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Abstract: A series of Schiff bases 14–25 were designed and synthesized for evaluation of their
antibacterial properties against multi-drug resistant bacteria (MDRB). The antibacterial activities of
Schiff bases 14–25 showed that most of the synthesized compounds displayed a significant antibacterial
activity. Assessment of in silico ADMET properties (absorption, distribution, metabolism, excretion
and toxicity) of Schiff bases illustrates that all derivatives showed agreement to the Lipinski’s rule of
five. Further enzymatic assay aided by molecular docking study demonstrated that compound 18 is a
potent inhibitor of staphylococcus aureus DNA gyrase and dihydrofolate reductase kinases. This study
could be valuable in the discovery of new potent antimicrobial agents.

Keywords: Schiff bases; Antibacterial; 5-Aminopyrazole; Staphylococcus aureus DNA gyrase;
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1. Introduction

Antibiotics, anti-microbial drugs, and anti-infectious agents are used for treating infectious
with micro-organism diseases and able to kill or inhibit the growth of microbes by inhibition of cell
membranes synthesis, protein synthesis, nucleic acid synthesis, or cytoplasmic membranes. Recently,
the resistance of microbes to antibiotics can be observed and classified into internal resistance and
acquired resistance. Inactivation of drugs by bacterial enzymes or the drug cannot bind are the reasons
which explained the biochemical mechanisms of internal and acquired resistances. Therefore, there is
an urgent need for production of new antimicrobial drugs or develop the used drugs to oppose the
mutation of the microbes to solve the resistance.

Schiff bases (bearing imine or azomethine–C=N–) have shown a broad spectrum of activities
including anti-diabetic, enzyme inhibition, DNA binding, cleavage activity and cytotoxicity activities [1–6].
Additionally, there are several reports that highlight the importance of Schiff bases as antimicrobial
agents [7–11]. Compound 1 demonstrated significant antibacterial activity against S. aureus and
E. faecalis [12]. Compound 2 showed good antimicrobial activity against B. subtilis, P. fluorescence, and
S. aureus [13]. Also, compound 3 exhibited better antimicrobial activity against S. aureus and S. pyogenes [14].
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In fact, the azomethine group is found on some marketed drugs e.g., Nifuroxazide (INN) 4 and Thiacetazone
5 are an oral antibiotic, which are used in the treatment of tuberculosis (Figure 1).

Many pyrazole compounds are characterized by their biological activities [15–18], especially
antimicrobial activities such as compounds 6 and 7 exhibit antimicrobial activities [19,20]. (Figure 1)

From the above biological effectiveness of Schiff bases as well as our target to display the biological
activities of compounds [21–39], we have reported in this work a series of Schiff bases 14–25 was
synthesized by the reaction of 5-amino-pyrazoles 12a–c with aldehydes 13a–d (Figure 1) for evaluation
of their antibacterial properties against multi-drug resistant bacteria (MDRB). In addition to this,
enzymes assay (staphylococcus aureus DNA gyrase, topoisomerase IV and dihydrofolate reductase
enzymes), the molecular modeling study and structure-activity relationship were carried out.
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Figure 1. Structures of the antimicrobial Schiff bases 1–3, Nifuroxazide 4, Thiacetazone 5, pyrazole 
derivatives 6, 7 and the target Schiff bases 14–25. 

2. Results and Discussion  

2.1. Chemistry 

5-Amino-1H-pyrazoles 12a–c were prepared via the sequence reaction of N-substituted 
cyanoacetamides 8 with 4-methoxyisothicyanate (9), methyl iodide and then with hydrazine hydrate 
in ethanol refluxing. A series of Schiff bases 14–25 were synthesized by the condensation of 
5-aminopyrazoles 12a–c with aromatic aldehydes 13a–d and the chemical structures wer confirmed 
via spectral data (Scheme 1 and Table 1). 

Figure 1. Structures of the antimicrobial Schiff bases 1–3, Nifuroxazide 4, Thiacetazone 5, pyrazole
derivatives 6, 7 and the target Schiff bases 14–25.

2. Results and Discussion

2.1. Chemistry

5-Amino-1H-pyrazoles 12a–c were prepared via the sequence reaction of N-substituted
cyanoacetamides 8 with 4-methoxyisothicyanate (9), methyl iodide and then with hydrazine hydrate
in ethanol refluxing. A series of Schiff bases 14–25 were synthesized by the condensation of
5-aminopyrazoles 12a–c with aromatic aldehydes 13a–d and the chemical structures wer confirmed via
spectral data (Scheme 1 and Table 1).
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Scheme 1. Synthesis of Schiff bases 14–25 

Table 1. Schiff bases 14–25 

Compounds Ar Ar1 Ar2 
14 Ph 4-MeOC6H4- Ph 
15 Ph 4-MeOC6H4- 4-MeC6H4- 
16 Ph 4-MeOC6H4- 4-ClC6H4- 
17 Ph 4-MeOC6H4- 4-FC6H4- 
18 4-MeC6H4- 4-MeOC6H4- Ph 
19 4-MeC6H4- 4-MeOC6H4- 4-MeC6H4- 
20 4-MeC6H4- 4-MeOC6H4- 4-ClC6H4- 
21 4-MeC6H4- 4-MeOC6H4- 4-FC6H4- 
22 4-ClC6H4- 4-MeOC6H4- Ph 
23 4-ClC6H4- 4-MeOC6H4- 4-MeC6H4- 
24 4-ClC6H4- 4-MeOC6H4- 4-ClC6H4- 
25 4-ClC6H4- 4-MeOC6H4- 4-FC6H4- 

2.2. Antibacterial Evaluation 

In vitro antibacterial activities against multi-drug resistant bacteria (MDRB) of Schiff bases 
14–25 were performed at botany and microbiology department, Faculty of Science, Al-Azhar 
University, Cairo, Egypt. The antibacterial potential of 14–25 were investigated towards the 
multi-drug resistant bacteria (MDRB). The results were summarized as the diameter of the inhibition 
zones in mm [40] and minimal inhibitory concentration (MIC, µg/mL) [41] values in Table 2. 
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Table 1. Schiff bases 14–25.

Compounds Ar Ar1 Ar2

14 Ph 4-MeOC6H4- Ph
15 Ph 4-MeOC6H4- 4-MeC6H4-
16 Ph 4-MeOC6H4- 4-ClC6H4-
17 Ph 4-MeOC6H4- 4-FC6H4-
18 4-MeC6H4- 4-MeOC6H4- Ph
19 4-MeC6H4- 4-MeOC6H4- 4-MeC6H4-
20 4-MeC6H4- 4-MeOC6H4- 4-ClC6H4-
21 4-MeC6H4- 4-MeOC6H4- 4-FC6H4-
22 4-ClC6H4- 4-MeOC6H4- Ph
23 4-ClC6H4- 4-MeOC6H4- 4-MeC6H4-
24 4-ClC6H4- 4-MeOC6H4- 4-ClC6H4-
25 4-ClC6H4- 4-MeOC6H4- 4-FC6H4-

2.2. Antibacterial Evaluation

In vitro antibacterial activities against multi-drug resistant bacteria (MDRB) of Schiff bases 14–25
were performed at botany and microbiology department, Faculty of Science, Al-Azhar University,
Cairo, Egypt. The antibacterial potential of 14–25 were investigated towards the multi-drug resistant
bacteria (MDRB). The results were summarized as the diameter of the inhibition zones in mm [40] and
minimal inhibitory concentration (MIC, µg/mL) [41] values in Table 2.



Molecules 2019, 24, 3130 4 of 12

Table 2. Minimal inhibitory concentrations in µg/mL of Schiff bases against multi-drug resistant
bacteria (MDRB).
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Comp. Ar Ar1 Ar2
Gram-Positive Bacteria Gram-Negative Bacteria

Sa Se Ef Ab Ecl Ec

14 Ph 4-MeOC6H4- Ph 31.25 7.81 * 15.62 NA 125 NA
15 Ph 4-MeOC6H4- 4-MeC6H4- 62.50 15.62 31.25 62.5 62.5 125
16 Ph 4-MeOC6H4- 4-ClC6H4- 31.25 7.81 * 62.5 15.62 * 62.5 125
17 Ph 4-MeOC6H4- 4-FC6H4- 62.5 31.25 NA 62.5 125 31.25 *
18 4-MeC6H4- 4-MeOC6H4- Ph 15.62 * 7.81 * 31.25 15.62 * 62.5 250
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21 4-MeC6H4- 4-MeOC6H4- 4-FC6H4- 125 62.5 NA NA NA NA
22 4-ClC6H4- 4-MeOC6H4- Ph 250 125 125 NA 15.62 * NA
23 4-ClC6H4- 4-MeOC6H4- 4-MeC6H4- 31.25 15.62 7.81 * NA 62.5 NA
24 4-ClC6H4- 4-MeOC6H4- 4-ClC6H4- 125 62.5 15.62 NA 62.5 125
25 4-ClC6H4- 4-MeOC6H4- 4-FC6H4- NA NA NA NA NA NA

Ciprofloxacin 7.81 * 15.62 * 7.81 * 15.62 * 15.62 * 7.81 *

Comp.: Compound. Gram-positive bacteria: Staphylococcus aureus (MRSA, Sa); Staphylococcus epidermis (Se) and
Enterococcus faecalis (Ef). Gram-negative bacteria: Acinetobacter baumannii (Ab); Enterobacter cloaca (Ecl) and Escherichia
coli (Ec). NA: No Activity. * The most potent compound compared to others.

The result of the minimal inhibitory concentration (MIC) values was in Figure 2. We could see
that Schiff base 18 showed very good activity against Staphylococcus aureus (MIC: 15.62 µg/mL), while
compounds 14, 16, 19 and 23 (MIC: 31.25 µg/mL) showed good activity and Schiff bases 15, 17 and
20 exhibited moderate activity with MIC = 62.5 µg/mL. Compounds 14, 16 and 18 (MIC: 7.81 µg/mL)
showed significant activity against Staphylococcus epidermis (Sp) while compounds 15, 19, and 23
showed very good activity (MIC: 15.62 µg/mL). Schiff base 17 (MIC: 31.25 µg/mL) showed good activity.

In the case of Enterococcus faecalis (Ef), Schiff bases 23 (MIC: 7.81 µg/mL) showed significant activity
and Schiff bases 14, 19 and 24 very good activity (MIC: 15.62 µg/mL), while compounds 15 and 18
(MIC: 31.25 µg/mL) showed good activity. Schiff base 16 (MIC: 62.5 µg/mL) showed moderate activity.

In the case of Acinetobacter baumannii (Ab), Schiff bases 16 and 18 showed very good activity (MIC:
15.62 µg/mL), while compounds 15, 17, and 19 (MIC: 62.5 µg/mL) showed moderate activity.

Schiff base 22 displayed very good activity (MIC: 15.62 µg/mL) against Enterobacter cloaca (Ecl),
while compounds 15, 16, 18, 23 and 24 (MIC: 62.5 µg/mL) showed moderate activity.

Schiff base 17 (MIC: 31.25 µg/mL) showed good activity, while 19 (MIC: 62.5 µg/mL) showed
moderate activity against Escherichia coli (Ec).
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Figure 2. Minimal inhibitory concentrations (MIC, µg/mL) of Schiff bases 14–25 against multi-drug
resistant bacteria (A) Gram-positive bacteria, (B) Gram-negative bacteria.

2.3. Structure-Activity Relationship (SAR)

From the results of antibacterial activities of Schiff bases 14–25 against multi-drug resistant bacteria,
it was found that, in case of Ar = Ph, 4-CH3-C6H4 or 4-Cl-C6H4, the order of antibacterial activity Ar2

= Ph > 4-CH3-C6H4 and Ar2 = 4-Cl-C6H4 > 4-F-C6H4 was observed upon screening of Schiff bases
14–25 against the screening organisms (Figure 3).
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2.4. In Silico ADMET Properties of Schiff Bases 14-25

The physical properties and the ADMET parameters (absorption, distribution, metabolism,
excretion and toxicity) of Schiff bases 14–25 were computed using the freely accessible web server
Swiss ADME (http://swissadme.ch/index.php#undefined). The results of in silico ADMET properties
of Schiff bases 14–25 are listed in Table 3.

The molecular weight (MW), the number of hydrogen bond acceptors (nHBA), donors (nHBD),
the number of rotatable bonds (nRB) and the topological polar surface area (TPSA) for all the Schiff
bases were in accordance with the Lipinski’s rule of five. The lipophilicity property (expressed as
MLogP ≤ 4.15) was in the range for all the Schiff bases excluding 20, 21, 23, 24 and 25. The highly
lipophilic character (MLogP > 4.15) of the compounds 20, 21, 23, 24 and 25 may be because of the
presence of chloro or fluoro atoms in their structures which may make difficult their transport through
the blood strain [42].

http://swissadme.ch/index.php#undefined
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Table 3. In silico prediction of Lipinski‘s rule of five for the Schiff bases 14–25.

Comp. MW a MLogP b nHBA c nHBD d nRB e TPSA f nviolations
g

Rule <500 ≤4.15 ≤10 ≤5 ≤10 <160 Å2 0

14 411.46 3.65 4 3 8 91.40 0
15 425.48 3.86 4 3 8 91.40 0
16 445.90 4.13 4 3 8 91.40 0
17 429.45 4.02 5 3 8 91.40 0
18 425.48 3.86 4 3 8 91.40 0
19 439.51 4.06 4 3 8 91.40 0
20 459.93 4.33 4 3 8 91.40 1
21 443.47 4.23 5 3 8 91.40 1
22 445.90 4.13 4 3 8 91.40 0
23 459.93 4.33 4 3 8 91.40 1
24 480.35 4.60 4 3 8 91.40 1
25 463.89 4.50 5 3 8 91.40 1

a Molecular Weight; b Calculated Lipophillicity (MLog Po/w); c Number of Hydrogen Bond Acceptor; d Number
of Hydrogen Bond Donor; e Number of Rotatable Bond; f Topological Polar Surface Area; g Violations from
Lipinski’s Rule.

2.5. In Vitro Kinase Assessment

In an effort to study the preliminary mechanism of the compound 18 with potent antibacterial
activity, an enzyme inhibitory assay was performed towards staphylococcus aureus DNA gyrase,
topoisomerase IV and dihydrofolate reductase enzymes. The obtained results were presented as IC50

and provided in Table 4 using suitable positive controls, Ciprofloxacin and Methotrexate.

Table 4. Inhibitory assessment (IC50 in µM) of compound 18 on Staphylococcus aureus DNA gyrase,
Topoisomerase IV and Dihydrofolate reductase enzymes.

Compound IC50 (Mean ± SEM) (µM)

DNA Gyrase Topoisomerase IV DHFR

18 1.68 ± 0.10 74.55 ± 1.20 0.08 ± 1.15
Ciprofloxacin 1.51 ± 0.18 24.14 ± 1.01 —–
Methotrexate —– —– 0.14 ± 1.07

IC50: Compound concentration required to inhibit the enzyme viability by 50%, SEM = standard error mean;
each value is the mean of three values.

From Table 4, it was observed that compound 18 demonstrated a nearly equipotent inhibitory
activity towards DNA gyrase and weak activity against topoisomerase IV in comparison with the
reference Ciprofloxacin (IC50 = 1.68 ± 0.10, 74.55 ± 1.20, 1.51 ± 0.18 and 24.14 ± 1.01 µM, respectively).
Moreover, compound 18 revealed two folds increase in the suppression effect towards dihydrofolate
reductase comparing with Methotrexate (IC50 = 0.08 ± 1.15 and 0.14 ± 1.07 µM, respectively).

2.6. Molecular Docking Study

Molecular docking studies concerning the in vitro kinase assessment were performed to
understand the interactions of compound 18 with Staphylococcus aureus DNA gyrase and Dihydrofolate
reductase enzymes. The binding modes of compounds 18 were investigated through using Molecular
Operating Environment (MOE®) 2008.10 [43]. The X-ray crystal structures of Staphylococcus aureus DNA
gyrase (PDB code: 2XCT) [44] and dihydrofolate reductase (PDB code: 1DLS) [45] were downloaded
from the Protein Data Bank. In the present study, the proposed docking algorithms were initially
validated by self-docking of the co-crystallized ligands Ciprofloxacin and Methotrexate to each of
the aforementioned targets and exhibited root mean square deviation (RMSD) values of 0.86 and
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0.92 Å, respectively. Subsequently, docking procedures have been achieved for compound 18 and the
corresponding 2D and 3D representations of the binding modes are illustrated in Figures 4 and 5.

As shown in Figure 4, compound 18 linked tightly with amino acid residues of Staphylococcus
aureus DNA gyrase. There were arene-arene interactions established between the centroids of DG9
and 4-methoxyphenyl, and arene-cation interactions between the centroid of benzylidene at p-5 of
pyrazole moiety and Arg458. Moreover, the oxygen of 4-methoxy group supported the binding with
two hydrogen bonds with the sidechain of Ser1084 (distance: 2.36 and 3.27 Å).

Molecules 2019, 24, x FOR PEER REVIEW  7 of 12 

 

have been achieved for compound 18 and the corresponding 2D and 3D representations of the 
binding modes are illustrated in Figures 4 and 5. 

As shown in Figure 4, compound 18 linked tightly with amino acid residues of Staphylococcus 
aureus DNA gyrase. There were arene-arene interactions established between the centroids of DG9 
and 4-methoxyphenyl, and arene-cation interactions between the centroid of benzylidene at p-5 of 
pyrazole moiety and Arg458. Moreover, the oxygen of 4-methoxy group supported the binding with 
two hydrogen bonds with the sidechain of Ser1084 (distance: 2.36 and 3.27 Å).  

 

 

Figure 4. 2D and 3D interaction diagrams of compound 18 with Staphylococcus aureus DNA gyrase 
(PDB code: 2XCT) (hydrogen bonds are illustrated as arrows, C atoms are colored gray, N blue, and 
O red). 

Considering the binding interaction of compound 18 with dihydrofolate reductase illustrated in 
Figure 5, it was noticed that N1 and N2 of pyrazole scaffold participated by two hydrogen bonds 
with the sidechain and the backbone of Ser59 (distance: 2.62 and 2.34 Å, respectively). Additionally, 
the tolyl moiety formed arene-arene interaction with the centroid of Ph34 passing through Ph31. 

Figure 4. 2D and 3D interaction diagrams of compound 18 with Staphylococcus aureus DNA gyrase (PDB
code: 2XCT) (hydrogen bonds are illustrated as arrows, C atoms are colored gray, N blue, and O red).

Considering the binding interaction of compound 18 with dihydrofolate reductase illustrated
in Figure 5, it was noticed that N1 and N2 of pyrazole scaffold participated by two hydrogen bonds
with the sidechain and the backbone of Ser59 (distance: 2.62 and 2.34 Å, respectively). Additionally,
the tolyl moiety formed arene-arene interaction with the centroid of Ph34 passing through Ph31.
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3. Materials and Methods

3.1. Chemicals

5-Amino-1H-pyrazoles 12a–c [46] and Schiff bases 14–25 [47] were prepared according to the
reported procedure.

The chemical structures of Schiff bases 14–25 was confirmed via spectral data [47].
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3.2. In Vitro Antibacterial Evaluation

3.2.1. Test Microorganisms

The synthesized compounds, Schiff bases 14–25, were in vitro evaluation of their antibacterial
properties against multi-drug resistant bacteria (MDRB). Examples of Gram-positive bacteria are
Staphylococcus aureus (MRSA, Sa), Staphylococcus epidermis (Sp), and Enterococcus faecalis (Ef). Examples of
Gram-negative bacteria are Acinetobacter baumannii (Ab), Enterobacter cloaca (Ecl), and Escherichia coli
(Ec). All the tested strain was identified by Vitek®2 system. The multi-drug resistant to antibiotics
such as Ampicillin, Cephalexin, Colisin, Ipemenem, and Meropenem was verified.

3.2.2. Antibacterial Activity

In vitro antibacterial activities were performed at botany and microbiology department, Faculty of
Science, Al-Azhar University, Cairo, Egypt. The antibacterial potential of Schiff bases 14–25 were
investigated towards multi-drug resistant bacteria (MDRB) and expressed as the diameter of the
inhibition zones according to the agar plate diffusion method [40].

3.2.3. Minimum Inhibitory Concentration (MIC) of the Active Compounds

The minimal inhibitory concentration (MIC) of the most potent Schiff bases was determined by
the conventional paper disk diffusion method [41].

3.3. In Vitro Kinase Assessment

The in vitro enzyme inhibition determination for compound 18 was carried out in the confirmatory
diagnostic unit, Vacsera, Egypt. The evaluation performed profiling of compound 18 against
Staphylococcus aureus DNA gyrase, topoisomerase IV, and dihydrofolate reductase enzymes using
Ciprofloxacin and Methotrexate as reference drugs according to the previously reported method [45,48].

3.4. Molecular Docking Study

Automated docking studies were carried out using Molecular Operating Environment (MOE®)
2008.10 [43]. The crystal structures of Staphylococcus aureus DNA gyrase (PDB code: 2XCT) [44] and
dihydrofolate reductase (PDB code: 1DLS) [45] complexed with Ciprofloxacin and Methotrexate,
respectively were retrieved from the RCSB Protein Data Bank (http://www.rcsb.org/pdb/home/home.do).

4. Conclusions

In this work, a series of Schiff bases 14–25 were synthesized by the condensation of
5-aminopyrazoles 12a–c with aromatic aldehydes 13a–d, with high yields for evaluation of their
in vitro antibacterial activities against multi-drug resistant bacteria (MDRB). In general, most of Schiff
bases 14–25 displayed better antibacterial activity. In addition, a positive result of kinase inhibition was
implicated by molecular docking study against Staphylococcus aureus DNA gyrase and dihydrofolate
reductase enzymes. Furthermore, drug-likeness data revealed that the studied compounds fulfill
Lipinski’s rule requirements and have good drug score values. These preliminary results of Schiff
bases against multi-drug resistant bacteria (MDRB) could provide an exceptional model that may lead
to the discovery of new antibiotics by derivatization or modification.
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