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In Older Adults (OAs), Electroencephalogram (EEG) slowing in frontal lobes and a

diminished muscle atonia during Rapid Eye Movement sleep (REM) have each been

effective tracers of Mild Cognitive Impairment (MCI), but this relationship remains to be

explored by non-linear analysis. Likewise, data provided by EEG, EMG (Electromyogram)

and EOG (Electrooculogram)—the three required sleep indicators—during the transition

from REM to Non-REM (NREM) sleep have not been related jointly to MCI. Therefore,

the main aim of the study was to explore, with results for Detrended Fluctuation Analysis

(DFA) and multichannel DFA (mDFA), the Color of Noise (CN) at the NREM to REM

transition in OAs with MCI vs. subjects with good performances. The comparisons for

the transition from NREM to REM were made for each group at each cerebral area,

taking bilateral derivations to evaluate interhemispheric coupling and anteroposterior

and posterior networks. In addition, stationarity analysis was carried out to explore

if the three markers distinguished between the groups. Neuropsi and the Mini-

Mental State Examination (MMSE) were administered, as well as other geriatric tests.

One night polysomnography was applied to 6 OAs with MCI (68.1 ± 3) and to 7

subjects without it (CTRL) (64.5 ± 9), and pre-REM and REM epochs were analyzed

for each subject. Lower scores for attention, memory and executive funcions and

a greater index of arousals during sleep were found for the MCI group. Results

confirmed that EOGs constituted significant markers of MCI, increasing the CN for

the MCI group in REM sleep. The CN of the EEG from the pre-REM to REM was

higher for the MCI group vs. the opposite for the CTRL group at frontotemporal

areas. Frontopolar interhemispheric scaling values also followed this trend as well as

right anteroposterior networks. EMG Hurst values for both groups were lower than

those for EEG and EOG. Stationarity analyses showed differences between stages
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in frontal areas and right and left EOGs for both groups. These results may demonstrate

the breakdown of fractality of areas especially involved in executive functioning and

the way weak stationarity analyses may help to distinguish between sleep stages

in OAs.

Keywords: NREM to REM sleep, DFA, mDFA, stationarity, mild cognitive impairment

1. INTRODUCTION

1.1. Rapid Eye Movement Sleep and Mild
Cognitive Impairment
Rapid Eye Movement (REM) sleep enhances the information
flow among functional networks. Well-defined cortico-cortical
and thalamo-cortical networks (Steriade and Amzica, 1996)
operating at higher frequencies that contrast with the great
synchronizations in Slow Wave Sleep (SWS) have been
demonstrated (Steriade et al., 1996). During REM sleep, in
comparison to the wakeful state and Non-Rapid Eye Movement
(NREM) sleep in humans, a decoupling of frontal vs. posterior
areas occurs (Pérez-Garci et al., 2001; Corsi-Cabrera et al., 2003),
and temporal coupling increases among homologous regions
of the two cerebral hemispheres and among posterior regions
(Corsi-Cabrera et al., 1987, 1989), as can be represented in
Figure 1.

Evidence supporting these investigations has been found
involving selective REM sleep deprivation effects over the
interhemispheric correlation in gamma frequencies on the
recovery night in frontal lobes (Corsi-Cabrera et al., 2014) and
a higher prefrontal rebound of frontal gamma synchronization
during subsequent wakefulness in young subjects performing
executive tasks (Corsi-Cabrera et al., 2015).

Language, planning, purposive action, voluntary control
of attention, working memory, evaluation, decision making,
inhibition of stimuli and irrelevant responses, sequential
organization of new and complex information (Fuster, 1999),
as well as rule guided behavior have been together classified
as executive functions (Fuster, 2005; Bunge and Wallis, 2008).
In Mild Cognitive Impairment (MCI) it has been widely
demonstrated that some of these functions are distorted. Patients
diagnosed with MCI may have subjective mental complaints
about their cognitive functioning, corroborated by a near relative
or friend, or lower performances considering age and education
standards on neuropsychological tests (Petersen, 2004).

Physiological indicators of cognitive impairment in the elderly
during REM sleep comprise greater absolute and relative power
in slower frequencies in frontal lateral regions vs. wakefulness
(Brayet et al., 2015) and less muscle atonia (Chen et al., 2011).
The above mentioned studies have included linear analyses
of the Electroencephalogram (EEG) or the Electromyogram
(EMG). In this paper, Detrended Fluctuation Analysis (DFA)
and multichannel DFA (mDFA) are used to calculate the level of
fractality in the NREM to REM transition from subjects with and
without cognitive impairment.

REM sleep has long been associated with cognitive functions
(Rasch and Born, 2013; Tononi and Cirelli, 2014). REM sleep
plays a role in memory consolidation (Boyce et al., 2016,

FIGURE 1 | A decrease in temporal synchronization between frontal and

posterior regions at higher frequencies has been found during REM sleep

(A). Instead, interhemispheric coupling increases at both anterior and posterior

regions (B); and also among posterior regions (C). From Corsi-Cabrera (2018),

based on the brain model of Okamoto et al. (2004), with permission.

2017; Peever and Fuller, 2016). After complex tasks, there are
reactivations of neural circuits during REM sleep (Louie and
Wilson, 2001). Long Term Potentiation (LTP) only happens
during wakefulness and REM sleep, and, depending on its theta
phase of the hippocampus, LTP can be enhanced or inhibited
(Pavlides et al., 1988).

Generally, three REM sleep indicators appear in consecutive
order. When entering this stage, spindles and high amplitude
slow waves are absent, the EEG has abundant beta and gamma
frequencies (Llinás and Ribary, 1993; Steriade and Amzica, 1996),
there is an abrupt loss of voltage that occurs at an interval
shorter than 2 seconds (Rosales-Lagarde et al., 2009), and,
afterwards, the characteristic episodic REMs appear (Aserinsky
and Kleitman, 1953; Rechtshaffen and Kales, 1968; AASM,
2007).

Evidence suggests the need to search for indicators of
cognitive impairment in REMs. Before REMs, an internal
attentive network comes into operation, for these are preceded
by higher activations of the orbital region, amygdala and
hippocampus (Ioannides et al., 2004) and a higher temporal
coupling between the right frontal region and the midline
(Corsi-Cabrera et al., 2008). Theta activity and Ponto-Geniculo-
Occipital (PGOs) waves come into phase and their generators
receive a common activation (Karashima et al., 2002).

It is proposed that, given the important role of REM
sleep for cognitive functions, scaling exponents must differ
for people with MCI vs. controls in at least one of the sleep
markers.

To examine the functional relationships mentioned above,
the analyses included individual derivations, bilateral,
anteroposterior and posterior networks at the EEG. The
Electrooculogram (EOG) was subjected to DFA and mDFA as
explained below, and the scaling exponents of the EMG were
also obtained. In brief, according to the fractal analysis of signals,
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it is known that if the noise of the signal is pink or toward 1,
the signal represents health or a good correlation measure along
a wide range of signals. On the contrary, in large scales, white
noise means the signal is random; over short scales, brown noise
is similar to the Brownian movement.

According to Nikulin and Brismar (2005), drowsy states
have higher Hurst values than those of wakefulness. In
Linkenkaer-Hansen et al. (2001) studies, the eyes-open condition
-comprising beta frequencies- has smaller scaling values than
the closed-eyes conditions, where alpha frequencies at parietal
and occipital regions appear. In Weiss et al. (2009) and
Weiss et al. (2011), healthy and younger subjects than ours
were evaluated to obtain the Hurst values for the different
sleep stages. To compute the Hurst Exponent, Weiss et al.
(2009) and Weiss et al. (2011) employed the R/S statistics or
rescaled adjusted range of Mandelbrot and Taqq (Mandelbrot,
1977). They found higher values in Hurst measures in
NREM stage 4 versus NREM stage 2 and REM. Hurst values
at REM sleep in frontal regions were lower than in all
stages.

A difference between the signal of both groups is expected
if the structural complexity of dendritic arborizations that
possess a fractal anatomy is distorted in the group with
impairments. Also, the replay of activity in sleep that may
mimic the one during wakefulness and could be associated with
the functional relationships, i.e., inverse functional relationship
found by Corsi and collaborators mirrored by a decrease at the
cross-correlations of anteroposterior (Pérez-Garci et al., 2001;
Corsi-Cabrera et al., 2003) and an increase in posterior and
interhemispheric networks (Corsi-Cabrera et al., 1987, 1989),
may be altered in the MCI group. Although these results are
based on linear analyses and the present paper employs DFA and
mDFA, there are evidences supporting lost long range anatomical
connections in patients with MCI and dementia (Andrews-
Hanna et al., 2007). Especially, heteromodal association networks
such as frontoparietal and hippocampus connectivity become
more vulnerable with age and dementias than short range
connections, such as sensoriomotor primary cortices connections
(Li et al., 2017). Considering the results of Weiss et al. (2009)
showing greater values in the SWS stages and the study of
Brayet et al. (2015), revealing slower activity in MCI subjects
may have greater Hurst values that would reveal their cognitive
disadvantages.

Also, since in a previous report (Rosales-Lagarde et al., 2017)
the percentage of stationarity of REM sleep was lower than that
of NREM sleep and wakefulness, the degree of stationarity was
obtained as an index to compare NREM vs. REM sleep in both
groups.

2. METHODS

2.1. Subjects
Most of the 115 Older Adults (OAs) evaluated with the cognitive
and emotional tests mentioned below attended the Centro
Gerontológico Integral (CGI) at Punta Azul in Pachuca, Hidalgo,
Mexico. OAs were informed about the aims of the research
and they signed an informed consent. The project received the

approval of the research Ethics committee. A clinical interview
was first applied to rule out epilepsy or psychiatric disorders.
OAs were also asked about personal and family diseases.
Cognitive assessment by the Neuropsi and the Mini-mental State
Examination (MMSE), as well as the emotional evaluation by the
Geriatric Depression Scale (GDS) and a Scale for the detection
of Anxiety for the Elderly (the Short Anxiety Screening Test:
SAST), were administered. The Katz Index of Independence in
Activities of Daily Living (Katz et al., 1970) was also administered
to rule out dementia, and all tests were validated in Spanish
(Ugalde, 2010). The tests were rated by trained experts (ARL and
GVT). Later, according to the results of the tests, the OAs were
divided in two main groups, one with normal functioning on
the Neuropsi and all its scales and subscales, with undiminished
daily activities or control (CTRL), and another group with similar
results in the daily living tests but with at least one subscale on
the Neuropsi showing three standard deviations below the mean,
or with MCI. Table 1 shows the results for 13 subjects, 6 for the
MCI group and 7 for the CTRL group. Another subject who
was registered and classified as having MCI had facial paralysis
and, due to technical problems, did not complete the whole PSG
study.

As presented in Table 1, participants did not differ as regards
age or education. The MMSE showed marginal differences
between groups and daily living activities were maintained.
Hypertension, diabetes and a thyroid problem were under
medication. In answer to the question “Do you sleep well?” on
the SAST scale of anxiety, 2 members of the MCI group and 2 of
the CTRL group responded “never or rarely” or “occasionally.”

Memory complaints as measured on the GDS by the only
question about referring to altered memory were scarce, because

TABLE 1 | Demographic and clinical characteristics by group.

CTRL MCI t p

Demographic characteristics -M (SD)

Age 64.5 (9) 68.1 (3) 0.90 0.39

Education (years) 11 (5) 8.5 (2) 1.08 0.30

Sex -n(%)

Male 1 (14.2) 4 (66.7)

Female 6 (85.7) 2 (33.3)

Clinical assessment -M (SD)

MMSE 29.0 (1) 27.50 (1) 2.01 0.07

Katz 0.14 (0.3) 0.17 (0.4) 0.11 0.92

GDS 2.8 (3) 4.17 (3) 0.79 0.45

Sast 20.4 (4) 18.83 (4) 0.64 0.54

Clinical characteristics -n (%)

Hypertension 3 (42.8) 4 (66.7)

Diabetes 2 (28.5) 2 (33.3)

Thyroid problem 1 (14.3) 0 (0)

Sleep complaints SAST 2 (28.5) 2 (33.3)

Memory complaints GDS 0 (0) 1 (16.6)

CTRL, Control group; MCI, Mild Cognitive Impairment; MMSE, Mini-Mental State
Examination; GDS, Geriatric Depression Scale; SAST, Short Anxiety Screening Test; p <

0.05.
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only one subject from the MCI responded affirmatively. If the
question was about having problems to concentrate, the same
subject from the MCI group answered positively. Nevertheless,
when the question was about the mind being as clear as before,
four CTRLs answered negatively and only two of the MCI group
did, though objectively there were several scores below the mean
in memory subscales in the MCI group.

2.2. Neuropsychological Testing
The Neuropsi test measures neuropsychological functions. It was
developed in theUniversidadNacional Autónoma deMéxico and
has been validated in Mexico with standards varying according
to age and educational level (Ostrosky-Solís et al., 1999). The
maximum score on the test is 130. Neuropsi test has clearly
distinguished between normal, cognitive impaired and demented
subjects (Ostrosky-Solís et al., 1999; Abrisqueta-Gomez et al.,
2008; Montes-Rojas et al., 2012) and comprises several scales and
subscales:

• Orientation in three dimensions: time, place and person.
• Attention and concentration: digits in reverse order, visual

detection and subtraction.
• Memory: coding of three lists of words, coding of a visuospatial

figure. Spontaneous evocation of the words and the figure.
Evocation of the same words by categories and recognition of
them.

• Language: identification of figures in drawings and repetition
of words and a sentence. Comprehension of instructions about
figures. Verbal fluency and semantic fluency.

• Reading and writing. In reading, a short text is read aloud and
three questions are asked about it. In writing, a dictation takes
place. Also, the subject must copy a sentence.

• Conceptual and motor executive functions. The former
include: similarities between two words. Calculations and
following a certain written sequence. Motor executive
functions: repeating movements first with the right and then
with the left hand, alternating hand movements and finally,
reacting with an opposite hand movement.

However, we excluded one of the subscales from the analysis
as a basis for diagnosing MCI because only one subject from
the 13 subjects could correctly continue the written sequence.
Significant differences in the total score of the Neuropsi and the
scales of “Attention,” “Memory,” and “Executive functions” were
found between the groups (Table 2).

2.3. Procedure
The administration of the battery of tests was carried out either
at the CGI or at the Polyclinic belonging to the Department of
Gerontology of the School of Health Sciences of the Universidad
Autónoma del Estado de Hidalgo. OAs who satisfied the
criteria were registered at the Laboratory of Sleep, Emotion and
Cognition, under the direction of AR-L, located at the Polyclinic.
OAs filled a sleep questionnaire and received instructions to
continue their normal activities prior to the study and were told
to avoid alcoholic drinks or energizers during 24 h before the
study, and not to take naps the day they were to stay in the
laboratory. OAs were scheduled to arrive in the afternoon, at least

TABLE 2 | Mean and standard deviations of the groups and their comparisons for

Neuropsi scores.

CTRL MCI t p

Total score 110.0 (5) 91.7 (10) 4.0 0.001

Orientation 6.0 (0) 5.8 (0.4) 1.0 0.30

Attention and concentration 22.5 (1) 17.3 (5) 2.4 0.03

Memory 38.0 (3) 30.0 (5) 3.3 0.01

Language 22.7(1) 21.3 (2) 1.6 0.14

Writing/reading 4.7 (1) 4.8 (0.4) 0.3 0.74

Executive functions 16.0 (1) 12.1 (1) 5.9 0.001

CTRL, Control; MCI, Mild Cognitive Impairment. Student t-tests, p < 0.05. Significant
results for Student t-tests are indicated in bold.

4 h before their normal bedtime, and performed some cognitive
tasks (not presented here) before going to sleep.

2.4. Polysomnography
The EEG was registered with a MEDICID-5 with 26 amplifiers.
19 silver chloride electrodes were located according to the
International 10–20 System (FP1, FP2, F3, F4, F7, F8, C3, C4,
T3, T4, T5, T6, P3, P4, O1, O2, FZ, CZ, and PZ) and linked-
ears were used as reference. The EMG was measured bipolarly
with two electrodes located on the chin. The EOG was registered
monopolarly with 2 electrodes: one a centimeter above and
one below the external edge of each eye and also referred to
linked-ears. A leg electrode was also located to detect if Restless
Leg Syndrome (RLS) was present. Due to technical problems,
no account was retained of leg movements in 6 of the 13
subjects (one from the MCI group and five from the CTRL
group), so no statistic analysis about periodic leg movements
could be performed to compare the groups. Filters were set
between 0.1–100 Hz for the EEG, 10–70 Hz for the EMG,
and 0.3–15 Hz for the EOG. A notch filter was centered at
60 Hz to avoid contamination. Impedance was kept below 10
k�. Data were digitalized with a sample frequency of 512 Hz
and an A/D convertor of 16 bits and were stored on the same
MEDICID-5 system. The register began after calibrating the
signals and bidding the participant good night. In the morning,
OAs filled a Likert scale about their quality of sleep. LC-R, a
trained Neurophysiologist, analyzed the signals offline to score
the registered data. Sleep was classified by the AASM criteria
(AASM, 2007) and the following sleep architecture variables were
calculated: Total Time in Bed (TTB), Total Sleep Time (TST),
sleep efficiency, latencies, number of minutes and percentages
of sleep stages N1, N2, and N3, REM, Wakefulness After Sleep
Onset (WASO), number of leg movements, index of periodic
leg movements per hour of sleep, number of waking periods
per night, index of waking periods per hour of sleep, number of
arousals per hour of sleep and index of arousals per hour of sleep.

Signals were converted to the text format and DFA and mDFA
were obtained with the MATLAB version R2015 (see data in
Supplementary Material for the details of the custom code in
MATLAB). As stated below, each 30 s epoch was tested for
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its degree of stationarity or non-stationarity with the free R
statistical software.

2.5. Statistical Analysis
2.5.1. Cognitive Tasks
Age, educational levels and total scores on each subscale of
the Neuropsi and MMSE were compared between groups
using independent Student t-tests. As presented in Table 1,
age and educational levels did not show significant differences
between groups, and to explore the relationship between age
and educational level, a Pearson’s correlation analysis was
performed, revealing an almost perfect negative correlation. Also,
a correlation analysis between the Neuropsi and the MMSE was
carried out to verify the equivalence of Neuropsi and MMSE
as tests to diagnose cognitive impairment. To rule out possible
effects of age on the Neuropsi, another correlation test was made
between the total score of the Neuropsi and age.

2.5.2. Polysomnography
Ten epochs of 30 s mostly consecutive before the first episode
of REM sleep and ten during REM sleep were scored for each
subject. The DFA and the mDFA for each epoch and each group
were calculated. Some subjects had not enough epochs at this
episode and another REM episode was chosen. Epochs with
artifacts were rejected by visual inspection. Rejection applied to
few subjects only, affecting 0 and 46 epochs for the CTRL group
in NREM and REM, respectively; and to 6 and 15 for the MCI
group within NREM and REM sleep, respectively. Pearson’s chi-
square tests were performed for each stage to discard any unequal
contribution of N1, N2, or N3 stages. Likewise, chi-square tests
were performed for the comparison of the number of arousals
and the index of arousals per hour of sleep. When the frequency
was lower than 5, the Yates correction was used.

Correlation analyses were performed between the Neuropsi
scores and the Hurst exponents considering the mean of
the ten epochs for each stage at individual derivations and
multichannel values; another correlation was done between the
Hurst exponents of these stages and age. Kolmogorov-Smirnov
tests were performed and all DFA and mDFA data followed
normal distributions. Also, mixed ANOVAs (2× 2) were used to
test for statistical differences, with group (CTRL and MCI) as the
between-subject factor and condition (NREM and REM) as the
within-subject factor, using DFA andmDFA for each channel and
assessing the interhemispheric relationship (bilateral channels
including the EOG), anteroposterior (FP1-P3 and FP2-P4) and
posterior networks (O1-P3-T3 and O2-P4-T4). First, only the
means of the NREM and REM epochs were considered for the
analysis. Next, another mixed ANOVAwas performed not taking
into account the means but instead the ten values for each set
of channel and multichannel contrasts, using the Greenhouse-
Geisser’s correction for repeated measures (see Figure S1 in
Supplementary Material to see the detailed figures for the NREM
to REM transition). By visual inspection one subject from each
group appeared to be an outlier, so these two subjects were
removed and the ANOVAs were repeated. All subjects were kept
because the differences were not qualitatively significant as can
be shown at (see Table S2 in Supplementary Material). Wilcoxon

tests were performed for stationarity percentages between the
ten epochs of each group and stage and throughout the whole
register (see Table S1 in Supplementary Material to see the
detailed percentages for the groups). Bonferroni corrections for
multiple comparisons between channels were not performed,
because these criteria would eliminate our results and so the
present findings must only suggest a tendency.

3. THE COLOR OF NOISE

The power spectrum P of a time series is calculated using the
Discrete Fourier transform. Many natural phenomena show a
characteristic curve that can be fitted to the functional form:

P(f ) ∝ f α (1)

where f is the frequency. In this case, the power spectrum is
said to scale as a power law. Power laws are abundant in nature,
and a few examples include allometric laws in Biology (West
et al., 1997), the inverse-square laws of Newton and Coulomb
(Heering, 1992), Kepler’s third law (Gingerich, 1975), etc. It
is worth noticing the fact that the expression 1 implies scale-
invariance (Song et al., 2005): multiplying f by a constant factor
a gives P(af ) = (af )α = aαP(f ) ∝ P(f ). In other words, the
curve P(f ) is invariant to changes in the scale of the independent
variable since the resulting plot is the same as the original but
scaled by the factor aα in the dependent variable.

Since the seminal work of George Kingsley (Zipf, 1949),
the case when α is negative has been of special interest. Zipf
examined several corpus in English and found that the frequency
of words plotted against their rank constitutes a power law with
exponent α = −1. Figure 2 shows the log-log plot of power
spectrums following a power law for different values of α.

If α ≈ 0, this means that all the frequencies are present
with the same amplitude. If an analogy with the frequencies of
electromagnetic radiation is established, then it is possible to state
that the color of the time series is white, and the time series is
often described as white noise. Following the analogy, the case
of α = −1 emerges from the presence of all the frequencies
but more strongly dominated by low frequencies corresponding
to the red region of the color spectrum, and as red plus white
gives pink the result is called pink noise. Pink noise seems to be
ubiquitous in nature; for a number of examples, refer to Bak et al.
(1987) and Bak (1996). If the power spectrum decays as f−2, the
low frequencies are even more dominant; for historical reasons,
this distribution is called brown noise as it formally coincides with
Brownian noise (Bak et al., 1987).

4. DETRENDED FLUCTUATION ANALYSIS

DFA was introduced by Peng et al. (1995) to analyze non-
stationary heartbeat time series. The purpose of the technique
is to detect self-similar patterns even if they are embedded
in a seemingly non-stationary frame. Furthermore it has the
added feature of avoiding the spurious detection of artificial self-
similarity due to trending of the probability distribution function.
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FIGURE 2 | The figure shows the power spectra of a set of time series. The

scale of both axes is logarithmic, meaning that the plots are power laws in

linear scales; that is, a family of parabolas or hyperbolas depending on the

sign of the exponent. A horizontal line in the power spectrum means that all

the frequencies appear in the Fourier transform of the time series with the

same power. In analogy with the visible electromagnetic radiation, this case is

know as “white noise.” Of special interest are the cases when the slope of the

line is -1 and -2. In the first scenario, the time series has all the frequencies but

the low ones dominate and thus it has a mixture of white and red and the

result is called “pink noise.” When the slope is -2, the resulting noise (it has all

the frequencies) is called “Brown” not because the mixture of frequencies lead

to that color but because it coincides with the power spectrum of Brownian

motion. Extending the analogy, a rising line would contain all the frequencies

but as the large ones dominate, the resulting color would correspond to the

various tones of bluish.

DFA starts with a discrete time series x(i), for i = 1, 2, . . . ,N and
then this is substituted by the integrated values y(i) so that a self-
similar process is obtained. This integrated time series is defined
by

y(k) =
k∑

i = 1

(x (i) − x) , (2)

where the average value x of the times series x(i) is given by the
formula x = 1

N

∑N
i = 1 x(i). The next step in DFA consists in

measuring the vertical characteristic scale for the integrated time
series. This is achieved by dividing y(i) into N boxes of equal
length n. For each one of these boxes we perform a linear least
squares fitting of the data which is referred to as the local trend
on that box. The ordinate at the straight line is denoted by yn.
We note that, more generally, yn could be the y coordinate of a
degreem polynomial fitting, and by choosingm > 1, we would be
removing not only constant or linear trends but also higher order
trends; to distinguish this particular approach we refer to the
resulting method as DFAm, where the value of m ≥ 0 represents
the degree of the polynomial fitting. We now come to the detrend
step of DFA: we subtract from y(i) the linear local trend yn(i) for

each n. Depending on the box size n, the characteristic length-
scale function for the fluctuations in the integrated and detrended
series is:

F(n) =

√√√√ 1

N

N∑

k = 1

(
y
(
k
)
− yn

(
k
))2

. (3)

Finally, we plot the values of log n against the values of logF(n)
and observe a linear relationship which indicates the presence of
a power law, in other words

F(n) ∼ nα . (4)

The scaling exponent α is calculated as the slope of the line
relating logF(n) and log n. If α is greater than 0.5, then there
are persistent long-range correlations in x(i). In case α is equal
to 1, then we obtain the so called 1/f noise (Li and Holste,
2005) a case which has attracted a lot of interest from both
physicists and biologists. If 0 < α < 0.5, then this detects
anti-correlations in x(i), that is, large values are expected to be
followed by small values and vice versa (Peng et al., 1995). Hence,
DFA can be regarded as a methodology for detecting scaling
behavior in observational time series that may be affected by non-
stationarities. This applies to our case with psychophysiological
electric signals.

5. MULTICHANNEL DETRENDED
FLUCTUATION ANALYSIS

While DFA allows the analysis of one time series x(i) in order
to assess the long range correlation of the data involved, for
example, in the non-stationary heartbeat time series (Peng et al.,
1995), or in the non-linear analysis of anesthesia dynamics
(Zhang et al., 2001), it is evident that a similar analysis is needed
for time series which are sequences of observations consisting of
several simultaneous inputs, so as to be able to assess the long
range correlation of multichannel data. For example, in our case,
we record information from one night polysomnography with
several electrodes, because the information registered by a single
electrode alone cannot possibly give a complete picture of how
the central nervous system is working.

Here we present a generalization of DFA as introduced by
Rodriguez et al. (2011) which precisely enables the analysis of
multichannel data. Begin with a vector valued time series Ex(i),
that is, for each i = 1, 2, . . . ,N, we have anm-dimensional vector
Ex(i) =

(
x1(i), x2(i), . . . , xm(i)

)
. We emphasize that m represents

the number of inputs of each recording. Then the mDFA will
basically implement the DFA methodology in each component
of the m-dimensional time series while manipulating the vector
valued time series with the arithmetic of vectors in R

m. So we
initiate the process by considering the integrated values of our
vector valued time series as in Equation (2), that is,

Ey(k) =
k∑

i = 1

(
Ex(i)− x̂

)
, (5)
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where x̂ = 1
N

∑N
i = 1 Ex(i) is nothing but the vector

where each of its components is the average value of the
corresponding components of the given vector valued time
series Ex(1), Ex(2), . . . , Ex(N). This step results in a component-wise
self-similar process. We now measure the vertical characteristic
scale for the integrated time series in each component. For this
purpose, we divide each component of the integrated time series
into boxes of equal length n. For each one of these boxes and for
the data of each component, a linear least squares fitting (called
the local trend of the component on that box) is performed.
The vector of values of the y coordinates of the straight lines is
denoted by −→yn (k). Just as in the DFA process, we detrend the
integrated time series Ey(k) component by component, so that we
subtract −→yn (k). By modifying Equation (3) in such a way that
individual contributions for the detrended fluctuations of every
vector component i = 1, 2, . . . ,m are taken into account, we
define

F(n) =

√√√√ 1

N

N∑

k = 1

∥∥Ey
(
k
)
−−→yn

(
k
)∥∥2. (6)

When we plot the values of log n against the values of logF(n), a
linear relationship is observed which indicates the presence of a
power law, that is to say

F(n) ∼ nα . (7)

Hence, the scaling exponent α represents the fluctuations and can
be approximated as the slope of the line relating logF(n) and
log n, as in the classic DFA situation.

6. STATIONARITY

Electrophysiological phenomena are typically regarded as
complex signals, i.e., non-linear and non-stationary. We
therefore assume the time series x(i) comes from a non-stationary
process X(t) with E(X(t)) = 0 and E(X2(t)) < ∞, which admits
an evolutionary spectrum as defined in Priestley (1965). The test
introduced by Priestley and Subba Rao (Priestley and Subba Rao,
1969) makes use of the concept of evolutionary spectrum (that
is, possibly time dependent) of a non-stationary process, and the
basis of the method consists essentially in testing the uniformity

of that evolutionary spectrum evaluated at a set of different
frequencies and instants in time.

For estimating h(t, ξ ), the evolutionary spectral density
function (evolutionary SDF) at frequency ξ and time t, the
“double window” technique is used (Priestley, 1966). The
algorithm of the double window is as follows: two functions wτ

and g, referred to as windows, which satisfy the conditions

• 2π
∫ ∞
−∞|g(u)|2du =

∫ ∞
−∞|Ŵ(ξ )|2dξ = 1

• wτ (t) ≥ 0 for all t, τ
• wτ (t) → 0 as |t|→ ∞, for all τ
•

∫ ∞
−∞ wτ (t)dt = 1 for all τ

•
∫ ∞
−∞

(
wτ (t)

)2
dt < ∞ for all τ

• There exists a constant C such that
limτ→∞ τ

∫ t
−∞

∣∣Wτ (λ)
∣∣2 dλ = C

where Ŵ(ξ ) =
∫ ∞
−∞ g(u)eiuξdu,Wτ (λ) =

∫ ∞
−∞ wτ (t)e−iλt dt. The

window g is used to build an estimator U for evolutionary SDF

U(t, ξ ) =
t∑

u = t−T

g(u)x(t − u)e−iξ (t−u). (8)

The estimator U is demonstrated (Priestley, 1966) to be
asymptotically unbiased (E(U(t, ξ )) ≈ h(t, ξ )) but inconsistent
(Var(U(t, ξ )) ≈ h2(t, ξ )). Thus the second window wτ (t) is
used to build a second estimator, ĥ, which is both asymptotically
unbiased and asymptotically consistent

ĥ(t, ξ ) =
t∑

u = t−T

wτ (u)|U(t − u, ξ )|2 (9)

Furthermore, assuming the bandwidth of
∣∣Ŵ(θ)

∣∣2 to be small
compared with the frequency domain bandwidth of h(t, ξ ), or
the bandwidth of Wτ (u) to be small compared with the time-
domain bandwidth of h(t, ξ ), the following approximations can
be obtained

• E
(
ĥ(t, ξ )

)
≈ h(t, ξ )

• Var
(
ĥ(t, ξ )

)
≈

C

τ
h2(t, ξ )

∫ ∞
−∞

∣∣Ŵ(θ)
∣∣4 dθ

Let Y(t, ξ ) = log
(
ĥ(t, ξ )

)
, then

TABLE 3 | Priestley and Rao test variance analyses.

Item Sum of squares Degrees of freedom

Between times ST = J
∑I

i = 1

(
Yi,• − Y•,•

)2 I− 1

Between frequencies SF = I
∑J

j = 1

(
Y•,j − Y•,•

)2 J− 1

Interaction + Residual SI+R =
∑I

i = 1

∑J
j = 1

(
Yi,j − Yi,• − Y•,j + Y•,•

)2
(I− 1)(J− 1)

Total S0 =
∑I

i = 1

∑J
j = 1

(
Yi,j − Y•,•

)2 IJ− 1

Time averages Yi,• = 1
J

∑J
j = 1 Yi,j

Frequencies averages Y•,j =
1
I

∑I
i = 1 Yi,j

Total average Y•,• = 1
IJ

∑I
i = 1

∑J
j = 1 Yi,j
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• E
(
Y(t, ξ )

)
≈ log

(
h(t, ξ )

)

• Var
(
Y(t, ξ )

)
≈ C

τ

∫ ∞
−∞

∣∣Ŵ(θ)
∣∣4 dθ

It is important to notice that the variance of Y is asymptotically
independent of both ξ and t. Alternatively, we may write

Y(t, ξ ) = log
(
f (t, ξ )

)
+ ε(t, ξ ), (10)

where approximately E
(
ε(t, ξ )

)
= 0 and Var

(
ε(t, ξ )

)
=

σ 2 C
τ

∫ ∞
−∞

∣∣Ŵ(θ)
∣∣4.

Let us choose a set of times t1, t2, . . . , tI and a set of frequencies
ξ1, ξ2, . . . , ξJ and write Yi,j = Y(ti, ξj), hi,j = j(ti, ξj) and εi,j =

ε(ti, ξj) for i = 1, 2, . . . , I and j = 1, 2, . . . J. Then we obtain a
model

Yij = fij + εij (11)

where the {εij} can be regarded as uncorrelated if the points
(ti,j, ξi,j) are sufficiently wide apart. If in addition the number
of points are sufficiently large, then it turns out that the {εi,j}
follow a normal distribution, that is, εi,j ∼ N(0, σ 2). With this
assumption, we may rewrite our model as the usual model of the
two factor variance analysis, that is, as

H0 : Yi,j = µ + αi + βj + γi,j + εi,j (12)

TABLE 4 | Polysomnographic sleep measures for each group.

CTRL MCI

Mean SD Mean SD t p

TST (min) 372.86 72.04 347.91 89.83 0.55 0.58

N1/TST 6.91 4.87 9.33 5.80 0.81 0.43

N2/TST 48.41 10.48 42.70 20.77 0.64 0.53

N3/TST 17.96 8.70 19.13 9.44 0.23 0.82

REM/TST 12.86 4.28 11.92 3.51 0.42 0.67

WASO 11.65 3.65 9.83 11.10 0.41 0.68

Sleep efficiency (%) 83.24 4.71 85.27 11.40 0.43 0.67

Latency to sleep (min) 12.98 9.06 10.18 11.16 0.49 0.62

Latency to REM (min) 101.85 39.50 78.57 41.85 1.03 0.32

Wakefulness and arousals -n χ
2 p

Wakefulness 156 147 0.26 0.60

Wakefulness per hr 22.3 19.70 0.16 0.68

Arousals 588 677 6.26 0.01

Arousals per hr 77.95 88.11 0.62 0.43

TST, Total Sleep Time; N1, Stage 1; N2, Stage 2; N3, Stage 3+4; REM, Rapid Eye Movement sleep; WASO, Wakefulness After Sleep Onset; MCI, Mild Cognitive Impairment; CTRL,
Control. Student t-tests, p < 0.05. Significant results for ANOVA tests are indicated in bold.

FIGURE 3 | Correlation of age vs. Hurst values in Non-Rapid Eye Movement (NREM) Sleep for each eye signal. LOG, Left Oculogram; ROG, Right Oculogram; CTRL,

Control group; MCI, Mild Cognitive Impairment group. Significant results for ANOVA tests are indicated in bold.
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For a stationary process, it is fairly straightforward that

E
(
ĥ(t, ξ )

)
≈ h(ξ ) is independent of t. Therefore, the degree of

stationarity may be tested by means of the model

H1 : Yi,j = µ + βj + εi,j. (13)

against the model H0 in (12). We now construct the table of the
standard analysis of variance for a two factor design, as shown in
Table 3.

The first step of the test uses the statistic SI+R ∼
σ 2χ2

(
(I − 1)(J − 1)

)
, which follows a chi-squared distribution

and will be 0 for γ = 0. When the interaction is not significant,
we proceed to test the statistic ST ∼ σ 2χ2(I − 1) which is 0
for β = 0. Stationarity is proved when both interaction and
time effect are not significant. For more information see Priestley
(1981).

7. RESULTS

7.1. Neuropsychological Testing
As stated above, age and education had an almost perfect negative
correlation [r(11) = −0.82, p < 0.001]. The MMSE and the

Neuropsi scores were significantly correlated according to the
Pearson correlation coefficient [r(11) = 0.65, p < 0.01]. Neuropsi
scores and age were not correlated [r(11) =−0.28, p < 0.33].

7.2. Polysomnography
As mentioned above, subjects had few sleep complaints reported
on the SAST. But on their sleep questionnaires more complaints
appeared in the CTRL group: four members of the CTRL group
declared their sleep was not very good and three of them good,
while all members of the MCI group stated their sleep was good.
According to the sleep questionnaire, mean subjective general
latency to sleep onset was 21.5 for the CTRL group (range from
10 to 60 min) and 20.7 min (range from 10 to 60 min) for the
MCI group, with no significant differences between them [t(11)
= 0.09, p <0.93]. Nevertheless, according to the Likert scale,
the night at the laboratory was evaluated as good (85 and 94%,
respectively for the CTRL and MCI group) without significant
differences between groups [t(11) = 1.57, p < 0.14].

The Neurophysiologist found among MCI subjects several
cases of suspected RLS and/or fragmented sleep. The intensity
of leg movement indexes for the MCI group per hour was
abnormally high (range from 16.88 to 70.87 movements per
hour). Only two CTRL subjects could be registered for leg

TABLE 5 | Scaling results for each group in the transition from NREM to REM at individual derivations.

CTRL MCI Mixed ANOVA

NREM REM NREM REM Group Stage Group × stage

Df = 1, 22 Df = 1, 22 Df = 1, 22

Mean (SD) Mean (SD) Mean (SD) Mean (SD) F p F p F p

FP2 1.34 (0.15) 1.29 (0.13) 1.35 (0.11) 1.42 (0.17) 1.31 0.276 0.10 0.754 5.81 0.035

FP1 1.37 (0.15) 1.29 (0.12) 1.35 (0.12) 1.40 (0.16) 0.56 0.471 0.37 0.555 4.55 0.056

F8 1.33 (0.16) 1.29 (0.14) 1.34 (0.19) 1.41 (0.18) 0.71 0.417 0.11 0.750 6.35 0.029

F7 1.38 (0.21) 1.31 (0.13) 1.30 (0.11) 1.41 (0.14) 0.04 0.852 0.12 0.734 7.49 0.019

F4 1.30 (0.19) 1.24 (0.15) 1.30 (0.12) 1.36 (0.17) 0.54 0.476 0.11 0.742 8.79 0.013

F3 1.34 (0.21) 1.25 (0.14) 1.29 (0.12) 1.30 (0.15) 0.00 0.996 3.11 0.106 4.23 0.064

T4 1.30 (0.12) 1.27 (0.14) 1.28 (0.12) 1.37 (0.13) 0.38 0.549 1.54 0.241 6.82 0.024

T3 1.35 (0.20) 1.24 (0.13) 1.26 (0.13) 1.30 (0.19) 0.02 0.890 1.75 0.213 5.30 0.042

C4 1.29 (0.17) 1.22 (0.13) 1.28 (0.10) 1.30 (0.13) 0.35 0.568 1.22 0.293 3.93 0.073

C3 1.30 (0.15) 1.24 (0.14) 1.26 (0.13) 1.26 (0.14) 0.06 0.809 2.03 0.182 1.82 0.205

T6 1.19 (0.26) 1.11 (0.22) 1.29 (0.14) 1.25 (0.44) 0.86 0.374 2.15 0.171 0.25 0.626

T5 1.26 (0.13) 1.22 (0.14) 1.24 (0.12) 1.30 (0.16) 0.28 0.609 0.07 0.803 3.27 0.098

P4 1.26 (0.17) 1.18 (0.11) 1.26 (0.12) 1.26 (0.16) 0.37 0.557 2.97 0.113 2.88 0.118

P3 1.27 (0.17) 1.19 (0.11) 1.24 (0.11) 1.25 (0.16) 0.06 0.805 2.61 0.135 2.98 0.112

O2 1.29 (0.13) 1.19 (0.10) 1.26 (0.10) 1.26 (0.17) 0.20 0.660 3.41 0.092 2.70 0.129

O1 1.29 (0.13) 1.20 (0.12) 1.25 (0.12) 1.23 (0.16) 0.00 0.980 5.66 0.037 1.94 0.191

FZ 1.32 (0.15) 1.25 (0.14) 1.28 (0.12) 1.29 (0.15) 0.00 0.986 2.32 0.156 4.13 0.067

CZ 1.27 (0.13) 1.24 (0.16) 1.27 (0.12) 1.28 (0.14) 0.14 0.717 0.30 0.594 1.23 0.291

PZ 1.29 (0.21) 1.19 (0.12) 1.27 (0.11) 1.24 (0.16) 0.03 0.872 3.67 0.082 1.07 0.322

LOG 1.41 (0.18) 1.41 (0.17) 1.41 (0.09) 1.56 (0.18) 1.07 0.324 3.93 0.073 4.96 0.048

ROG 1.40 (0.16) 1.37 (0.17) 1.37 (0.12) 1.51 (0.18) 0.76 0.401 2.20 0.166 6.19 0.030

EMG 0.69 (0.38) 0.71 (0.35) 0.50 (0.12) 0.73 (0.33) 0.24 0.633 1.79 0.213 1.33 0.278

CTRL, Control group; MCI, Mild Cognitive Impairment group; REM, Rapid Eye Movement sleep; NREM, Non-REM sleep; LOG, Left Oculogram; ROG, Right Oculogram; EMG,
Electromyogram. Significant results for ANOVA tests are indicated in bold. In each case, the Greenhouse-Geisser’s correction for repeated measures was employed.
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movements: one subject had 5.32 sequences of Periodic Leg
Movements (PLM) and the other had an index of 46.05 PLM
per hour of sleep. The number of awakenings per hour was not
abnormal. For the CTRL group, awakenings per hour ranged
from 1.8 to 4.5 for all subjects; and the MCI group had from
1.9 to 5.1 awakenings per hour. Nevertheless, when arousals were
considered, four CTRLmembers had a range of arousals per hour
of 3.5 to 6.5 and three of them from 13.23 to 24.04. Instead, two
subjects from the MCI group had a range of 2.6 to 7.6 arousals
per hour, while four of them had 12.59 to 35.9 arousals per
hour. The number of arousals reached statistical significance, the
frequency of arousals for the MCI group being higher than for
the CTRL group (chi = 6.26, df = 1, p < 0.01). In addition,
another subject belonging to the MCI group had a diminished
latency to REM sleep suggestive of narcolepsy. A subject of
the CTRL group presented a diminished latency to REM sleep
suggestive of depression but the clinical assessment ruled out
that possibility. Despite those results, there were no significant
differences regarding TST, percentages of sleep stages, efficiency,
latencies to sleep onset or to REM sleep for the groups. Table 4

shows these polysomnographic results, the epochs recorded as
“wakefulness,” the index of wakefulness per hour of sleep, and the
overall number of arousals and arousals per hour.

7.3. DFA and mDFA
The percentages of NREM for N1, N2 and N3 stages for the
CTRL group were 10, 51.4, and 38.5%, respectively; likewise, for
the MCI group, 1.6, 70, and 28.3%, respectively. None of the
frequencies of the ten NREM epochs subjected to the quantitative
analyses for the DFA and mDFA showed significant differences
between groups (chi = 1.56, df = 1, p < 0.21 for N1; chi = 0.46,
df= 1, p < 0.49 for N2; chi= 2.27, df= 1, p < 0.13 for N3).

Hurst mean values in NREM and age were negatively
correlated at LOG and ROG derivations [r(11) = −0.78, p <

0.001; r(11) =−0.70, p < 0.001], for LOG and ROG, respectively],
as can be seen in Figure 3.

On the other hand, education was positively correlated with
Hurst mean values in NREM sleep at the same derivations,
LOG and ROG [r(11) = 0.68, p < 0.01; r(11) = 0.61, p <

0.02, respectively]. In addition, a significant positive correlation

FIGURE 4 | Mean Hurst values for each group and stage. NREM, Non-REM Sleep; REM, Rapid Eye Movement sleep; LOG, Left Oculogram; ROG, Right Oculogram;

EMG, Electromyogram; CTRL, Control group; MCI, Mild Cognitive Impairment group.
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between the Neuropsi scores and the Hurst mean exponents of
NREM sleep was found at the left posterior network [r(11) = 0.55,
p < 0.04].

For REM sleep, Hurst mean values and education were
negatively correlated at the EMG [r(11) = -0.67, p < 0.02].

ANOVA results considering only the mean of the Hurst
values for the ten NREM and the mean of the ten REM epochs
were not significant. Nevertheless, the comparison considering
the ten Hurst values of the NREM and REM epochs rendered
one difference in stages at O1. Both Hurst values decreased
from NREM to REM. Interactions in the ANOVA tests for the
monopolar channels were found at LOG and ROG channels and
frontotemporal derivations (FP2, F8, F7, F4, T4, and T3) and in
all cases, the means were higher in REM sleep stages for the MCI
group (Table 5 and Figure 4).

Another interaction at the interhemispheric relationship was
significant at the F7-F8 pair of derivations, following the same
tendency of being higher for the MCI group (Table 6 and
Figure 5).

Likewise, the scaling values for the right frontoparietal
network showed an interaction and increased for the MCI group
and decreased for the CTRL group (Table 6 and Figure 6).

7.4. Stationarity
Each of the NREM and REM epochs was classified as stationary
or non-stationary by using the described methodology stated
above and considering a 30- seconds epoch was a better estimate
of the degree of stationarity than a 10-seconds epoch, as can be
seen in Figure 7.

Both types of classified epochs were represented visually for
the whole night register in Figure 8.

The quantity of those stationary epochs did not show
significant correlations with age, neither with MMSE nor
Neuropsi scores. Also, no significant differences between groups
nor sleep stages were found considering the ten values from each
stage; this is believed to be due to a small-sample effect. The
methodology was repeated for the whole night PSG register and
similar analyses were performed. There was a great variability,
as shown in the Table S1 of the Supplementary Material.
Nevertheless, Wilcoxon tests were significant for each group in
frontal (FP2, FP1, and F7) and LOG and ROG channels. For the
CTRL group, F3 was also significant, as can be seen in Figure 9.

These results suggest that (1) the differences between REM
andNREM can be effectively traced using simple techniques such
as weak stationarity detection (Figure 8), and (2) there are real
differences between groups, though not enough to be detected
statistically by this method.

8. DISCUSSION

REM sleep enhances memory and attention processes by
cholinergic inputs (Braun et al., 1997) via pontine (Datta et al.,
2004) and basal forebrain structures (Blake and Boccia, 2017).
During normal aging and especially during pathological aging,
attention and memory processes become more vulnerable, and
cholinergic neurons are mostly affected (Schliebs and Arendt,
2011). Aging affects various anatomic structures resulting in a
loss of dendritic arbor in cortical neurons that show degradation
in their structural fractal complexity (Lipsitz and Goldberger,
1992).

Non-linear dynamics and complex systems appear to be well
suited to explain these phenomena (Babloyantz and Destexhe,

TABLE 6 | Scaling results for each group in the transition from NREM to REM at anteroposterior and posterior networks.

CTRL MCI Mixed ANOVA

NREM REM NREM REM Group Stage Group × stage

Df = 1, 22 Df = 1, 22 Df = 1, 22

Mean (SD) Mean (SD) Mean (SD) Mean (SD) F p F p F p

FP1-FP2 1.31 (0.17) 1.27 (0.14) 1.35 (0.16) 1.38 (0.17) 0.87 0.371 0.11 0.747 1.24 0.290

F7-F8 1.34 (0.20) 1.29 (0.15) 1.33 (0.23) 1.41 (0.19) 0.31 0.590 0.05 0.834 5.03 0.047

F3-F4 1.28 (0.21) 1.22 (0.16) 1.27 (0.17) 1.29 (0.15) 0.08 0.786 0.86 0.373 2.87 0.118

T3-T4 1.30 (0.18) 1.25 (0.14) 1.25 (0.16) 1.31 (0.13) 0.00 0.991 0.03 0.872 4.57 0.056

C3-C4 1.26 (0.16) 1.20 (0.16) 1.23 (0.14) 1.23 (0.11) 0.00 0.990 2.08 0.177 1.73 0.216

T5-T6 1.25 (0.13) 1.20 (0.15) 1.24 (0.17) 1.28 (0.21) 0.20 0.660 0.13 0.722 1.83 0.204

P3-P4 1.21 (0.18) 1.15 (0.15) 1.21 (0.15) 1.20 (0.13) 0.08 0.776 1.86 0.199 1.16 0.305

O1-O2 1.25 (0.13) 1.17 (0.13) 1.22 (0.15) 1.20 (0.14) 0.00 0.958 3.64 0.083 0.88 0.368

LOG-ROG 1.34 (0.18) 1.32 (0.16) 1.37 (0.14) 1.47 (0.18) 1.36 0.268 0.98 0.343 2.10 0.176

FP2-P4 1.27 (0.18) 1.22 (0.15) 1.26 (0.15) 1.33 (0.17) 0.32 0.583 0.17 0.685 7.22 0.021

FP1-P3 1.28 (0.17) 1.23 (0.12) 1.26 (0.15) 1.31 (0.14) 0.14 0.712 0.02 0.877 4.39 0.060

O2-P4-T4 1.25 (0.14) 1.22 (0.15) 1.25 (0.16) 1.27 (0.14) 0.09 0.771 0.09 0.775 0.87 0.370

O1-P3-T3 1.28 (0.16) 1.21 (0.15) 1.20 (0.15) 1.21 (0.13) 0.37 0.557 1.40 0.262 2.43 0.147

CTRL, Control group; MCI, Mild Cognitive Impairment group; REM, Rapid Eye Movement sleep; NREM, Non-REM sleep; LOG, Left Oculogram; ROG, Right Oculogram; EMG,
Electromyogram. Significant results for ANOVA tests are indicated in bold. In each case, the Greenhouse-Geisser’s correction for repeated measures was employed.
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FIGURE 5 | Mean Hurst values for each group and stage for interhemispheric

networks. NREM, Non-Rapid Eye Movement sleep; REM, Rapid Eye

Movement sleep; LOG, Left Oculogram; ROG, Right Oculogram; CTRL,

Control group; MCI, Mild Cognitive Impairment group.

1986). There is a number of reports specifically addressing EEG
signals during sleep: from the theoretical quantification of the
effects of non-linearity (Aeschbach and Borbérly, 1993; Fell et al.,
1993) to characterization of some pathologies (Röschke et al.,
1995). Recent advances in nonlinear dynamics have pointed
toward the relevance of using the framework of power-laws
and associated tools to extract information from the EEGs (Lee
et al., 2004), nevertheless, subjects under investigation have been
few; only healthy subjects or subjects with sleep disorders as
apnea, insomnia or narcolepsy have been studied, and non-linear
methods have been heterogeneous.

Recent work showed a generalization of the DFA, named
multivariate DFA (MVDFA) (Xiong and Shang, 2017). This
analysis is very similar to the one developed by our group and
referred to in this paper as mDFA (Rodriguez et al., 2011). Xiong
and Shang (2017) showed the validity of the proposed MVDFA
illustrated by numerical simulation on synthetic multivariate
processes as well as on stock indices in Chinese and U.S. stock
markets. Furthermore, these authors calculated the DFA of a
single time series and showed that MVDFA is related to the
average DFA of each time series. In this research we used mDFA
to show interhemispheric, anteroposterior and posterior network
behavior between EEG recordings and DFA of a single channel to
validate differences between the CTRL and the MCI groups.

Lee et al. (2004) calculated the Hurst exponent of the
recordings of normal sleep stages of six healthy subjects against

FIGURE 6 | Mean Hurst values for each group and stage at anteroposterior

and posterior networks. NREM, Non-Rapid Eye Movement sleep; REM, Rapid

Eye Movement sleep; LOG, Left Oculogram; ROG, Right Oculogram; CTRL,

Control group; MCI, Mild Cognitive Impairment group.

the Hurst exponent of six recordings of apnea from MIT/BIH
polysomnography database. The scaling exponents of apnea were
found to be lower than those of healthy subjects.

Acharya et al. (2005) computed several parameters, including
the Hurst exponent but not through DFA. They worked out their
analysis with eight EEG data from the sleep-EDF database from
the PhysioBank, a data resource.

Weiss et al. (2009) based their study on the data from
ten subjects, a similar number of subjects to those studied
in the present research. Weiss et al. (2011) confirmed their
previous results concerning Hurst values but now with twenty
two participants. They added correlation analyses between Hurst
exponents and the range of fractal spectra to strengthen their
previous results through the use of fractal analysis to emphasize
known phenomena of human sleep, in this case by proving that
fractal range was a better estimating measure for classifying sleep
stages.

Kumar et al. (2012) have proposed a pharmacological and
neurophysiological model to reveal how the transition from
wakefulness to NREM and REM sleep occurs. The transition has
been explored in younger adults or in people with sleep disorders
by means of mathematical analyses of one of the markers of
REM sleep. In Kishi et al. (2011), a control night was compared
with a night after a dose of risperidone, but only latencies and
percentages of EEG stages were obtained. In another work in
healthy young subjects an abrupt change in spectral analysis for
two broad bands was observed on the EMG: one from 24 to
28 Hz and the other from 28 to 32 Hz (Rosales-Lagarde et al.,
2009). Also, Bliwise et al. (1974) searched for EMG changes
in 5 young female adults and discovered that the lowest tonic
levels in EMG occurred just before REM sleep, increasing for
subsequent periods of NREM sleep and decreasing again before
the subsequent REM period. Hadjiyannakis et al. (1997) followed
the three REM sleep markers, did spectral analysis of the EEG
in a larger window than the above mentioned study of Rosales-
Lagarde et al. (2009) and concluded that neither in normal
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FIGURE 7 | Effect of window size on the classification of stationarity. The epoch of 30 s in contrast with the 10 seconds window was chosen in order to avoid local

stationarity of small size windows. White bars indicate non-stationarity and black bars stationarity in time series of epochs.

controls nor in narcoleptics, abrupt modifications in the power
density of the frequencies were observed.

Nevertheless, the NREM to REM transition has not
been explored by non-linear analysis with the exception of
Bizzotto et al. (2010) who used Markov-chain models in
insomnia patients, but to our knowledge no paper has presented
a non-linear analysis in the NREM to REM transition in MCI
subjects.

In our research, the three indicators of sleep were tested. There
were selective differences in the transition from NREM to REM
sleep for each group.

On the EEG, while the CTRL group, with preserved memory,
attention and executive functions diminished its signal structure
in frontotemporal areas from NREM to REM sleep, the MCI
group had higher values suggestive of a tendency toward
Brownian noise, strongly dominated by low frequencies, a result
that had to be confirmed later using spectral analysis. In this
matter, CTRL results agree with the findings of Weiss et al.
(2009), because lower Hurst values were found in frontal regions

in REM sleep. This is in accordance to several studies that
refer to an anteroposterior gradient using metabolic techniques
in resting states, indicating a greater hypofrontality relative to
age (Moeller et al., 1996), but also during REM sleep. Only
the left occipital area distinguished between stages. Likewise,
Weiss et al. (2009) found differences for the Hurst values
from NREM4 to REM in that site. The mDFA rendered
a frontopolar relationship, because while the CTRL group
diminished its scaling exponents, the MCI group increased
them.

Inter-individual connectivity has been proved to distinguish
heteromodal cortices from primary areas (Mueller et al., 2013)
and in this work has been associated with group differences in
cognitive functioning in the NREM and REM transition.

A dissimilar pattern among interhemispheric coupling,
anteroposterior and posterior areas (Pérez-Garci et al., 2001;
Corsi-Cabrera et al., 2003) was not found. Instead, the individual
scaling exponents and the networks followed a greater Hurst
value for the MCI group.
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FIGURE 8 | Stationary patterns according to the Priestley and Subba Rao Tests during the whole night for one control subject. At the upper figure, each black or white

point represents an epoch. Black epochs indicate a greater degree of stationarity and white ones a lesser degree of stationarity. REM sleep is colored in green. Below,

a closer look is shown. A pattern is found before REM sleep onset and during the ongoing REM sleep: a higher degree of stationarity (red) that becomes suddenly less

stationary (blue) and adopts another non-stationary pattern for REM sleep (green). LOG, Left Oculogram; ROG, Right Oculogram; EMG, Electromyogram.

From NREM to REM, at both right and left EOG, the MCI
group increased its signal structure toward Brownian noise. The
correlations with Hurst values of the EOGs in NREM sleep
rendered a negative association with age and a positive one with
education. Also, in NREM sleep, the left posterior network was
positively correlated with Neuropsi scores, meaning this network
is sensitive for measuring cognitive impairment.

Muscle activity at REM sleep was negatively correlated with
education. Van der Hiele et al. (2011) found more theta activity,
less alpha reactivity, and more frontal EMG in Alzheimer’s
patients than in controls. Increased EMG activity indicated more
cognitive impairment and more depressive complaints. Also,
Chen et al. (2011) used root mean square and frequency peak
analysis and found greater values for MCI patients. In the present
study, contrary to EEG and EOG results, EMG values tended to
have scaling exponents of white noise, or, as stated above, anti-
correlations: large values are expected to be followed by small
values and vice versa.

Regarding the great number of participants with RLS,
the latter could not be diagnosed, because all MCI subjects
stated their sleep was good and were practically without sleep
complaints. Periodic RLS episodes are followed by increases in

power, heart beat and arousals (Sieminski et al., 2017). Ferri et al.
(2015) concluded that RLS is connected, but not in a simple
causal relation, to arousals. The conclusion of Frauscher et al.
(2014) refers to a high rate of motor events even in normal
subjects. These authors found PLM especially in N1 stage, being
the median of 5 per hour. The great number of arousals can
help to explain group differences, because subjective complaints,
both of memory and sleep, were minimal. Changes of beta-
amyloid ocurring in sleep disorders point toward the disruption
of NREM sleep and, in particular, of SWS (Brown et al., 2016;
Cellini, 2017). Potential underestimation of memory and sleep
may affect these MCI subjects more than CTRLs. Gender effects
could have influenced these results (Nikulin and Brismar, 2005),
because almost all the CTRL group were women and most of
the MCI subjects were men. In future works this factor must be
controlled for.

The arbitrary exception for the degree of detection of
stationarity when using the whole-night register, instead of a
few NREM and REM epochs, was motivated mainly to counter
the small-sample effect, but it was also preferred for being one
of the fastest algorithms to compute (Nason, 2013). Previous
results showed that this technique can be used for detecting
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FIGURE 9 | Polysomnographic recordings of the whole night subjected to Priestley and Subba Rao Tests for stationarity analyses. NREM, Non-Rapid Eye Movement

Sleep; REM, Rapid Eye Movement Sleep; LOG, Left Oculogram; ROG, Right Oculogram; CTRL, Control Group; MCI, Mild Cognitive Impairment Group. One or two

asterisks mean p < 0.05 and p < 0.001, respectively, according to Wilcoxon tests.

sleep stages for OAs (Rosales-Lagarde et al., 2017), so these new
results indicate that such detection is still valid for some cognitive
impaired OAs.

Finally, it must be highlighted that larger samples are needed
to confirm the present findings.

9. CONCLUSION

At the NREM to REM transition, executive functioning in MCI
subjects was associated with brown noise in frontotemporal and
LOG and ROG scaling exponents. On the EEG, both for DFA and
mDFA, MCI OAs performing poorly on memory, attention and
executive functions increased their Hurst values toward Brown
noise fromNREM to REM stages, while the CTRL group followed
an opposite direction. On the EOG, both groups increased their
Hurst values, and again the MCI group came nearer to its fractal
breakdown. Muscle scaling values were lower than cerebral and
eye movement Hurst values. Stationary differences were found at
the whole register for the distinction of stages within the groups.
Given the small size of the samples, any conclusion should be
considered as preliminary and to confirm this data larger studies
are needed.
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