommodation in two ways. First (B), the model brain
delays this predicted-accommodation signal by the total
sensorimotor latency to obtain â(t − Tsens), an estimate
of what the ocular accommodation was at a time Tsens
in the past. Thus the predictive model actually uses an
internal estimate of past accommodation, as well as of
future accommodation. The point of doing this is to
match the latency of the defocus signal. The input to
the whole system is accommodative demand, d(t) (label
D). In the eye (label E), the ocular accommodation
a(t) is optically subtracted from d(t) to yield the error
signal e(t), the optical defocus at time t. Ideally, this is
what the accommodation control should be based on,
but due to the sensory latency Tsens, the brain only has
access to the delayed signal, e(t − Tsens), representing
the defocus at a time Tsens in the past. At the signal
combination labeled C, the brain adds its estimate
of past accommodation, â(t − Tsens), back onto this
delayed defocus signal e(t − Tsens), in order to obtain
an estimate of what the demand was at a time Tsens in
the past: d̂ (t − Tsens) = e(t − Tsens) + â(t − Tsens). This
demand signal is fed into the Demand Predictor block,
which uses it to make a guess at what the demand will
be at a time Tmot in the future: d̂ (t + Tmot ) (label F).

Now, the brain makes its second use of predicted
future ocular accommodation, this time without
applying any delay. At the signal combination
labeled G, it subtracts the predicted accommodation
â(t + Tmot ) from the predicted demand d̂ (t + Tmot )
to obtain the predicted future defocus error:
ê(t + Tmot ) = d̂ (t + Tmot ) − â(t + Tmot ). This predicted
future defocus is what is fed into the yellow Controller
block and used to compute the neural control signal
driving accommodation. It is this use of predicted
future defocus that makes this a predictive model, as
compared to the model shown in Figure 3.

As noted above, a constant bias is added on to
the output of the controller, which accounts for the
non-zero resting focus. We call the result m(t) (label
H). This is the actual motor signal sent to the ocular
plant, with a latency Tmot, which results in the ocular
accommodation a(t) (label I). An efference copy of
the same motor signal is also sent to be the input of
the virtual plant. The output of the virtual plant is, of
course, the predicted future accommodation that we
began with (A), so we have now followed the signals
around the whole of the inner and outer loops.

In summary, then, although the input to the
accommodative control system as a whole is the
sensed current defocus (Figure 2), in a predictive model
the input to the accommodative controller itself is
the predicted future defocus. With this modification,
PID-type controllers can now work well and avoid the
instabilities associated with an out-of-date error signal.
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Figure 5. Simplified version of the model shown in Figure 4. This “noncausal” model structure is not physiological and cannot be
mapped onto “brain” and “eye” like the predictive physiological model in Figure 4. For example, here the single block labeled “Plant”
is used to represent both the physical plant in the eye and the virtual plant modeled in the brain. However, as shown by the
annotated signals, it is mathematically equivalent to the physiological model in Figure 4, provided that the Virtual Plant block is a
perfect simulation of the Ocular Plant.

Simplified representation of the predictive control
system

It is useful to note that, if the virtual plant is a
perfect simulation of the physical plant, the predictive
control system shown in Figure 4 is mathematically
equivalent to the much simpler form shown in Figure
5. This form can appear confusing, because it shows
accommodation being subtracted from the stimulus
demand after the sensory latency (even though some of
the sensory delay represents the optic nerve and cortical
processing) and before the motor latency (even though
that represents processes before accommodation). The
reader is invited to trace the signals around Figure 4
and Figure 5, and verify that provided â(t) = a(t), the
same inputs are fed into the same blocks and so the
results must be the same. Figure 5 provides a visual
picture of what is being achieved by the predictive
control: it effectively shifts the latencies outside the
control loop. This diagram holds whatever the demand
predictor does. If the demand predictor were able to
predict future demand perfectly, it would cancel out the
latencies and the system would behave as if there were
no latencies. But even if the demand predictor merely
assumes demand stays constant, as in our model, it still
makes the control immune to the destabilising effect of
latencies. The effect of latencies is now only to delay
the response. The response to any stimulus is exactly
the same as for a system with perfect prediction of
demand, just occurring later in time (see Appendix and
Appendix Table). Thus, although predicting the sensory
input enables a more rapid response, predicting one’s
own motor response suffices to ensure stability.

A specific model of accommodative control

So far we have deliberately kept the discussion very
general, without committing to a particular choice
of transfer function for either the ocular plant or the
Controller block which converts defocus into a neural
signal to the plant. In this section, we develop and
justify a more specific model of accommodative control.
We discuss plausible assumptions and constraints on
both the forms of these transfer functions, and their
particular parameters.

Ocular plant
The Ocular Plant block in Figure 2 to Figure 5

converts the motor neural control signal m into
accommodation a. Physiologically, this block
corresponds to the following components. The ocular
lens is held in an elastic capsule between the anterior
and posterior chambers of the eye. It is tethered
along its equator by elastic suspensory ligaments or
zonules. The axial zonules pass from the lens equator
to the inner margin of the ciliary muscle, whereas the
posterior zonules pass from the ciliary muscle back to
the choroid at the ora serrata, the junction between
the choroid and the ciliary body. The lens is flattened
by the elastic tension under which it is held by the
zonules and becomes more spherical—and so more
optically powerful—when its extension is reduced
by the constriction of the ciliary muscle. Figure 6A
shows a diagram of this arrangement. Figure 6B shows
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Figure 6. (A) Diagram of the anatomical structures relevant to accommodation. (B) Representation as a biomechanical model,
consisting of a set of elastic springs (spring constant k) and dashpots (viscosity b). The posterior zonule fibers and ciliary attachment
are assumed to be in parallel, so their extensions are equal. (C) Minimal model that is mathematically equivalent to the full model
shown in (B) The parameters k and b are functions of the original parameters. The thick arrowsmark forces. As well as the ciliary
muscle force, we now have the force in the spring, fS, and in the dashpot, fD. (D) Control theory block diagram equivalent to the
simple model in (C). For example, at the summation block, we have the force balance FS = F − FD; at the gain block, we have X = FS/k;
in the feedback loop we have FD = bsX. (E) Single transfer function equivalent to the block diagram shown in (D). This is a leaky
integrator, with time-constant τ plant = b/k.

a simplified biomechanical model (Beers & van der
Heijde, 1994; Beers & van der Heijde, 1996; Schor &
Bharadwaj, 2005; Wang & Pierscionek, 2019). The
zonules, choroid, and ciliary attachment are represented
as springs. The lens is represented by a Voigt model, in
which a spring is in parallel with a dashpot or damper.
The springs are modeled according to Hooke’s law
(i.e., they exert a force proportional to their extension).
The dashpot exerts a force proportional to the rate of
change of its extension, modeling the viscosity of the
lens and capsule. The whole system is subject to the
force f exerted by the ciliary muscle, which is set by
the neural signal sent by the accommodative control
system. We assume that the optical power of the lens
is proportional to the extension of the spring/dashpot
modeling the lens.

Because by Newton’s laws the forces must sum to
zero at every point, the system shown in Figure 6B
represents a set of simultaneous equations; for example
at the junction between the axial zonules and the lens,
we have

kLxL + bLẋL = kzaxza

where xL, xza are the extensions of the lens and of
the axial zonules, respectively, k their spring constants
and bL the viscosity of the lens. Using the constraint
that the sum of all the extensions must be constant, we
can go through and solve the simultaneous equations
for the lens extension xL. If we do so, the result is the
same as for the simplified system shown in Figure 6C,
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with a dashpot and a single spring, now representing
the combined elasticity of all the component elements.
The value of the full model is that the elasticity of the
different tissues can be measured independently. This is
important if one wants to model age-dependence (Schor
& Bharadwaj, 2005), because these vary differently with
age, but the collapsed model is obviously much simpler
to work with.

In control theory, a spring can be viewed as an LTI
element converting an input, force, into an output,
extension. The transfer function mapping force to
extension is thus simply the inverse of its spring
constant k (i.e., its compliance). A dashpot is similar,
but because the force is proportional to the rate of
change of extension, the transfer function mapping
extension to force is bs , where b is the viscosity and
s represents differentiation (see primer above). In
this way, the simple biomechanical model shown
in Figure 6C can be represented by the block diagram
in Figure 6D or even more succinctly by the transfer
function in Figure 6E. This is the transfer function of a
first-order low-pass temporal filter with time-constant
τ plant = b/k, also known as a leaky integrator. This,
then, is the function mapping ciliary muscle force to
lens extension.

We now make two further simplifying assumptions:
(1) that the brain is able to command ciliary muscle
force directly, so that the motor signal sent to the
plant from the brain can be regarded as proportional
to ciliary muscle force, and (2) that optical power is
proportional to lens extension. With these assumptions,
then, the entire ocular plant block mapping neural
signal to accommodation can be regarded at least
roughly as a leaky integrator (Beers & van der Heijde,
1994; Beers & van der Heijde, 1996; Ejiri, Thompson, &
O’Neill, 1969; Wang & Pierscionek, 2019). We therefore
model the transfer function of the plant as

P (s) = 1
1 + τplants

(9)

where empirically τ plant is around 0.156s for young eyes
(Schor & Bharadwaj, 2006). In this article, we will take
this value as a given. As noted above, we can assume
without loss of generality that the steady-state gain is 1.

Controller
We now come to a key decision: the choice of

transfer function for the Controller, C(s). As noted
above, in industrial control systems, controllers typically
have PID terms, with transfer functions which scale as
constant, 1/s or s, respectively.

We can rule out pure proportional control, since
with P(s) as given in Equation 9, making C(s)
constant means that the system tracks rapid sinusoidal

oscillations far better than human accommodation.
For example, C(s) = 5 results in a realistic steady-state
gain of 83% (Equation 7), but the gain remains >50%
out to frequencies as high as 8Hz, far higher than
observed (see Figure 7 below). Derivative terms do
not affect steady-state error but improve stability and
avoid overshoot. They also enable rapid response to
rapid changes. However, they can be problematic
in the presence of noise. Previous work by Schor
and Bharadwaj (Bharadwaj & Schor, 2006; Schor &
Bharadwaj, 2004; Schor & Bharadwaj, 2006) suggests
that the accommodative system has a distinct “pulse”
mechanism for responding to sudden large changes in
accommodation such as occur when we change from
looking at a distant to a near object, which cannot be
modeled by an LTI system and which are beyond the
scope of this article. Furthermore, many of the benefits
of derivative control are already achieved by our use of
a forward model to predict future demand. We therefore
do not include a derivative term. This leaves us with the
integral term. A pure integral controller has a transfer
function proportional to 1/s, and thus infinite gain at s
= 0. This is desirable because it eliminates steady-state
error, but it also means that errors can accumulate; also
as noted, the human accommodation does not seem to
completely eliminate steady-state error. We can account
for this by modeling the controller as a leaky integrator,
following Krishnan and Stark (1975):

C (s) = Gfast

1 + sτ f ast
(10)

where Gfast is the steady-state gain and τ fast the
time-constant. The subscript “fast” is to distinguish this
from a slow integrator which we shall introduce below.
A leaky integrator acts like a pure integral controller
over short timescales (sτ >> 1), and like a pure
proportional controller over long timescales (sτ << 1),
thus combining aspects of both. We noted above that
accommodative lead/lag suggests the steady-state gain
must be in the range 4 to 9. We somewhat arbitrarily
chose Gfast = 8.

Gain for sinusoidal input: subcritical damping
With both the plant and the controller being leaky

integrators, and with a predictive control system,
the closed-loop gain is that of a damped harmonic
oscillator (Equation 19, Appendix). The behavior of
this system can be summarized by its natural frequency
and damping coefficient ζ , both of which depend on
the parameters Gfast, τ fast, τ plant (Equation 20). If the
damping coefficient ζ is too low, the maximum gain
is observed for a non-zero resonance frequency and
can even exceed 1. This does not agree with empirical
observations of accommodative response to sinewaves,
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Figure 7. Constraints on the time-constant of the fast integrator. Colored lines show the gain and phase predicted for a predictive
model with leaky-integral control (Appendix Table), with P(s) given by Equation 9 with τ plant = 0.156s , and C(s) given by Equation 10
with Gfast = 8 and different choices of τ fast. The phase is shown (B) for a model capable of predicting demand perfectly, or (C) for the
“no-change” model which simply assumes demand will continue at its instantaneous value; both of these have the gain shown in A.
Symbols show empirical results from Kruger and Pola (1986), Ohtsuka and Sawa (1997), and Stark et al. (1965). The dashed line in the
phase plots corresponds to a constant latency of 0.5s, close to what is observed. Code to generate this figure is in
Fig_TimeConstraints.m.

which is low-pass (Charman & Heron, 2000; Kruger &
Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965)
(Figure 7A). This indicates that ζ is at least 1/�2 ,
not far below critical damping (ζ = 1) (Labhishetty &
Bobier, 2017). Saccades have a damping coefficient of
around 0.7 (Bahill, Clark, & Stark, 1975); systems with
this value have minimum settling time (i.e., they reach
and remain within 5% of their final value most rapidly).
We show in the Appendix that obtaining ζ∼1/�2 for a
system with Gfast>>1 requires the time-constant of the
fast controller to be

τ f ast = 2Gfastτplant (11)

Thus with τ plant = 0.156s and Gfast = 8, τ fast must be
at least 2.5s.

Phase for sinusoidal input: further evidence for predictive
control

Empirically, up to ∼1Hz the phase delay of
accommodation is very close to a linear function of
frequency, indicating a constant latency Tdelay : ϕ =
2π fTdelay (Charman & Heron, 2000; Heron, Charman,
& Gray, 1999; Kruger & Pola, 1986; Ohtsuka & Sawa,
1997; van der Wildt, Bouman, & van de Kraats,
1974). The slope usually corresponds to a delay of
∼0.5s (dashed lines in Figure 7BC), although there is
considerable variability between studies. Because 0.5s
is close to the sensorimotor latency inferred from the
response to step changes, it is often therefore assumed
that this phase slope must represent the sensorimotor
latency. However, this is not necessarily the case.
First, the damped second-order system formed by the

ocular plant and the neural control imposes delays in
addition to the sensorimotor latencies. Second, if the
brain predicts demand perfectly—at least theoretically
possible for a regular stimulus like a sinewave—then its
phase delay becomes independent of the sensorimotor
latency (see Appendix).

The time-constant of the fast integrator
Thus, together the gain and phase response of

accommodation to sinusoidal oscillations in demand
place quite tight constraints on the time-constant of
the fast integrator, τ fast, given that the time-constant of
the plant is a biomechanical given, and the gain of the
fast integrator is already quite tightly constrained by
the observed lead/lag following a change in demand.

Figure 7 illustrates this by comparing the theoretical
gain and phase with different values of τ fast with
empirical results from various subjects and studies. As
noted, we can rule out τ fast < 2.5s because the gain
is then too high at high frequencies. The gain data
is probably best described by τ fast = 5s (green lines
in Figure 7A), but this does not account for the phase
data. The τ fast = 5s in the perfect-prediction model gives
phases that match empirical data up to around 0.5 Hz,
but, at higher frequencies, empirical phase continues
to increase roughly linearly, implying a constant
delay, whereas phase for the perfect prediction model
asymptotes at 180o (Figure 7B). Thus we probably have
to reject the perfect-prediction model (not surprising
given its idealized nature). The no-change prediction
model is qualitatively in much better agreement with
the phase data, but then τ fast = 5s predicts larger
phases than are observed (Figure 7C). The purple
line shows the curve with minimum settling time, τ fast
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Figure 8. Non-predictive model incorporating dual (fast+slow) control. The slow integrator can be added to predictive models in the
same way, but its effect is then much more complicated.

= 2.5s, which yields ζ∼1/�2. This is in reasonable
agreement with both gain and phase data, assuming
simple no-change demand prediction, and we therefore
adopt this value in the rest of the article.

Adaptation and dual control
Another distinctive feature of accommodation is

that it adapts after prolonged exposure to the same
demand. This can be revealed by using pinholes to
place the system in open-loop mode. As we have
seen, in this situation, accommodation returns to the
resting focus. After short periods of stimulation, this
happens rapidly, in a few seconds. However, after long
periods of exposure to a particular demand, the return
happens over a much longer time period, sometimes
several minutes. This cannot be accounted for with
the leaky-integral control proposed so far. However,
it can be explained by positing a dual control system
in which a fast, or phasic, neural integrator controls
changes in response amplitude and a slow, or tonic,
neural integrator maintains the response amplitude
(Khosroyani & Hung, 2002; Schor, 1979a; Schor,
Kotulak, & Tsuetaki, 1986; Sun & Stark, 1990).

The fast integrator is the one we have considered
so far, which responds to error signals computed from
negative feedback. The slow integrator responds to the
activity of the fast neural integrator, and not directly
to the error signal. As the name implies, the slow
integrator has a long time constant, which means that

it has little effect on the response to rapid changes in
demand, so our previous discussion of the responses to
sinusoids is not invalidated by its addition. With this
arrangement, the transfer function of the Controller
becomes

C (s) = Gfast

sτ f ast + 1

(
1 + Gslow

sτslow + 1

)
(12)

The steady-state open-loop gain of the system is
therefore

Gopen = Gfast (1 + Gslow ) (13)

Figure 8 shows the nonpredictive control system
of Figure 3 after the addition of this second, slow
integrator, because it is easier to appreciate its operation
in a nonpredictive system. Suppose the system starts
from rest, with demand and accommodation both
equal to the rest focus, so that the defocus error and
the outputs of the fast and slow integrators are both
zero and the neural signal sent to the plant is simply the
bias signal, maintaining it at the rest focus. Suppose the
demand then makes a step change to a nearer value, d0.
This in turn makes the defocus error non-zero, which
begins to charge up the fast integrator. The output of
the fast integrator increases the neural control signal
above the bias value, altering accommodation so as to
reduce the error. It also begins to charge up the slow
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Figure 9. Evidence for a resonance at around 2Hz in accommodative control. (A) Empirical data taken from Figure 5 of Campbell et al.
(1959b), showing the power spectrum of accommodation under closed-loop (red) and open-loop (pinhole, blue) conditions. (B)
Empirical data taken from Figure 4 of Stark et al. 1965, showing gain for sinusoidal oscillations of three different amplitudes (0.2D,
0.4D, 0.6D). Gain is expressed in decibels (left axis): 0 dB corresponds to an amplitude gain of 1, −10 dB to 0.32, −20 dB to 0.1, −30
to 0.03.

integrator. Thus, over short timescales, the neural signal
controlling accommodation is set mainly by the output
of the fast integrator. However, over long timescales,
the slow integrator takes over. The ratio of the slow to
fast steady-state contributions is equal to the gain of
the slow integrator (Schor, 1979b; Schor et al., 1986);
for example, with our value Gslow = 5, steady-state
accommodation is 83% because of the slow integrator
and 17% because of the fast integrator.

Now suppose that pinholes are applied, making the
defocus error zero regardless of accommodation. In
this nonpredictive model, after a delay corresponding
to the sensory latency, the signal entering the fast
integrator instantaneously drops to zero, and the fast
integrator begins to discharge. As the fast integrator
discharges, accommodation drops rapidly, with a
decay time corresponding to τ fast. When the signal
from the fast integrator has dropped far enough, the
slow integrator begins to discharge as well, resulting
in a second, slower decay of accommodation, with a
time constant corresponding to τ slow. Thus, after a
long period of exposure, there is an initial rapid drop
as the proportion of accommodation due to the fast
integrator, initially 1/(Gslow+1), decays rapidly, but then
a much longer decay as the dominant component due
to the slow integrator decays slowly.

The slow integrator also increases the overall
steady-state gain and thus reduces the steady-state

error. Using Equation 13 and Equation 7, the
steady-state accommodative response is

ass = aRF + Gfast (1 + Gslow )
1 + Gfast (1 + Gslow )

(dss − aRF ) (14)

where with Gfast = 8, Gslow = 5 the gain term is 0.98,
compared to 0.89 with only the fast integrator. Thus,
after a step-change in demand, the model response rises
rapidly to around 90% of the demand, and then over
the next tens of second rises more slowly to approach
the demand exactly. Thus the gain of the slow integrator
cannot be made too large (say, much larger than 5)
without eliminating the ability of the model to account
for accommodative lead and lag.

With predictive control, there is an additional
subtlety that also places an upper bound on Gslow.
In such systems, the fast integrator is driven not by
retinal defocus directly, but by the estimated future
defocus (Figure 4). This does not immediately drop
to zero when pinholes are applied. When the system
is made open-loop by setting d(t) = a(t), the input to
the fast integrator becomes a(t − Tsens) − a(t + Tmot)
for the no-change prediction model. This becomes
zero once accommodation has stabilized but is finite
while it decays. When the gain of the slow integrator
is sufficiently large, this small error input is enough
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Figure 10. Block diagram of our final model (Simulink file AccommodationModel.slx), incorporating all the features discussed in the
article. The Simulink model has two inputs: (1) demand, and (2) whether the eye is viewing through a pinhole. It has one output:
accommodation.

to keep the slow integrator high. This in turn keeps
accommodation high and thus sustains the error signal.
Accommodation creeps slowly down to the rest focus
with a time-constant, which, counterintuitively, can be
much longer than any of the three time constants of
the system: τ plant, τ fast, τ slow. This effect is independent
of exposure duration and so cannot account for the
adaptation that the slow integrator was introduced to
explain. To avoid this effect and obtain a clear difference
between short and long exposure durations, we have
found that Gslow needs to be less than around 10. Here,
we have set Gslow = 5.

Microfluctuations and noise
A distinctive property of accommodative response

is the relatively large fluctuations to which it is subject
in both open and closed loop. The power spectrum of
open-loop accommodation is roughly a straight line on
log-log axes (Campbell, Robson, & Westheimer, 1959b;
Campbell & Westheimer, 1960; Stark et al., 1965) (i.e.,
a power-law spectrum, P = 1/fα). We model this by
injecting white noise onto the defocus signal prior to
input to the neural controllers (Figure 10). White noise
has a flat power spectrum, but integration by the two
integrators within the system (the neural controller and

the plant) converts it to a power-law spectrum, with an
approximately Brownian (1/f2) spectrum.

Noise has often been omitted from models of
accommodative control, presumably with the rationale
that once the correct noise-free response has been
obtained, noise can always be added later to simulate
microfluctuations. However, this approach is unwise,
because noise in fact adds important constraints to
the system. This is especially true with a predictive
control system, which can easily end up amplifying
noise in the open-loop condition. Referring to Figure
4, we see that a predictive control system contains not
one but two feedback loops: one via the eyes, and one
internal to the brain, incorporating the virtual plant.
Operating in open-loop mode cuts the outer feedback
loop, but leaves the internal feedback loop intact.
Depending on the coefficients, internal noise can easily
resonate within this loop, creating a situation where
the power spectrum of open-loop accommodation has
sharp peaks that do not occur in closed-loop mode,
because the outer feedback loop suppresses them in
its effort to keep the error zero. This is not observed
empirically. The power of low frequencies does increase
in open-loop mode (Charman & Heron, 2015; Gray,
Winn, & Gilmartin, 1993b), because without an error
signal accommodation performs a random walk around
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the rest focus, whereas it is kept close to the demand in
closed-loop mode. But we do not see an increase in the
power of particular high frequencies, as would occur
if internal noise were resonating within the internal
feedback loop.

Fortunately, we find that the values we have
already derived are consistent with these data. A
more underdamped system—say Gfast = 15, τ fast
= 2s, which puts the damping coefficient ζ at
0.5—does show unrealistic high-frequency resonances
within the forward model feedback loop, but our
sub-critically-damped parameters Gfast=8, τ fast = 2.5s,
ζ = 0.7 already suppress the open-loop resonance.

Explaining the closed-loop resonance seen for high
frequencies at low amplitudes

In fact, several workers have found evidence for a
resonance in closed-loop but not open-loop mode. The
first evidence comes from microfluctuations during
steady fixation. Several workers have found that the
power-spectrum of closed-loop accommodation has
a peak at around 2Hz (Figure 9A). It is not always
present, but when found is always more prominent
in closed-loop than open-loop accommodation.
Although the location of this peak varies with heartrate,
suggesting the pulse as a possible source interacting
with blood volume of the ciliary body (Collins et al.,
1995; Winn, Pugh, Gilmartin, & Owens, 1990), the fact
that it is higher in closed-loop conditions suggests that
the source must be amplified by a neural resonance
within the outer feedback loop.

Furthermore, the same resonance is assumed to be
responsible for another puzzling observation, relating
to gain with sinusoidal stimuli. In our discussion
around Figure 7, we emphasized the lowpass nature of
the gain response. This is true at high amplitudes, but
for low-amplitude oscillations in demand, the curves
become non-monotonic, with an increase in gain at
around 2Hz (Figure 9B). Ockham’s razor suggests that
this reflects the same closed-loop resonance causing
the ∼2Hz peak in microfluctuations. However, the
dependence on amplitude indicates that this resonance
must be caused by a nonlinear mechanism, because
for a linear system gain is independent of stimulus
amplitude.

Resonances observed in closed- but not open-loop
mode immediately suggest a control system lacking
the predictor we have argued for so far. Nonpredictive
control is prone to closed-loop instabilities in systems
with latencies, like accommodation. This occurs
in the outer feedback loop via the eye, when the
accommodation change designed to null out defocus
arrives out of phase due to the latency and ends
up enhancing the defocus that caused it. Predictive
control avoids these closed-loop instabilities, but if
the prediction is imperfect, it can be vulnerable to
open-loop resonances because of a similar effect

occurring via the internal feedback loop driven by
the efference copy. (For a mathematical justification
of these statements, see the Appendix, specifically the
discussion around Equation 15, Equation 16, and
Equation 18).

Thus to explain both the power spectrum of
microfluctuations, and the nonlinear resonance in
the response to sinusoidal demand, we postulate an
additional signal controlling accommodation. This
is proportional to small amplitudes of the current
defocus, not the estimated future defocus, and is thus
not predictive. (This signal is, however, included within
the efference copy used to estimate future defocus
within the predictive control system, as shown in Figure
10.) Because this signal is nonpredictive, it is prone to
closed-loop instabilities. But for the same reason, it
avoids open-loop resonances that can occur within a
predictive system.

To prevent the closed-loop instabilities from
catastrophically destabilizing the response, we clip this
nonpredictive signal at a low value, set to 0.15D in our
model (i.e., signals larger than 0.15D in magnitude
are set to ±0.15D depending on their sign). This
saturating value is chosen simply because it gives a
reasonable match to empirical results. It is low enough
to ensure that the signal does not change the behavior
of the model in response to large changes in defocus.
However, it is large enough that the signal still produces
a visible high-frequency peak in the power spectrum
of closed-loop microfluctuations and a high-frequency
resonance in the response to low-amplitude sinusoids
(see Results).

This nonpredictive saturating signal has other
interesting effects on accommodation. Notably, it
facilitates a rapid response to small step stimuli, because
nonpredictive proportional signals tend to react faster
than predictive integral signals. For example, suppose
demand suddenly increases by 0.1D, causing an 0.1D
step-change in defocus. The nonpredictive proportional
control signal, with unit gain, requests the full 0.1D
increase in accommodation. The fast integrator
begins responding at the same time, but because of its
integral nature, its response ramps up more gradually.
Furthermore, because the nonpredictive proportional
signal uses the current sensed defocus, rather than the
predicted future defocus, it stays requesting the full
0.1D for at least 0.3s, until the sensorimotor latency has
elapsed and the ocular plant starts to respond and thus
reduces the sensed defocus. In contrast, input to the
fast integrator is estimated future defocus, which begins
to fall immediately based on the requested change
to accommodation (the predictive control system
assumes that demand will stay at the new value, but it
predicts that defocus will fall because of the predicted
accommodative response). So, the input to the fast
integrator begins to fall immediately from its initial
peak of 0.1D, whereas the input to the proportional
controller stays at 0.1D until the sensorimotor latency
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has elapsed. Thus for small step-changes in defocus, the
nonpredictive proportional signal enables a larger, faster
response. However, the saturation means that its effect
is limited to small changes, with the predictive-integral
control dominating the response to large changes.
Dynamics of larger step responses are controlled with
a pulse signal (Bharadwaj & Schor, 2005; Bharadwaj
& Schor, 2006; Schor & Bharadwaj, 2004; Schor &
Bharadwaj, 2006) that will be added to this model in a
subsequent article.

Depth of focus
In principle, changes in defocus that are so small they

produce no detectable change in the retinal image, given
the eye’s optics, cannot drive accommodation. The
smallest change in defocus which produces a detectable
change in accommodation is referred to as objective
depth of focus. This is typically much smaller than the
subjective depth of focus (i.e., the smallest change in
defocus which produces a perceptible change in image
quality) (Kotulak & Schor, 1986a; Udlam, Wittenberg,
Giglio, & Rosenberg, 1968; Yao, Lin, Huang, Chu,
& Jiang, 2010). Depth of focus is often modeled as
a deadzone (e.g., Khosroyani & Hung, 2002; Schor,
1979b): the defocus signal is set to zero unless it exceeds
some threshold value corresponding to the objective
depth of focus, say 0.2D. In such models, the deadzone
contributes to lags and leads of accommodation,
because the error signal vanishes once accommodation
comes within the deadzone. However, this approach has
a number of drawbacks:

(i) It can result in unrealistic jumps, where a small
change in demand pushes the defocus above the
threshold and thus elicits a disproportionately large
response.

(ii) It produces a hysteresis effect, whereby
accommodative lead and lag can depend on how
the demand is approached. For example, with a
threshold of 0.2D, if the demand steps up from
1D to 2D, the effective defocus becomes zero once
accommodation reaches 1.8D, so we get a lag. But
if demand steps down from 3D to 2D, effective
defocus becomes zero once accommodation reaches
2.2D, so we get a lead. This hysteresis is not typically
observed, except with extremely blurred images
(Heath, 1956a).

(iii) It reduces the gain of the response to low-amplitude
oscillations. For example, consider a slow oscillation
ranging between 1D and 3D. Assume for simplicity
that the closed-loop gain of the system is 1, so that
in the absence of a deadzone, the response would
track demand exactly. With a deadzone clipped at
0.2D, the response would range from 1.2D to 2.8D,
reducing the gain to 0.8. With a lower-amplitude
oscillation where demand ranged from 1.5D to
2.5D, the response would range from 1.7D to 2.3D,

making the gain 0.6. With a still lower-amplitude
demand ranging from 1.7D to 2.3D, response would
range from 1.9D to 2.1D, making the gain 0.3. Yet
this decrease in gain with decreasing amplitude is
not observed. In fact, accommodative gain tends
to be smallest for high amplitudes, not for low
amplitudes (Stark et al., 1965, p. 196).

Furthermore, recent evidence has undermined the
experimental support for the notion of a deadzone. The
accommodative system produces measurable responses
to small amounts of defocus which do not introduce
perceptible blur (Kotulak & Schor, 1986a; Yao et al.,
2010), whereas the measured accommodative lags and
leads may in fact maximize image quality rather than
reflecting a deadzone (Labhishetty, Cholewiak, Roorda,
& Banks, 2021). For all these reasons, we have chosen
not to include a defocus deadzone in our model. The
objective depth of focus is adequately accounted for
here by the white noise we have added to the defocus
signal, which effectively swamps small changes. A more
complete model would of course compute defocus from
the retinal images and thus take into account that small
changes in defocus are hard to detect (Labhishetty et
al., 2021).

Simulink implementation and summary of the
model

Figure 10 shows the complete model as it appears
in our Matlab Simulink implementation (MathWorks,
Inc., Natick, MA, USA), incorporating all the elements
discussed above. The Simulink model has two inputs:
(1) “demand,” accommodative demand in diopters,
and (2) “pinhole,” a binary signal that conveys whether
the eye is currently viewing through a pinhole or not.
If pinholes are present, the defocus signal is set to
zero at the block labeled “Apply Pinhole”; otherwise
it is set to the optical defocus (i.e., demand minus
accommodation). The defocus signal has white noise
added to it and is delayed by the sensory latency before
reaching the “brain”module.

Here, four signals are combined to produce a neural
signal which is delayed by the motor latency before
reaching the ocular plant. From top to bottom, these
four signals are as follows: (1) the constant bias signal,
which sets the rest focus; (2) the proportional signal,
which is simply the noisy defocus signal clipped at
±0.15D; (3) the signal from the fast integrator, which
is driven by the estimated future defocus; (4) the signal
from the slow integrator, which is driven by the fast
integrator. One final detail not mentioned so far is
that the neural signal is thresholded at zero to ensure
it is positive. This is visible in the diagram as the
“saturation” block on the far right, immediately after
the four signals are combined. This accounts for the



Journal of Vision (2022) 22(9):4, 1–36 Read et al. 20

fact that the ciliary muscle can only be commanded to
contract, making the lens more convergent or allowed
to relax. Negative values would effectively command
the ocular lens to adopt a divergent form, which is
physically impossible.

As well as being sent down cranial nerve III to the
eye, an efference copy of the neural signal is directed
to a virtual plant within the brain, which predicts
the future accommodation. This in turn is used to
estimate the future defocus which drives the fast
integrator. For completeness, we have included a block
labeled “Demand Predictor,” although in the current
instantiation of the model, this simply passes its input
through unchanged.

Simulation details
The next section shows simulation results for sine and

step stimuli with this model. All simulations were run in
Simulink, Matlab R2020b, with a variable-step solver,
automatic solver selection and the default settings
(relative tolerance 0.001 and max/min/initial step size
and absolute tolerance all set to “auto”). For plotting,
we interpolated the output to obtain results every
millisecond. Note that this can give the impression
of greater variability than in some empirical results
where accommodation may be measured at a much
lower rate (e.g., 50 Hz). To obtain the velocity traces
shown in Figure 16, we took the difference between
successive accommodation values to obtain the change
per millisecond, then smoothed this within a moving
window of 10 ms.

To obtain the model gain and phase in response to
sinusoidal oscillations in demand, we ran the model
for 25 cycles of the specified frequency, then fitted a
sinewave to the results using Matlab’s Curve Fitting

Toolbox. We fixed the frequency of the sinewave to
the frequency of the stimulus and fitted the three free
parameters baseline, amplitude and phase (see code in
Run_Sine.m). The amplitude and phase of the response
were taken to be those of the fitted sinewave.

The simulation shows onset transients at its start
point, as the integrators settle. In all cases, we therefore
discarded the first few seconds of simulation time to
exclude these transients.

Results

The different elements of this model were
motivated by different observations—the gain and
phase to sinusoids; adaptation; power spectra of
microfluctuations so on. Components such as the fast
and slow integrator and the virtual plant have been
proposed before for the accommodation step response
(Schor & Bharadwaj, 2005) but to our knowledge
never tested in combination for pursuit sinusoidal
tracking (Schor & Kotulak, 1986) or adaptation (Schor,
1979b) or with white noise and the feeding through of
a clipped signal proportional to the current defocus.
This combination is thus a novel contribution of this
article. We now demonstrate that this unified model can
reproduce each of the observations that motivated its
different components.

Response to sinusoidal demand

Figure 11 shows the gain and phase of the model
(heavy black line), compared with results from human
subjects digitized from Kruger & Pola, 1986; Ohtsuka

Figure 11. Gain and phase of the model response to sinusoidal demand, compared to empirical results. (A, B) Gain plotted on linear
and log axes. (C) Phase plotted on linear axes. The heavy black line is the response of the model in Figure 10 with the parameters
given in Table 2. The dashed black phase line shows the phase that would be obtained by a model capable of perfectly predicting the
sinusoidal oscillation in demand. Triangles show empirical results for four human subjects, digitized from Kruger and Pola (1986),
using the data with white light and defocus cue only. Circles are for an additional four subjects, digitized from Ohtsuka and Sawa
(1997), using only their control subjects. In Kruger & Pola (1986) and in the model, the demand oscillated between 1D and 3D (i.e., the
amplitude of the sinusoid was 1D, and its mean value was 2D). In Ohtsuka & Sawa (1997), the amplitude was 1.5D and its mean value
is not stated. Code to generate this figure is in Fig_CompareGainPhase.m. Run_Sine.m must be run first to generate the model data.
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Figure 12. Model gain and phase as a function of amplitude. The green curves (1D) are what was shown in Figure 11, but we see that
the behaviour at low amplitudes is quite different, with a resonance at 1.2 Hz. Code to generate this figure is in Fig_Sine.m.
Run_Sine.m must be run first to generate the model data.

& Sawa, 1997. This is of course similar to results
already shown in Figure 7, but whereas those curves
were obtained from mathematical formulae for a leaky
integrator in a predictive control system, Figure 11 is
obtained via Simulink simulation of the full four-signal
model with noise. There is reasonable agreement in gain
(Figure 11AB); both humans and model are low-pass.
The main quantitative disagreement is that the “knee,”
where the gain drops rapidly, typically occurs around
0.4 Hz in humans and slightly later, around 0.6 Hz,
in the model. There is also good agreement in phase
(Figure 11C). For comparison, the dashed black line
shows the phase that would be obtained for a model
with perfect demand prediction. This can be obtained
from the phase of our model with “no change” demand
prediction by subtracting the sensorimotor latency:
ϕperfect = ϕnochange – 360fTsens. The phase function
of most human subjects agrees better with that of
the no-change model rather than the perfect model,
suggesting that these subjects had little ability to predict
the oscillatory demand.

Figure 11 was for sinusoidal demand oscillations with
an amplitude of 1D. Of course, the gain and phase of a
linear system are independent of amplitude. However,

our model is nonlinear because of the saturation of
the nonpredictive proportional signal. Figure 12 shows
the gain and phase in the same format as Figure 11,
but for different amplitudes of oscillation around a
2D baseline. The green lines are for the 1D amplitude
shown in Figure 11, but for lower amplitudes the
gain and phase start to deviate significantly from
these results. Most strikingly, there is a resonance
at 1.2 Hz where the gain actually goes above 1 for
the smallest oscillations (±0.1D). This represents the
instability caused by the nonpredictive proportional
signal. Because this signal is clipped at ±0.15D,
it has a significant effect only for low-amplitude
oscillations.

This effect is qualitatively in agreement with the
low-frequency resonance reported by Stark et al. (1965),
which led them to conclude that human accommodative
control must include a nonlinearity. Digitized data
from Stark et al. (1965) is replotted in Figure 13, along
with the response of the model. The model does not
reproduce the strong dip in gain at 0.8 Hz for an
amplitude of 0.3D (blue point in Figure 13A), but apart
from that, the agreement is quite good. In particular, it
accounts for the key observation that gain is quite high,

Parameter Symbol used in the article Name in simulink workspace Value

Rest focus aRF RestFocus 1.4D
Sensory latency Tsens SensoryLatency 0.20s
Motor latency Tmot MotorLatency 0.10s
Time constant of plant τ plant PlantTimeConstant 0.156s
Gain of fast integrator Gfast FastGain 8.0
Time constant of fast integrator τ fast FastTimeConstant 2.5s
Gain of slow integrator Gslow SlowGain 5.0
Time constant of slow integrator τ slow SlowTimeConstant 100s
Noise power NoisePower 0.001 with sample time 0.01s
Where to clip the proportional signal ProportionalClipping 0.15D

Table 2. Parameter values for the simulink model supplied with the article and used to obtain the results (except where noted
otherwise in figure legends).
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Figure 13. Symbols are digitised data from Figure 3 of Stark, Takahashi & Zames (Stark et al., 1965). These are measured gain and
phase for one subject, for amplitudes of 0.3D (blue squares) and 1D (orange circles). The curves are model gains and phase for these
amplitudes, about a baseline of 2D. Code to generate this figure is in Fig_StarkTakahashiZames.m. Run_StarkTakahashiZames.m must
be run first to generate the model data.

around 0.5, for 0.3D-amplitude oscillations at around 2
Hz, whereas gain is much lower, around 0.1, for higher
amplitude oscillations at this frequency.

Limiting tracking frequency

When asking what are the fastest changes that
can be tracked by accommodation, it is important to
consider phase, as well as gain. Figure 12C and Figure
13C showed that the phase of the response relative
to demand increases with frequency, reaching 180°
at a frequency of around 1 Hz. When this occurs,
the demand and response are in antiphase, and the
error is greater than the stimulus. Interestingly, if the
response gain were zero, then the error for the 180°

phase delay would be smaller than if the gain were 1.0.
It is therefore of interest to ask how the gain and phase
changes affect the model’s defocus error for demand
oscillations of different amplitude and frequency. We
quantify this using the mean absolute defocus error.
The defocus error is the difference between demand
and accommodation at any time; absolute defocus error
is the rectified version of this waveform, and mean
absolute defocus is the average value of this over time:
|d(t) − a(t)|, where d(t) = Dmean + Damp(sin 2π ft).

The heavy curves in Figure 14A show how mean
absolute defocus error varies with amplitude and
frequency of sinusoidal demand. In each case, the peak
error is just below 1Hz, when the response is 180o out
of phase with the demand (Figure 12C). The error
increases with demand amplitude, even though for

Figure 14. (A) Mean absolute defocus error for sinusoidal demand oscillations of different frequencies and amplitudes about a 2D
baseline. The heavy curves show |d(t) − a(t)| for our model with its observed gain and phase; the light curves are those inferred for a
model with perfect demand prediction. The dashed lines show the expected high-frequency limit (i.e., the mean defocus error if the
demand oscillated but the response stayed at the steady-state value elicited by the mean demand), and the crosses indicate where
this is first less than the error with tracking. The crossesmark where this crosses the mean defocus error. We take this as an indication
of the highest frequency that can be successfully tracked at this amplitude. (B) Tracking frequency limit as a function of amplitude, for
the actual model (heavy line, crosses) and for a model with perfect demand prediction (upper light line). Code to generate this figure
is in Fig_Sine.m. Run_Sine.m must be run first to generate the model data.
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frequencies below the peak, the gain (i.e., the ratio of
response to demand) is closer to 1 for larger amplitudes
(Figure 12AB).

The aim of accommodative control is to track
demand so as to minimize defocus error, but the
phase-delay means that for sufficiently high frequencies,
this aim would be better achieved by simply keeping
accommodation fixed at the mean demand (i.e., by
having a response gain of 0, rather than attempting to
track oscillations in demand about this baseline). The
dashed lines in Figure 14A shows this zero-gain tracking
error (i.e., the mean absolute defocus error which would
be achieved if accommodation stayed at the steady-state
value elicited by the mean demand [Dmean = 2D in this
example]). Because the amplitude of zero gain tracking
error depends only on the input amplitude, the error is
independent of temporal frequency of the sine input.
Since the static accommodative lag is small, the zero-
gain steady-state response is also close to 2D. So the
mean zero-gain error is approximately the average value
of |Damp(sin 2π ft)|, or 2Damp/π , whereDamp is the ampli-
tude of the demand oscillations about the 2D baseline.

We define the limiting tracking frequency to be the
frequency at which the actual gain and phase-delay of
the accommodative response produces the same error
as would be achieved with zero gain. This is where the
zero-gain tracking error is first equal to the actual error,
marked with a cross x in Figure 14A. For frequencies
lower than this limit, the oscillation in accommodative
response is helpful (i.e., it tracks the oscillations in
demand with a phase delay low enough to reduce
the mean defocus error below the zero-gain tracking
error). However for frequencies above the limit marked
with a cross, the oscillatory response is out of phase
and ends up making mean defocus error larger than
if accommodation simply remained constant at the
baseline value.

Because of the nonlinearity represented by the
saturating nonpredictive proportional signal, this
limiting-tracking frequency depends on amplitude, as
shown in Figure 14B. For large-amplitude oscillations
in demand, accommodation can track only up to
around 0.4Hz. We saw above that the nonpredictive
proportional signal enables a more rapid response
to small changes. This is shown in Figure 14B
by the increase in limiting tracking frequency for
low-amplitude oscillations.

Using the result that perfect demand prediction
would reduce the phase by the sensorimotor latency,
we can also infer what these curves would be for a
model with perfect demand prediction but with the
same plant and same leaky-integral controller. These
are shown with the light curves in Figure 14AB. Perfect
demand prediction does reduce the error and increase
the limiting tracking frequency, but not dramatically,
because of limits imposed by the time constants of the
plant and of the fast integrator.

Steady-state microfluctuations

We now turn to noise, and examine how
well our model can account for accommodative
microfluctuations. Figure 15A shows example closed-
and open-loop accommodation traces recorded from
the model over the course of 5 simulated minutes.
The red trace is for closed-loop viewing of a stimulus
at 1D (red dashed line). Accommodation thus
fluctuates around a value a little over 1D, reflecting
the accommodative lead for a stimulus nearer than the
rest focus, here 1.4D. The fluctuations span a range
of around 0.1D (±2SD). The SD is 0.03D, which is
small compared to the SD of human microfluctuations
(0.1-0.3D, (Charman & Heron, 1988, 2015; Gambra,
Sawides, Dorronsoro, & Marcos, 2009). The power
spectrum, Figure 15D, has a prominent peak at around
1.5 Hz. This periodic structure is clearly visible in the
10s excerpt from the trace shown in Figure 15B.

The blue trace is for open-loop viewing (e.g., through
pinholes). Now, the response wanders around the rest
focus, 1.4D (dashed blue line). However, because the
bias signal is constant rather than scaling with the
difference between accommodation and rest focus, the
excursions are much wider. This is visible in the power
spectrum (Figure 15D), where the power continues to
rise as frequency reduces.

Figure 15B shows a 10s excerpt from the trace
in Figure 15A, for comparison with the example
empirical data in Figure 15C, digitized from (Gray,
Winn, & Gilmartin, 1993a). Although the amplitude
of the microfluctuations is larger in the human
observer, the same qualitative features are visible:
closed-loop mode showing strong periodic structure at
around 2 Hz, open-loop mode showing much larger
low-frequency fluctuations. Figure 15E shows the
closed- and open-loop power spectra for a human
observer, digitized from (Campbell et al., 1959b), for
comparison with Figure 15D. Despite quantitative
differences, they show the same qualitative features,
notably a much larger peak for closed-loop.

The presence of this relatively large, 1 to 2Hz periodic
component in the closed-loop microfluctuations may
aid accommodative control, for example by “hunting”
for the point of optimal focus (Kotulak & Schor,
1986c). Thus this could be a reason why the postulated
nonpredictive proportional signal is beneficial for
accommodative control.

Response to step changes

When motivating the introduction of the saturating
nonpredictive proportional signal (i.e., a proportional
controller responding to the current defocus signal)
(Figure 10), we discussed why it produces a larger, more
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Figure 15. (A, B) Example accommodation traces in (red) closed-loop response to 1D and (blue) open-loop mode. Dashed horizontal
lines show (red) the 1D demand and (blue) the 1.4D rest focus. (A) trace over five minutes, to show slow fluctuations in open-loop
response; (B) 10s excerpt from A, to facilitate comparison with (C) Example 10s trace recorded from a human observer, digitized
from Figure 3 of Gray, Winn, and Gilmartin (1993a). The red trace is for a 5 mm pupil; the blue trace is for viewing through pinholes of
0.5 mm diameter. A scalebar but no accommodation values are provided in Gray et al. (1993a) so the vertical position is arbitrary. To
facilitate comparison with the model, we have set the mean value to 1D for the closed-loop and 1.4D for the open-loop trace. (D)
Power spectra of the closed- and open-loop response, obtained by averaging the Fourier power spectra of 50 traces like those in (A),
generated from simulations with different noise seeds. For comparison, a 1/f2 Brownian noise spectrum is drawn on with a black
dashed line. (E) Power spectra of closed- and open-loop responses for a human observer, digitized from Figure 5 of Campbell et al.
(1959b). This is labeled DATA2 to make clear that it is not the power spectrum of the trace shown in Figure 15C. No vertical axis scale
was provided in Campbell et al. (1959b), so we have scaled the spectrum so it best agrees with D. The red curve was recorded with a 7
mm pupil and the blue curve with a 1 mm effective entrance pupil. Code to generate this figure is in Fig_Noise.m; Run_Noise.m must
be run first to generate the data.

rapid response to small changes in demand. We have
already seen how this effect produces a higher gain for
high-frequency low-amplitude oscillations (Figure 12)
and thus the ability to track low-amplitude oscillations
out to higher temporal frequencies than is possible for
larger amplitudes (Figure 14). Similarly, the nonpredic-
tive proportional signal, clipped at ±0.15D, enables a
faster response to small step changes in demand.

Figure 16 demonstrates this by comparing results
from the full model (blue) with those from a model

identical except that it lacks the nonpredictive
proportional signal (orange). To enable the effects to be
seen clearly, noise is also turned off in this simulation.
On the left, Figure 16AC, we plot the accommodation
and velocity for a 0.5D increase in demand. The model
with the nonpredictive proportional signal responds
more quickly. However, for the larger 2D step shown
on the right (note different y-scales), the saturation of
the nonpredictive proportional signal at 0.15D limits
its effect, and it makes barely any difference either
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Figure 16. Noise-free accommodation (A, B) and velocity (C, D) for two different step increases in demand (A, C: 0.5D; B, D: 2D). The
blue curve is for the usual model; the orange curve is for a similar model with no nonpredictive proportional signal. To enable the
effect to be seen clearly, noise has been turned off for this figure only. Also note that the response to the 2D step (B, D) is included
only to demonstrate the role of the nonpredictive proportional signal. The model presented in this article does not accurately capture
the dynamics of the response to such large steps, since it does not include the pulse signal (see text). Code to generate this figure is in
Fig_EffectOfPropSignal.m.

to accommodation itself or to velocity. In fact, for
large step changes like that shown in Figure 16BD,
there appears to be a fifth signal, a nonlinear pulse
triggered by sudden large changes in demand (Schor
& Bharadwaj, 2004; Schor & Bharadwaj, 2006). The
pulse accounts for the empirical observation that the
peak acceleration of the response for step increases in
demand is roughly independent of the step size, instead
of scaling with step size as would occur for a linear
system. While implementing the pulse is beyond the
scope of this article, we note that the nonpredictive
proportional signal already moves in the right direction
by boosting the acceleration for small steps, and thus
helping reduce the difference between acceleration for
large and small steps. This could be another reason
for the accommodative control system to include the
postulated nonpredictive proportional signal.

The blue curves in Figure 16 also show the ringing
characteristic of nonpredictive models, especially
prominent relative to small step changes (Figure 16A).
This instability is of course what we are exploiting to
drive the high-frequency peak in the microfluctuations.
Thus our model predicts, probably wrongly, a transient

increase in the amplitude of microfluctuations after
small step changes in response.

Adaptation

Next, we examine how the model adapts to
accommodative demand to which it is exposed for more
than a few tens of seconds. This was the motivation for
postulating the slow integrator (Schor, 1979b; Schor
et al., 1986). Its presence has not contributed to the
results presented so far, other than to boost the gain for
very slow oscillations. Now we see how it accounts for
adaptation.

Figure 17 shows the time course of accommodation
following the application of pinholes at t = 0, shifting
the system from closed-loop to open-loop demand.
After the application of pinholes, accommodation
eventually ends up at the rest focus, but how rapidly it
does so depends on the demand before pinholes were
applied. The model observer is initially adapted to 0D,
then switches to viewing 3D for variable amounts of
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Figure 17. The model shows adaptation to demand, because of the slow integrator. The model observer is initially viewing an object
at 0D, before then viewing an object at 3D for varying durations as shown in the legend. Pinholes are applied at t = 0s, putting the
system in open-loop mode. After long exposures, accommodation adapts to the demand and moves only slowly to the rest focus; the
adaptation affects the accommodation for many minutes after pinholes have been applied (e.g., dark blue curve: adapted to 0D,
further than rest focus; red curve: adapted to 3D, closer than rest). Code to generate this figure is in Fig_Adaptation.m;
Run_Adaptation.m must be run first to save the data in Results_Adaptation.mat.

Figure 18. Comparison of the model (B) with data digitized from Schor, Kotulak & Tsuetaki (1986) (Fig 2, empty field condition). As
in Figure 17, pinholes are applied at t = 0. Before then, the demand is at 0D for a long period, before moving to 2D for either 5s (blue)
or 60s (orange); for the model, we also include 1s (yellow). In Schor et al. (1986), a scalebar is provided, but absolute diopter values
are not available. The vertical position in the DATA panel is therefore arbitrary. However, because the open-loop condition decays by
well over 1D from the closed-loop position adopted in response to a 2D demand, it seems clear that the rest focus for this observer
was well below 1.4D. For this comparison, therefore, the rest focus of the model has been set to 0.4D (dashed line) in this figure only.
Code to generate this figure is in Fig_SchorKotulakTsuetaki.m.

time as shown in the legend. The results show that
after viewing one demand for at least two minutes,
the observer adapts to it such that accommodation
remains close to the adapted value for several minutes
after pinholes have been applied (uppermost/red,
lowermost/blue traces). Conversely, when the observer
was exposed to different demands immediately before
pinholes are applied (middle traces), they move much
more rapidly to the rest focus.

Figure 18 shows a comparison with empirical data.
Here, the observer was exposed to a demand of 2D
for either 5s (blue) or 60s (orange) before moving to
open-loop mode at t = 0. The traces in Figure 18A
are for a human observer (Schor et al., 1986); those
in Figure 18B are from the model, with rest focus set to
0.4D (dashed line) to better match this observer. In both
cases, following the 5s exposure to 2D, accommodation
falls rapidly once the system enters open-loop mode,
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Figure 19. Steady-state response of the model. The model was run for 320s with a constant demand dSS indicated by the value on the
x-axis, and accommodation was averaged over the final 60s to obtain the steady-state response, aSS. (A) Input/output function (i.e.,
steady-state accommodation as a function of demand). (B) Steady-state error (i.e., difference between response and demand). For
distant stimuli, this is positive (lead); for near, it is negative (lag). (C) Gain (i.e., ratio of response to demand). In each case, blue curves
show the response of the model; solid black line indicates response equal to demand, and the dashed vertical linemarks the rest
focus, where this occurs. Code to generate this figure is in Fig_SteadyState.m; Run_SteadyState .m must be run first to save the data
in Results_SteadyState.mat.

but following the 60s exposure, the decay is much
slower.

Steady-state error

Finally, Figure 19 shows the model’s steady-state
error. As discussed (Equation 14), this reflects both the
fast and slow integrator. In the model, the additional
gain provided by the slow integrator means that
steady-state error eventually becomes extremely
small. Figure 20 shows this process for an example
step up to 2D. The error is zero at the resting focus
but shows lag/lead on either side of this. The gain
(response/demand) therefore becomes high as demand
tends to zero.

Discussion

In this article, we have discussed the neural control of
accommodation. We have provided a tutorial overview
of the relevant control theory and key empirical
observations. We have discussed the evidence for a
predictive control system (i.e., one incorporating a
forward model to predict the accommodative response
in advance of the motor latency) (Hung et al., 2002;
Khosroyani & Hung, 2002; Schor & Bharadwaj,
2004). Similar models have also been proposed for
vergence control (Erkelens, 2011; Hung, Semmlow,
& Ciuffreda, 1986; Zee & Levi, 1989) and saccades
(Chen-Harris et al., 2008). Our analysis has led us to
make the novel proposal that a saturating nonpredictive
proportional-control component may operate in parallel
to the main predictive integrative-control feedback
loop. This nonpredictive proportional signal causes a

high-frequency resonance in the closed-loop response,
observed in the response to low-amplitude sinusoidal
oscillations in demand. It amplifies noise within the
system, explaining the high-frequency peak observed
in closed-loop but not open-loop accommodation
microfluctuations. It also speeds up the response to

Figure 20. Model response to a step change in demand from 0D
to 2D, showing the immediate rise to 89% of demand due to
the fast integrator, and the subsequent slow rise to 98%
demand because of the slow integrator. The blue trace is one
example run from the full model; the superimposed orange line
shows the response with no noise and no nonpredictive
proportional signal, to isolate the response because of the fast
and slow integrators. Note that the dynamics of the immediate
response to the step are not correct because they do not
incorporate the pulse signal, but the point of this figure is to
demonstrate the time-course after this immediate response.
Code to generate this figure is in Fig_ExampleStep.m
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small, sudden changes in demand. Yet its saturation
means that it does not destabilize the system as a whole,
and that it becomes insignificant for large changes in
demand.

We have implemented these ideas in a Simulink
model, and are publishing this and all code along
with the article. Although most of the components
of the model have been published before, we believe
that this model is the first to incorporate realistic
sensorimotor latencies, non-zero rest focus, noise, and
dual control by fast and slow integrators, as well as
our novel use of a nonpredictive proportional-control
signal. Accordingly, it is able to account well for a wide
range of empirical observations: the gain and phase
of the response to sinusoidal oscillations in demand,
including the puzzling high-frequency low-frequency
resonance; the power spectrum of microfluctuations in
closed-loop and open-loop modes, and the adaptation
of accommodation to a steady stimulus.

The four control signals: bias, fast, slow,
nonpredictive

In our model, accommodation is controlled by
four separate signals (Figure 10), which offer different
benefits. The constant bias signal sets the rest focus,
to which the system returns in the absence of other
stimulation (Figure 17). This may represent a typical
demand, making it easier for the system to respond
when stimulation restarts. The slow integrator
means that the system tends to adapt to steady
demand, perhaps reducing disruption if vision is
briefly interrupted during sustained attention to one
distance.

The fast integrator is the main workhorse of the
feedback loop, enabling accommodation to respond
rapidly yet smoothly to changes in demand (Figure
11, Figure 20). It is embedded within a predictive
control system, incorporating a forward model to
predict the effect of signals previously sent to the plant.
This predictive control enables a smooth response
and avoids ringing and instability. In principle, it can
entirely remove delay due to the sensorimotor latency
in a situation where demand can be predicted perfectly,
as in a regular oscillation. However, it can slow the
response to sudden and unpredictable changes in
demand.

The fourth control signal can facilitate rapid
responses in such situations (Figure 16). This signal is
nonpredictive; it is proportional to the currently sensed
defocus, not the predicted future defocus. We originally
rejected nonpredictive control because it is prone to
closed-loop resonances at particular frequencies. This
is because the phase of the cycle where demand is high
causes an increase in accommodation designed to null

the defocus error, but—because of the latency—by the
time the increase in accommodation has taken effect,
the demand cycle has moved on to a phase where
demand is low, and so the increase in accommodation
in fact enhances the defocus error, causing a larger
change in accommodation in the next cycle, and so on.
In our model, we limit the destabilizing effect of this
signal by making it saturate at low values. This ensures
that it has little influence on accommodation in general,
which remains dominated by the predictive integral
control discussed above. However, the closed-loop
resonance associated with nonpredictive control
remains detectable for small changes in demand. This
amplifies noise within particular bandwidths, and
means that the microfluctuations in the steady-state
response show a peak at frequencies just over 1 Hz,
as observed. Opening the loop cuts the feedback
pathway generating the resonance, explaining why
this peak in the microfluctuation power spectrum
is much less prominent in open-loop mode. The
saturating proportional signal also accounts for the
nonlinear resonance observed when accommodation
tracks low-amplitude—but not high-amplitude—
sinusoidal oscillations in demand. However, an
unrealistic feature of our model’s way of generating
microfluctuations is that it predicts a transient increase
in the amplitude of microfluctuations following small
step-changes in demand—the ringing visible in Figure
16—which has not been reported. The amplitude of
microfluctuations in the model is also smaller than
observed (Figure 15BC); this cannot be fixed simply
by increasing the amplitude of the noise because
that also changes the open- and closed-loop power
spectra.

“Prediction” in the accommodation literature has
often concentrated on predicting changes in demand
(Krishnan et al., 1973; Stark, 1968). We believe it is
helpful to draw a clear distinction between predicting
one’s own accommodation, which is in principle
possible perfectly with an efference copy and a forward
model, and predicting demand, which is external and
thus not always possible, for example when a fixated
object moves suddenly. Predicting accommodation
but simply using the current demand suffices to
achieve closed-loop stability. The additional benefit of
predicting future demand accurately is to avoid delay
and thus avoid errors for rapidly changing stimuli.
However, the low-pass characteristics of the plant
and leaky-integral controller mean that the benefits of
demand prediction are limited unless one also posits a
different form of control.

Deficits of the model

The model as currently implemented has many
omissions and inadequacies, which must contribute
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to its imperfect ability to match the empirical data
discussed in this article. First, we do not consider
control signals driven by inputs other than retinal
defocus and bias (Heath, 1956b; Maddox, 1893).
Notably, we do not include the crosslinks from and
to the vergence system (Bharadwaj, 2005; Schor &
Kotulak, 1986). We also do not consider other noise
sources, such as heartbeat.

Second, this article has nothing to say about how a
signed estimate of defocus is obtained from the retinal
image. This deficiency is perhaps especially important
since our model assumes that visual feedback from
the retinal images is the only feedback available to the
accommodative control system. (Stretch receptors in the
scleral spur base of the ciliary body could potentially
also provide sensory feedback used in accommodative
control (Tamm, Flügel, Stefani, & Lütjen, 1994; Tamm
& Lütjen-Drecoll, 1996), but at present nothing is
known about whether or how this occurs, and it has not
been included in any model of accommodative control.)

Perceptually, the threshold for detecting a change in
focus that produces a detectable change in the image is
higher for sharp than for blurred images: a focus change
of 0.2D may be visible when the baseline defocus is
1.5D but not when the baseline is 0D (Campbell &
Westheimer, 1958). It seems likely that such differences
also affect the stimulus to accommodative control, but
this is not taken into account in our model.

Related to this, we assume that the control system
is attempting to minimize defocus, whereas in fact it
is presumably attempting to maximize image quality.
The accommodative lag and lead, which in our model is
accounted for by the finite gain of the fast integrator,
may effectively be an artefact of objective measurements
of accommodation (Labhishetty et al., 2021). Recasting
the control system to maximize a realistic measure of
image quality rather than to minimize defocus could
therefore profoundly alter the behavior of the model
and lead to different conclusions about the nature
of neural control. This would need to consider not
only defocus but also higher-order aberrations such as
spherical aberration, and should take into account pupil
size. This would be computationally demanding to
implement, and no published model of accommodative
control has yet attempted it, but it must certainly be
done to understand accommodative control in full.

The current model does not incorporate physical
limits on accommodation, a non-zero far point or
refractive error, nor do we consider how the system
parameters may change with age (Bharadwaj & Schor,
2005; Schor & Bharadwaj, 2005), although these would
be simple to add if required.

The model components are highly simplified.
For example, the ocular plant is modeled as a
linear-time-invariant leaky integrator with a fixed gain
and time-constant, and the optical power is assumed
to be proportional to the output of this integrator. A

more accurate, yet usably simple, optical/biomechanical
model of the relationship between ciliary muscle signal
and optical power would be welcome (Wang et al.,
2017).

The model developed here cannot account for the
nonlinear dynamics observed in response to large step
changes. These have been accounted for previously
with an additional “pulse” signal triggered by large step
changes in accommodation (Schor & Bharadwaj, 2004;
Schor & Bharadwaj, 2006), which temporarily overrides
the error-driven signal, although nonlinearities in the
plant could also contribute. This of course means that
the model presented here cannot accurately model the
dynamics of the accommodative response to large step
changes, although it should remain valid for all the
situations modeled in the Results (except Figure 16BD,
included for illustrative purposes).

Finally, we have not attempted a realistic
implementation of the demand-prediction model. There
is some evidence that the brain can predict changing
accommodative demand some time into the future, but
we have here assumed it simply assumes demand will
stay constant (Khosroyani & Hung, 2002). We hope to
address some of these deficiencies in future work.

Keywords: accommodation, defocus, control theory,
computational modelling, computational neuroscience
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Appendix

Here, we derive the total transfer function
corresponding to the three types of linear models
discussed in the text: (i) the nonpredictive model and the
predictive models with (ii) perfect and (iii) no-change
prediction of demand. The bias signal due to the rest
focus aRF is included as an inhomogeneous “forcing”
term. We handle this by defining A(s) and D(s) to be
the Laplace transforms of a(t) − aRF and d(t) − aRF,
respectively, where a(t) and d(t) are accommodation
and demand as functions of time. In this way, we
can effectively ignore aRF when obtaining the transfer
functions.

(i) Nonpredictive model

The system diagram for this model is given in Figure
3. Reading around this circuit diagram, we see
immediately that

E (s) = D (s) − A (s) ,

where E(s) is the Laplace transform of the defocus error
signal, d(t)-a(t). The input to the Controller block is
E(s)exp ( − sTsens) (i.e., the defocus error signal after
the sensory latency). The output from the Controller
block is C(s)E(s)exp ( − sTsens), where C(s) is the
transfer function of the Controller. After accounting

for the motor latency, the input to the ocular plant
is C(s)E(s)exp ( − sTlat). So, the output of the ocular
plant (i.e., accommodation) is

A (s) = Hplant (s)C (s)E (s) exp (−sTlat )

Substituting in for E(s), we obtain the closed-loop
transfer function

Hnonpred
closed (s) = A (s)

D (s)
= P (s)C (s) exp (−sTlat )

1 + P (s)C (s) exp (−sTlat )

The gain and phase of the accommodative response
to sinusoidal stimuli are the amplitude and phase of
the complex number given by this closed-loop transfer
function evaluated at s = jω = 2π jf, Hclosed(2π jf). The
closed-loop gain as a function of demand frequency is
therefore

Gnonpred
closed ( f )

= |PC|√
1 + 2Re

(
PCe−2π j f Tlat

) + |PC|2
(15)

where the plant and controller transfer functions are
similarly complex functions of frequency: P=P(2π jf),
C = C(2π jf). The denominator contains oscillatory
terms which mean that, even if PC is lowpass (i.e.,
a monotonically decreasing function of frequency),
the denominator can be close to zero at particular
frequencies and thus produce large resonances, for
which the closed-loop gain exceeds 1. These manifest
themselves as ringing or instability in the response to
step changes in demand, and as gains>1 for sinusoidal
oscillations in demand, which are not observed for large
amplitudes.

With proportional control with unit gain (C = 1), a
sensorimotor latency of Tlat = 0.3s and the plant being
a leaky integrator with τ plant = 0.156s, Equation 15 has
its first resonance at 1.2Hz where the closed-loop gain
goes well above 1. This is ultimately responsible for
the model’s high-frequency peak in microfluctuations
(Figure 15) and the low-amplitude resonance in the
response to sine-waves (Figure 12), although the precise
behavior also depends on the nonlinear clipping. The
precise position of the first resonance depends on the
gain of the proportional control, but only rather subtly.
We therefore kept unit gain for simplicity.

We obtain the open-loop transfer function in the
same way, but with the input to the Controller being
D(s) instead of D(s) − A(s). This yields

Hnonpred
open (s) = P (s)C (s) exp (−sTlat )

Gnonpred
open (ω) = |PC| (16)
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Thus, whether we use an integral or proportional
controller in this nonpredictive control system, the
open-loop gain is purely low-pass, with no resonances.
This means that adding our nonpredictive proportional
signal does not introduce any peaks to the power
spectrum of open-loop microfluctuations.

Predictive models

The simplified system diagram for this model is given
in Figure 5. As usual, we can ignore the bias signal if we
express accommodation and demand relative to the rest
focus. Reading around the circuit diagram, the demand
signal is the input on the left; we represent this as usual
in the Laplace domain by D(s). After passing through
the sensory latency, it becomes D(s)exp ( − sTsens), with
the exponential being the Laplacian representation of a
time delay (cf discussion of (2). It then passes through
the demand predictor, which attempts to predict the
signal Tlat =Tsens+Tmot into the future. If it did this
perfectly, the output of the demand predictor would
be D(s)exp ( − sTsens)exp ( − sTlat) = D(s)exp ( +
sTmot). To allow for the fact that demand is unlikely
to be predicted perfectly, we will write the output as
D̂(s) exp(+sTmot ). D̂(s) is the Laplace transform of
the estimated future demand, again relative to the rest
focus. That is, whereas d(t) is the actual demand at time
t, d̂ (t) is the estimated demand at time t, as estimated at
time (t − Tlat).

Looking at the bottom of Figure 5, the output is
accommodation, or A(s) in the Laplace domain. This is
output after a motor latency Tmot; thus the output of
the “Plant” block in Figure 5 is A(s)exp ( + sTmot).

Putting both of these together, we see that the input to
the Controller in Figure 5 is [D̂(s) − A(s)] exp(+sTmot ).
After multiplying this by the Controller and Plant
transfer functions, we find that the output of the plant
is P(s)C(s)[D̂(s) − A(s)] exp(+sTmot ). But we previously
saw that the output of the plant is A(s)exp ( + sTmot).
Equating these, we see that

A (s) = P (s)C (s)
[
D̂ (s) − A (s)

]
and thus that

A (s) = P (s)C (s) D̂ (s)
1 + P (s)C (s)

(17)

Perfect demand predictor

In this idealized case, the demand predictor
successfully outputs the future accommodative

demand, so that D̂(s) = D(s) and the transfer function
is

Hper fect
closed (s) = P (s)C (s)

1 + P (s)C (s)

The closed-loop gain is therefore

gper fectclosed ( f ) = |PC|√
1 + 2Re (PC) + |PC|2

To obtain the open-loop transfer function, we replace
D(s) with D(s)+A(s) in Equation 17, obtaining

A (s) = P (s)C (s) [A (s) + D (s)]
1 + P (s)C (s)

and thus

Hper fect
open (s) = P (s)C (s)

If demand prediction is perfect, the open-loop gain
of the controller is independent of latency. For our
situation where both the plant and controller are leaky
integrators, the open-loop gain is lowpass, with no
resonances.

“No-change” demand predictor

In this opposite extreme, the demand predictor
simply assumes that the future defocus after time Tlat
will still be the same as the defocus it is receiving now:

d̂ (t + Tlat ) = d (t)

and thus

D̂ (s) = D (s) exp (−sTlat )

Hence,

Hnochange
closed (s) = P (s)C (s) exp (−sTlat )

1 + P (s)C (s)
.

The closed-loop gain at any frequency f is therefore
the same as for the perfect predictor, whereas the phase
is reduced by 2π fTlat. In fact, the closed-loop gain
would be the same for any demand predictor which
accurately predicts demand any time at all into the
future, even if, as here, that time is zero. Inaccurate
predictions would of course change the closed-loop
gain.
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Transfer function A(s) = H(s)D(s)

Non-predictive
model—no
prediction

Predictive model—perfect
prediction of future

demand

Predictive model—“no
change” prediction of

future demand

Open-loop transfer function PCe−sTlat PC PCe−sTlat

1+PC(1−e−sTlat )

Closed-loop transfer function PCe−sTlat

1+PCe−sTlat
PC

1+PC
PCe−sTlat

1+PC

Closed-loop gain |PC|√
1+2Re(PCe−iωTlat )+|PC|2

|PC|√
1+2Re(PC)+|PC|2

|PC|√
1+2Re(PC)+|PC|2

Appendix Table. Open- and closed-loop transfer functions H(s) for different control systems; see Appendix for derivation. The transfer
function relates accommodation to the demand via A(s) = H(s) D(s), where A(s) is the Laplace transform of accommodation relative
to rest focus, a(t)-aRF, and D(s) is the Laplace transform of demand relative to rest focus, d(t) − aRF. P(s) the transfer function of the
ocular plant, and C(s) is the transfer function of the neural control (block marked Controller in Figure 3, Figure 4, Figure 5). Tlat is the
total sensorimotor latency from a change in demand to the accommodative response.

The open-loop gain does depend critically on demand
prediction. With no-change prediction, replacing D(s)
with D(s) + A(s) in Equation 17, yields

A (s) = P (s)C (s) [A (s) + D (s)] exp (−sTlat )
1 + P (s)C (s)

and thus

Hnochange
open (s) = P (s)C (s) exp (−sTlat )

1 + P (s)C (s) (1 − exp (−sTlat ))
(18)

The presence of the oscillatory exp ( − sTlat) term
in the denominator can lead to local peaks in the gain
at some frequencies. Thus with inaccurate no-change
prediction, the system is prone to open-loop resonances
due to the inner feedback loop via the efference
copy. However, with our parameter values (Table
2), Equation 18 is a monotonically decreasing function
of frequency. This ensures that we do not see local peaks
in the power spectrum of open-loop microfluctuations
(Figure 15).

The predictive model with leaky-integral
control: a damped harmonic oscillator

For the case where the plant and the controller are
both leaky integrators (Equation 9, Equation 10) and
we neglect the other signals, the transfer function of the
perfect-prediction model is

Hper fect
closed (s) = Gfast(

1 + sτplant
) (
1 + sτ f ast

) + Gfast
(19)

with s = 2π jf. This is the transfer function of a
second-order damped oscillator. We can rewrite it in the
standard form

Hper fect
closed (s) ≈ Kω2

0

s2 + 2ζω0s + ω2
0

where K is the closed-loop gain:

K = Gfast(
1 + Gfast

)
ω0 the natural angular frequency:

ω2
0 =

(
1 + Gfast

)
τplantτ f ast

and ζ the damping coefficient:

ζ = 1
2
√
1 + Gfast

(
τplant + τ f ast

)
√

τplantτ f ast
(20)

For perfect demand prediction, the phase at angular
frequency ω is:

φper f ect (w) = − arctan
(

2ζωω0

ω2
0 − ω2

)

whereas for no-change prediction,

φnochange (ω) = − arctan
(

2ζωω0

ω2
0 − ω2

)
− ωTlat



Journal of Vision (2022) 22(9):4, 1–36 Read et al. 36

If ζ < 1/�2, then the maximum gain occurs at the
resonant angular frequency:

ωres = ω0
√
1 − 2ζ 2 =

√
Gfast

τplantτ f ast
− 1

2τ 2
f ast

− 1
2τ 2

plant

If ζ > 1/�2, then the gain is maximum for f = 0 and
decreases monotonically with frequency. If ζ = 1, the
system is said to be critically damped.

As discussed in the text, to match the empirical gain
of accommodation, ζ must exceed 1/�2, the minimum
value for which gain decreases monotonically with
frequency. Solving Equation 20, we find that

τ f ast = τplant

(
Gfast +

√
G2

f ast − 1
)

≈ 2Gfastτplant yieldsζ = 1/
√
2, while

τ f ast= τplant

(
2Gfast + 1 +

√[
2Gfast + 1

]2 − 1
)

≈ 4Gfastτplant yieldsζ = 1 (i.e., critical damping)
where the approximations hold because the gain Gfast
has to be >>1, say at least 5, to avoid excessive lag.
(Mathematically, there are two solutions, but the other
one gives a very short time-constant for the controller,
which in turn causes other problems such as open-loop
resonances in the noise.)

The minimal-settling time solution

In the model presented here, we chose the “minimum
settling time” solution, which yields ζ = 1/�2:

τ f ast = 2Gfastτplant

because this gave the best match to both gain and phase
data. With this choice, since Gfast>>1, the natural
frequency is approximately

ω0 = 1
τplant

√
2

which with our value τ plant = 0.156s corresponds to
0.72Hz.

For ζ = 1/�2, the phase function is very close to
linear out to ω = ω0 . In this region, for perfect demand
prediction

φper f ect ≈ −2τplantω

corresponding to an effective delay of Tdelay = 2τ plant.
Presumably coincidentally, this delay is very similar
to the sensorimotor latency, although as we can see it
arises from a completely different source. However, for
frequencies beyond ∼1Hz, the phase asymptotes to
180o (Figure 7).

For no-change prediction, the phase is approximately

φ (ω) ≈ −ω
(
2τplant + Tlat

)
at low frequencies, corresponding to an effective delay
of 2τ plant + Tlat.


