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ABSTRACT Host-associated microbiomes can be critical for the health and proper
development of animals and plants. The answers to many fundamental questions re-
garding the modes of acquisition and microevolution of microbiome communities
remain to be established. Deciphering strain-level dynamics is essential to fully un-
derstand how microbial communities evolve, but the forces shaping the strain-level
dynamics of microbial communities remain largely unexplored, mostly because of
methodological issues and cost. Here, we used targeted strain-level deep sequenc-
ing to uncover the strain dynamics within a host-associated microbial community
using the honey bee gut microbiome as a model system. Our results revealed that
amplicon sequencing of conserved protein-coding gene regions using species-
specific primers is a cost-effective and accurate method for exploring strain-level di-
versity. In fact, using this method we were able to confirm strain-level results that
have been obtained from whole-genome shotgun sequencing of the honey bee gut
microbiome but with a much higher resolution. Importantly, our deep sequencing
approach allowed us to explore the impact of low-frequency strains (i.e., cryptic
strains) on microbiome dynamics. Results show that cryptic strain diversity is not re-
sponsible for the observed variations in microbiome composition across bees. Alto-
gether, the findings revealed new fundamental insights regarding strain dynamics of
host-associated microbiomes.

IMPORTANCE The factors driving fine-scale composition and dynamics of gut micro-
bial communities are poorly understood. In this study, we used metagenomic ampli-
con deep sequencing to decipher the strain dynamics of two key members of the
honey bee gut microbiome. Using this high-throughput and cost-effective approach,
we were able to confirm results from previous large-scale whole-genome shotgun
(WGS) metagenomic sequencing studies while also gaining additional insights into
the community dynamics of two core members of the honey bee gut microbiome.
Moreover, we were able to show that cryptic strains are not responsible for the ob-
served variations in microbiome composition across bees.
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There is increasing evidence that deciphering strain-level diversity is crucial for
understanding the impact of microbiomes on host health. However, the fine-scale

community dynamics within host microbiomes is still poorly characterized and under-
stood. Our lack of understanding of host-associated microbial community dynamics can
be attributed to two main factors. (i) Most methodologies lack the accuracy to fully
evaluate strain-level diversity. (ii) Host-associated microbial communities are generally
very complex, making it challenging to disentangle strain-level dynamics (1, 2). A
common method used in microbiome studies is amplicon sequencing of the 16S rRNA
gene, which fails to provide an accurate picture of species, and especially strain-level,
diversity within a community. Whole-genome shotgun (WGS) metagenomic sequenc-
ing can provide insights about strain diversity. However, WGS metagenomics requires
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a high sequencing depth to recover strain diversity, making it expensive to apply to
large numbers of samples and virtually incapable of capturing low-frequency species
and strains, especially in complex communities. An alternative but rarely used method
for assessing strain-level diversity employs amplicon sequencing of species-specific
protein-coding gene markers (3–6), similar to multilocus sequence typing (MLST) but
applied to natural communities. We will refer to this method as metagenomic amplicon
strain typing (MAST). By assessing nucleotide variation in core protein-coding genes,
MAST can identify strain diversity for each individual species in a community. Therefore,
this approach can be used to determine the population structure and dynamics of
different microbial strains across samples, locations, times, and conditions. However,
one limitation of this approach is that it requires specific primers for each species of the
community. Therefore, it cannot easily be applied to entire complex communities or to
species for which reference genomes are not available.

We used the honey bee (Apis mellifera) as a model system to study the population
dynamics of host-associated microbiomes using the MAST method. The honey bee is an
ideal model system for tackling fundamental questions about microbial community
dynamics because its microbiome is simple (eight species make up �95% of the
community), conserved (five core species are found in all honey bees globally), and
vertically transmitted (from bee to bee) (7–10). Despite the simplicity and conservation
of the honey bee gut microbial community at the species level, a large amount of
strain-level variation has been shown to exist within each of the core species (4, 11–13).
The strain-level diversity within honey bees and bumble bees has been investigated
mostly through WGS metagenomics and isolate or single-cell sequencing (11, 12,
14–20), though one study used the MAST method to investigate strain-level diversity of
Snodgrassella alvi in honey bees and bumble bees (4). From these studies, it has been
shown that individual bees from the same colony harbor different strains, resulting in
very high strain-level diversity within a population, i.e., colony (4, 11–13). There is
evidence that strains can be dominant in an individual bee and absent from another
within the same colony (4, 12) and that within an individual, closely related strains
generally coexist together (12). The high strain-level diversity does not seem to
correspond to variation in age or sampling time, and strains are not unique to
geographic location, e.g., the same strains have been found in bees from different
countries (4, 12). Moreover, strains within the same species often possess different
metabolic capabilities, making individual communities functionally distinct (14–16,
20–22). Although WGS metagenomic studies have revealed a lot about strain-level
dynamics in the honey bee gut, they were unable to rule out the possibility that
low-frequency variants within the population could explain the strain-level population
dynamics. Likewise, the previous study which used the MAST method to investigate
strain diversity designed their marker (MinD) to capture Snodgrassella diversity across
both bumble bees and honey bees (4), limiting their ability to capture fine-scale strain
variation because of the high level of divergence of Snodgrassella, which is likely
composed of multiple species across these different bee hosts.

Here, we used MAST on protein-coding gene markers for two of the most dominant
core members of the honey bee gut microbiome, Snodgrassella alvi and Gilliamella spp.,
to evaluate strain composition in four honey bee colonies from four different locations
in the United States. We were able to confirm the results of previous strain-level studies
while also gaining additional insights. Importantly, we were able to explore the impact
of low-frequency variants on microbiome dynamics and show that cryptic strain
diversity is not responsible for the observed variations in microbiome composition
across bees. We identified that strain composition is far from random in honey bees,
where several strains are frequently associated together, while others almost never
co-occur in the same host. We found that many bees from the same hive harbor highly
divergent strain compositions, while bees sampled across different geographic loca-
tions (different states in the United States) frequently harbor similar strain communities.
Strains present within an individual honey bee typically possess very high sequence
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similarity, and our results indicate that they did not originate from within-host diver-
sification.

RESULTS
Analysis of the MAST markers. We analyzed the strain composition of two core

members of the honey bee gut microbiome: S. alvi and Gilliamella spp. Honey bees
were sampled from a single colony from four different locations in the United States
(numbers of sampled bees per location, 103 for Texas, 21 for Tennessee, 9 for Utah, and
11 for Florida). DNA was extracted from the gut, and amplicon sequencing was
performed for four markers (guaA and gluS for S. alvi and pflA and rimM for Gilliamella
spp.) on each individual bee (6). These markers were designed to target only Snodgras-
sella and Gilliamella in honey bees (A. mellifera), since creating markers that also capture
bumble bee (Bombus spp.) strains resulted in a lack of resolution (6).

Sequenced markers were quality filtered to avoid overprediction due to sequencing
errors (see Materials and Methods). Sequences were aligned, and strains were consid-
ered different if they possessed �1 nucleotide difference along the marker. The
coverage depth of each marker (average of 46,000 reads per marker and per sample)
allowed us to identify strains with high confidence (see Materials and Methods and
Table S1 and Fig. S1 in the supplemental material). Using this approach, we identified
more than 200 different strains for each marker across all bees analyzed.

We also built the core genome phylogenies and marker sequence phylogenies
(amplicon region of each gene used for MAST) using all publicly available genomes of
S. alvi and Gilliamella spp. This allowed us to determine whether the marker sequence
phylogenies were congruent with the species phylogenies. The resolution of the marker
sequence phylogenies is low due to the limited number of base pairs (less than 500 bp
for each marker), but overall, all four marker phylogenies were consistent with the core
genome phylogenies (Fig. S2).

Strain diversity of S. alvi and Gilliamella spp. Since designing our MAST markers
(6), the number of sequenced genomes for Gilliamella has more than doubled and
Gilliamella has been split into at least two, possibly three, distinct species (12, 23). Thus,
we first checked to see whether our four markers captured the entire strain diversity of
S. alvi and Gilliamella spp. To this aim, we built the phylogeny for each marker using our
MAST-derived sequences and the corresponding sequences of the publicly available
genomes. Our results indicate that both markers gluS and guaA captured all the
diversity of sequenced S. alvi from A. mellifera (Fig. S3), which is thought to be the sole
Snodgrassella species present in A. mellifera (12). In contrast, our phylogenetic analysis
indicates that the two Gilliamella markers offer different resolutions: the rimM marker
captures strain diversity across all sequenced Gilliamella species, whereas pflA captures
the strain diversity of G. apicola only (Fig. S4). For clarity, the results of the two
Gilliamella markers will be presented and discussed in parallel, since one marker
provides a genus-level resolution of strain diversity and the other depicts the strain
diversity within the G. apicola species.

We identified an average of five to six strains for both S. alvi and Gilliamella spp. per
bee based on three markers (guaA, gluS, and rimM), while the G. apicola-specific marker
(pflA) yielded an average of 16 strains per bee (Fig. 1). For S. alvi and G. apicola, any two
strains were found to differ by seven to nine single nucleotide polymorphisms (SNPs)
on average (Fig. S5A). As expected, the Gilliamella species marker (rimM) displayed
higher sequence diversity across strains (�20 SNPs), due to the fact that it captures
multiple species (Fig. S5A).

We estimated to what extent our procedure was capable of capturing the entire
strain diversity of S. alvi, G. apicola, and Gilliamella spp. To do so, we conducted a
resampling analysis of the bees used to infer strain diversity and built saturation curves
based on each marker (Fig. S5B). Results indicate that a substantial fraction of the strain
diversity of these bacteria has been captured by our analysis for the four hives sampled
from the four states. However, the saturation curves do not plateau, indicating that we
did not capture the entire strain diversity of Gilliamella spp. or S. alvi. Results likely
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reflect heterogeneous strain compositions across bees and suggest that a larger strain
diversity exists for these two symbionts of the honey bee gut.

Geography does not drive strain composition of the bee gut microbiome. We
tested whether strain distribution was biased across the hives from the four geographic
locations (Texas, Utah, Florida, or Tennessee). We compared the number of distinct
strains observed for each location and compared that to the number of expected
strains under randomization (i.e., each bee was randomly allocated a state). The number
of expected strains under the random distribution was not significantly different from
the observed distribution for S. alvi and G. apicola markers (P � 0.1, chi-square test,
Fig. 2) but was significant for the Gilliamella marker (P � 0.005, chi-square test,
Bonferroni correction). Overall, these results suggest that strains of S. alvi and G. apicola
are not associated with specific locations and that most strains are likely to be found
across the United States.

FIG 1 Number of strains identified with the four markers. (Left) Total number of bees analyzed for each
marker. (Middle) Total number of strains identified with each marker. (Right) Average number of strains
identified per bee. The standard deviations are indicated by error bars. The markers of S. alvi and
Gilliamella spp. are represented in green and blue, respectively.

FIG 2 Number of observed strains versus number of randomly expected strains for each location. For
each marker, the number of strains is indicated for each location (color bars). The number of strains for
each location was compared to the number of strains expected at each location under random
expectation (gray bars). The random expectation was obtained by randomly reallocating each bee to a
different location. The error bars represent standard deviations. pv, P value.
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In order to further analyze the strain composition (presence/absence) within bees
from different hives and locations, we performed principal coordinate analyses using
unweighted UniFrac (24) on the four amplicons. The principal coordinate analyses did
not show clustering based on hive location for any of the markers or species, indicating
that bees from the same hive are not more similar in strain composition than bees
sampled from other hives in different states. In contrast, this analysis revealed that
some bees sampled from hives at various locations present similar strain compositions
(Fig. 3).

FIG 3 Principal coordinate analyses (PCoA) of strain composition for each bee analyzed based on the four markers and geographic
location. Each symbol represents the value for an individual bee. The colors and shapes of the symbols represent the location of each bee
(Texas, Utah, Tennessee, or Florida). The analysis was conducted by comparing the composition of strains for all four markers (see
Materials and Methods).
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Bacterial strains are not randomly associated within bees. To further decipher
the distribution of strains across bees and geographic locations, we analyzed the
patterns of strain co-occurrence within bees. Consistent with previous findings (12), we
observed that several bees tended to present either very similar strain compositions or
very different strain compositions (Fig. 4). Similar results were observed when repre-
senting the co-occurrence of strains (Fig. S6). For all markers, we found that some
strains almost exclusively co-occur together within the same bees while others never or
rarely co-occur (Fig. S6). To further test this, we randomly reassorted the strains across
bees and counted the number of times the randomly shuffled strains co-occurred. We
found that the distribution of strain associations was significantly different from the
randomized association for S. alvi and G. apicola markers (for guaA, gluS, and pflA, P �

10�7, P � 0.003, and P � 10�12, respectively, chi-square tests with Bonferroni correc-
tions). The test was not found significant for the Gilliamella rimM marker (P � 0.43,
chi-square test).

Overall, we identified around 40 strain clusters (strains that frequently co-occur in
the same bees), with each cluster containing approximately three to four strains, with
the exception of the G. apicola marker pflA where a higher strain diversity was captured
(Fig. S7A). We found that the vast majority of bees were composed of a single cluster
of strains (Fig. S7B). When comparing the strains within each cluster, we found that
most strains from the same cluster typically differ by a single SNP or very few SNPs
(Fig. S7C). For each of the four markers, strains from the same cluster were more similar
to each other than strains from different clusters (P � 10�15, Wilcoxon test, Fig. 5).
Consistent with previous evidence (12), most individual bees were found to possess
only a single cluster of closely related strains.

The fact that bees usually contain a single cluster of strains and that these clusters
are composed of closely related strains could indicate that each bee was originally
colonized by a single strain which subsequently diversified in its host. However, the

FIG 4 Heatmaps of strain composition across bees for each marker. Each line and column represent a
bee. A score of 1.0 represents 100% co-occurrence (the bees are composed of the exact same strains),
and 0.0 represents no co-occurrence (the bees do not share any common strains).
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distribution of strains across bees rejects this model. Under a model of colonization
from a single strain followed by within-host diversification, we would expect that
strains evolving within each bee would acquire independent mutations at different
sites. Instead, we observed that the exact same strains are often found across hives and
locations (Fig. 6), indicating that they did not evolve from a single colonizing strain. This
pattern indicates that the multiple closely related strains within a strain cluster are
frequently acquired together. Not only do some bees from different locations harbor
the same strain clusters, within those clusters, bees from different locations often share

FIG 5 Barplots comparing sequence similarity (mean number of SNPs) between clusters (colored boxes)
versus across clusters (gray boxes). All four Wilcoxon tests were significant (***, P � 10�15).

FIG 6 Examples of strain compositions in bees across locations and markers. Each color represents a
different strain. Several strains were not shown by colors when too many strains were present in the
same graph (n � 12).
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the same strains in similar relative abundance (Fig. 6). These results indicate that strain
composition and relative abundance are not random because the observed patterns
are conserved across bees sampled from remote geographic locations.

We tested whether the strains of S. alvi and Gilliamella spp. presented specific
patterns of interspecies associations. We reasoned that strains from different species
living in the same niche might be engaged in specific relationships (e.g., some strains
might engage in mutualistic relationships, while others might be antagonists), and this
would result in nonrandom associations between the strains of the two species. To test
this, we analyzed the patterns of strain co-occurrence based on the four marker pairs:
guaA-pflA, guaA-rimM, gluS-pflA, and gluS-rimM. As in the previous analysis, we ran-
domly shuffled the strains across bees and estimated whether the association of strains
deviated from the random expectation. We did not find any evidence of interspecies
association between strains for the four pairs of markers (not significant, chi-square
tests), suggesting that interspecies interactions do not result in specific strain associa-
tions in our samples.

Sequencing errors cannot account for the patterns of strain distribution. We
investigated whether PCR amplification artifacts and/or sequencing errors can account
for the observed patterns of strain distribution. Indeed, PCR amplification errors can
occur during the first amplification cycles and potentially lead to the inference of SNPs
at high frequency in the samples (25). Although this process likely leads to an overes-
timation of inferred strains (when reaching �1% frequency), it is unlikely to affect the
patterns of strain distribution, i.e., it is unlikely to lead to the exact same sequence
variant in different bees. To test this, we simulated the extreme scenario, where the
total diversity of strain sequences observed in our data set was introduced exclusively
by PCR artifacts. We simulated sequences in silico for each of the four markers based on
the number of strains detected in each bee. Each strain sequence was generated from
the reference sequence by introducing an average number of SNPs based on the
average number of SNPs observed between the strains found in one bee following a
Poisson process (�5,000 distinct sequences across markers and samples). Following this
procedure, we did not observe a single case of sequence convergence across all
samples. These results indicate that, although we might slightly overestimate the
number of strains due to PCR errors, this is highly unlikely to account for the patterns
of strain distribution across our samples.

Convergent evolution cannot account for the patterns of strain distribution.
We tested whether selective constraints could account for the patterns of strain
distribution observed in this study. Indeed, purifying selection imposes strong con-
straints on sequence evolution, and one could argue that this could lead to similar
sequences by convergent substitutions when sequences are short and many variants
are analyzed. We used the relative rates of sequence evolution across codon positions
of the four markers to simulate the evolution of sequences, starting from the reference
sequence of each marker, while introducing independent mutations until we obtained
the total strain diversity captured in our study. The relative rates of codon evolution
were determined by the relative allelic diversity across codon positions observed in
each of our four markers. As expected for protein-coding genes, we observed that the
third codon position was the least constrained by selection; 71 to 82% of the SNPs were
observed at this position across markers. The second codon position was the most
constrained; 4 to 10% of the SNPs were observed at this position across markers. Finally,
the first codon position was found to present an intermediate level of diversity; 12 to
20% of the SNPs were observed at this position across markers. By simulating se-
quences with these imposed rates of substitution across codon positions, we did not
observe a single case of sequence convergence across the simulated sequences,
indicating that purifying selection is unlikely to lead to convergent sequence evolution
in our markers.

Cryptic strains do not explain the patterns of strain composition. The fact that
bees from different hives and states present similar strain profiles, whereas many bees
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from the same hive have completely different strain compositions, suggests that there
are complex strain dynamics in the honey bee microbiota. Several hypotheses could
explain these patterns (see Discussion). The current data set does not allow us to test
all hypotheses; however, we can test the hypothesis that cryptic strain diversity remains
present in all bees. One possible explanation of the observed patterns is that each bee
could potentially contain a much higher and undetected strain diversity. Thus, our
results could be simply due to variations in strain frequencies across bees instead of
independent strain acquisitions. All results presented above were generated under
stringent filters to avoid overestimation of strain diversity due to sequencing errors, but
it is possible that many low-frequency or very low-frequency strains (i.e., cryptic strains)
remained unnoticed. Due to the high sequencing depth for each marker, we were able
to test this hypothesis. We specifically searched for the presence of our set of identified
strains in the set of filtered-out reads in bees where these strains were not detected
under our threshold of 1% frequency. For this analysis, a strain was identified even if
supported by a single read. We then compared the diversity of strains that would be
observed under these loose criteria compared to our original prediction (Fig. 7). As
anticipated, we identified the presence of additional strains across a higher proportion
of bees. On average, we observed a fivefold increase in the prevalence of each strain
across bees, but as mentioned, many likely correspond to sequencing errors. Never-
theless, this procedure did not allow us to recover each strain in every sample (Fig. 7),
indicating that most strains are limited to a subset of bee hosts (typically �30%). Of
course, we cannot exclude the possibility that additional cryptic strains would be

FIG 7 Prevalence of rare strains across bees with relaxed filters. The x axis represents the prevalence of
each strain in our sample of bees (percentage of bees where the strain has been identified). The y axis
shows the prevalence of each strain when redefining the strains with relaxed filters: i.e., the strain is
considered present even when found �1% frequency in the bee (see Materials and Methods).
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recovered by increasing sequencing depth, but our sequencing depth should allow us,
in theory, to detect strains present at 0.00002% frequency on average. Thus, our results
support the view that bees present distinct strain compositions and that the distribu-
tion of strain clusters is due to mechanisms of transmission and selection, not simply
variations in strain frequencies.

DISCUSSION

We applied a targeted approach to assess the strain-level diversity of the honey bee
microbiome. By deep sequencing variable regions of protein-coding genes, we were
able to decipher the strain dynamics of two core members of the honey bee micro-
biome. Although the present study did not attempt to evaluate the diversity of the
entire community, we were able to gain additional insights on the strain dynamics of
two key members of the honey bee gut microbiome. MAST sequencing allowed us to
explore certain hypotheses more thoroughly than would have been possible using
shotgun metagenomic sequencing or by sequencing individual isolates. For instance,
we were able to search for strains potentially present at frequency as low as 0.00002%.
While it is virtually impossible to prove that strains are completely missing from a
sample, our results provide higher confidence that cryptic strains are truly absent from
our samples and do not account for the observed patterns of strain dynamics.

Overall, our results on strain diversity of S. alvi and Gilliamella spp. are consistent
with previous studies (4, 12). We observed that strain composition within the bee
microbiome is not random. Our strain cluster analysis revealed that the same groups of
strains frequently co-occur together and that, most of the time, a bee contains only
closely related strains. As reported in reference 12, different Gilliamella spp. (based on
the rimM marker) do co-occur in a single bee, but generally only closely related strains
within each “species” co-occur. These patterns might be attributed to strain-strain
incompatibilities due to resource competition or strain warfare. Alternatively, specific
sets of strains could be filtered or selected by the host environment (i.e., the immune
system) as previously proposed (26). Interestingly, co-occurring strains typically differed
by only a single nucleotide in the marker region. At first, these patterns appeared
compatible with a scenario of colonization by a single strain, followed by within-host
diversification by mutations. Such a scenario has been observed for some dominant
species of the human microbiome (27, 28). However, the consistent presence of the
exact same strains across different bees (including bees from different hives and states)
indicates that these patterns are not due to within-host diversification. Rather, within-
host diversification of a single strain would generate various strains through random
mutations affecting different sequence sites (i.e., it is extremely unlikely that random
mutations would produce the exact same alleles in multiple bees).

The co-occurrence of strains predominantly composed of closely related strains goes
against the intuitive explanation that related strains must compete against one another
for the same resources. One possible explanation of these patterns could be due to
strain warfare. Bacteria frequently secrete compounds to kill other bacteria but must be
immune to their own secreted chemicals such as toxin-antitoxin systems (29, 30), and
some strains of S. alvi have been shown to encode type VI secretion systems (20). These
mechanisms would lead to the elimination of competitors by a single strain; however,
recently diverged strains would also encode the same genetic arsenal, and as a result,
closely related strains would be immune to the same compounds. As strains diverge
from each other over time, their warfare systems would eventually evolve and would
not confer cross-immunity. A similar mechanism could be proposed through bacterio-
phage predation since closely related strains would present similar sensitivities and
immunities to bacteriophages (31, 32). Note that in the case of temperate bacterio-
phages, lysogenic bacteria could encode a prophage themselves, and the occasional
reactivation of this prophage could eliminate the nonlysogenic strains, while protecting
the prophage-encoding strains (33) (prophages must confer superinfection immunity
to be viable [34, 35]). Alternatively, the consistent association of closely related strains
could result from the establishment of codependence between strains (i.e., processes
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similar to the Black Queen hypothesis but limited to closely related strains) (36, 37). For
instance, bacteria require the secretion of multiple proteins in the environment to
establish biofilms or other structures (38–40). Assuming a simple system with two
secreted proteins A and B, the loss of gene A in one clone and the loss of gene B in
another clone would establish a situation of codependence between these two newly
formed strains. Over time, this situation could potentially lead to the loss by drift of the
original strain carrying both gene copies A and B. This scenario of balancing selection
could potentially explain why closely related strains are maintained together. This could
also explain why the relative frequencies of these strains also appear conserved across
sampled bees, since secreted proteins would need to be secreted at similar concen-
trations to interact with one another efficiently.

Finally, our results showed that bees from the same hive often present dissimilar
strain compositions, whereas many bees from different hives and states present similar
strain compositions. This observation further suggests that strain composition of the
bee gut microbiome is not shaped by neutral processes. We showed that these patterns
do not seem compatible with the presence of a higher undetected strain diversity
within each bee microbiome (the presence of cryptic strains). However, we cannot
completely exclude the possibility that this result could be due to bee migration
between hives located in different states or founding queens coming from the same
breeders. Commercial hives are often moved across the United States for seasonal field
fertilization, and this process could lead to frequent migration of bees across states.
Moreover, many bee colonies are founded by sister queens reared by the same
operation and shipped with workers. Although we know that the Florida bees were
from a commercial colony that was frequently treated with antibiotics and other
chemicals, the Tennessee bees were from an organic colony that had not been treated
with any chemicals for more than 20 years, the Texas bees were taken from a research
colony that had not been treated with any chemicals for more than 2 years, and the
Utah bees were sampled from a feral colony that had not been managed for at least
10 years, we lack precise data regarding how these hives were initially founded.
Nevertheless, colony migration and the initial founding queens are not likely to account
for the observed strain dynamics, since previous studies have demonstrated that the
same strains are found in bees from different countries (4, 12). Additionally, age and
lifestyle (nurse versus forager) does not seem to be a factor in determining strain
composition (12). Thus, previous studies as well as our results support the hypothesis
that different strain profiles might be selected by different bee genotypes. A honey bee
queen can mate with up to 59 different drones, and on average mates with about 14
drones (41), creating a colony that consists of a wide range of different genotypes. If
strain composition is associated with particular genotypes, this could explain the
variation within a single hive (26). Finally, these patterns of strain composition could
also be driven by colonization order and strain warfare. This scenario implies that the
first colonizing strain—which might be random—would prevent the future coloniza-
tion of certain strains but allow other strains to colonize (42). Because closely related
strains are often found associated together, this process would not be driven by niche
competition but by direct strain antagonism mediated by warfare systems such as
toxin-antitoxin systems, type VI secretion system effectors, and prophages.

One major limitation of the MAST method is the need for sequenced genomes
representative of the diversity of each species to develop accurate markers. As previ-
ously noted, the markers used in this study were designed using a limited set of
genomes (6), which resulted in one of our markers (rimM) capturing all honey bee-
associated Gilliamella species while the other (pflA) captured the diversity of only G.
apicola. Both markers provided useful information, but it is obvious from our results
that the marker that captures all Gilliamella species comes at the cost of reduced strain
resolution, e.g., the pflA marker recovered more than 900 strains, while rimM recovered
only �200 strains. Therefore, MAST is a powerful method for analyzing strain diversity,
but genome availability and marker design are critical factors in the accuracy of strain
detection. Another caveat of using the MAST method is that identical protein-coding
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amplicon sequences do not necessarily imply that the entire genomes are 100%
identical. Therefore, MAST cannot technically determine whether strains are identical
across samples. However, the MAST method is a good proxy for strain similarity and
composition and as more strains are sequenced, we will be able to determine whether
MAST-inferred strains are truly identical and if not, how much they differ in gene
content and average nucleotide identity (ANI).

Conclusions. Overall, our results revealed that strain composition within the honey
bee gut is complex despite the overall simplicity of the microbiome. Using the MAST
approach, we were able to characterize the population dynamics of two host-
associated microbes at a level not feasible with other methods. Future studies using
controlled conditions (e.g., genotype, age, life history), will help reveal the factors that
shape strain-level dynamics in the honey bee gut microbiome and provide answers to
fundamental questions about the population genetics of host-associated microbiomes.

MATERIALS AND METHODS
Bee sampling and processing. Bees were sampled from a single colony from each of the following

locations: Texas, Tennessee, Florida, and Utah (see Table S1 in the supplemental material) and stored in
100% ethanol at 4°C. Bees from Texas were used in our previous study (6) and were sampled directly from
the University of Texas (UT) Austin campus. Bees from Utah, Tennessee, and Florida were obtained from
collaborators. Therefore, the sample size of bees from Texas was much larger than that of the other
locations. The guts of all bees were dissected using sterile forceps and then homogenized. DNA was
extracted using a cetyltrimethylammonium bromide (CTAB) bead-beating protocol described in refer-
ence 43. PCR was performed on the extracted DNA using the guaA, gluS, pflA, and rimM primers designed
in reference 6 attached to Illumina adaptors. Triplicate 25-�l reactions were carried out with 0.25 �l
Phusion high-fidelity DNA polymerase (New England Biolabs), 5 �l of Phusion HF buffer (New England
Biolabs), 1.25 �l of dimethyl sulfoxide (DMSO), 1 �l (each) 10 �M primer, 14.5 �l H2O, and 1 �l of
template DNA in buffer. The cycling conditions consisted of 98°C for 30 s, 25 cycles with 1 cycle
consisting of 98°C for 10 s, 59°C for 30 s, and 72°C for 30 s, with a final extension at 72°C for 7 min. The
amplicons were pooled and cleaned using AMPure XP beads (Beckman Coulter). The Genome Sequenc-
ing and Analysis Center at the University of Texas at Austin performed the barcoding and sequencing
using Illumina MiSeq 2X300.

Strain inference and identification of strain clusters. Paired-end reads were merged together
using FLASH v1.2.11 (44) with default parameters. Reads with low quality were discarded (average Phred
score of �30), and the remaining reads were aligned against the reference sequence (G. apicola wkB1 or
S. alvi wkB2) of each marker with BOWTIE2 v2.2.8 (45). Reads that aligned with gaps were excluded.
Single nucleotide polymorphisms (SNPs) were identified, and each sequence was considered a potential
strain. For each marker, a strain was inferred if present at �1% frequency in at least one sample (this
threshold of 1% corresponds to an average of 460 reads per strain per sample). The total number of
strains identified for each marker are provided in Table S2A. The number of strains identified in each
sample are shown in Table S2B and the detailed description of all the strains is provided in Data Set S1
in the supplemental material.

Strain clusters were defined based on the frequency of strain co-occurrence within the same bee. For
each pair of strains defined across the four markers, we defined a score S of co-occurrence as the number
of bees containing both strains divided by the average number of bees containing either strain: S �

2bAB

�bA�bB�
, with bAB the number of bees containing both strains A and B, bA the number of bees containing

strain A, and bB the number of bees containing strain B. These scores were used to build the heatmaps
and the clusters with MCL v14-137 (46) with different inflation parameters: I � 1.2 (minimum), 2.0, 4.0,
and 6.0. With I � 1.2, most strains were assembled into very few clusters (�20) composed of �30 strains
per cluster. The three other inflation parameters yielded rather consistent clustering patterns—the
number of clusters varied from 40 to 106 clusters across markers guaA, gluS, pflA, and rimM and inflation
parameters (Fig. S7D). The different clustering parameters yielded similar results. We conducted the
analysis with inflation parameter I � 2.0, since it yielded consistent numbers of clusters across gene
markers (42 to 64 clusters for guaA, gluS, and pflA).

Sequence analysis. Unweighted UniFrac analysis was conducted with QIIME 1.9.1 (47) using the four
gene markers gluS, guaA, pflA, and rimM. One sequence representative of each strain was selected to
construct the phylogenetic tree of each marker. Each phylogenetic tree was then constructed using
BIONJ (48) with the Jukes-Cantor model implemented in Seaview v4 (49). Analysis of reference genomes
was conducted by downloading all reference genomes of Gilliamella available in GenBank (June 2019).
The core genome was identified as follows. Briefly, orthologous genes were identified by pairwise
genome comparison with Usearch Global (50). Two genes were considered orthologs when they showed
�70% protein identity and �80% length conservation. Genes were then grouped into gene families by
transitivity (i.e., two orthologous genes necessarily belong to the same family). Gene families with
paralogs were excluded from the core genome. Additionally, gene families containing “double outliers”
were excluded from the core genome. Double outliers were defined as sequences that present an
abnormally low or high sequence identity score relative (i) to the other sequences of the gene family and
(ii) to the average identity score of the other core genes of the corresponding genome. In both cases,
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outliers were defined as gene families containing at least one sequence with an identity score lower or
higher than 1.5 � IQR (interquartile range) compared to (i) the other sequences of the gene family and
(ii) to the average sequence identity of the other core genes of the corresponding genome. The scripts
used to build the core genomes have been assembled into a computer package freely available on
GitHub: https://github.com/lbobay/CoreCruncher. The sequences of each gene family were then aligned
with MAFFT v7 (51) and back translated in silico into the nucleotide sequence of each corresponding
genome. The different gene alignments were then merged into a single core genome concatenate.

Phylogenies. We used the entire set of genomes of Snodgrassella alvi and Gilliamella spp. from Apis
mellifera to extract the four gene sequences guaA, gluS, pflA, and rimM from each genome, The
sequences of each gene were aligned with MAFFT v7 (51), and the region of each marker was extracted.
A representative sequence of each strain identified above was added to each marker alignment.
Alignments were manually inspected, and no misaligned sequences were observed. For each marker
alignment, phylogenetic trees were built with RAxML v8 (52) with a GAMMA � GTR model and 100 fast
bootstrap replicates. The core genome phylogeny was run on the concatenate of the core genome using
the same program and the same parameters.

Simulations. Simulations were initiated with the reference sequence of each marker. We simulated
144 sets of sequences to mimic the number of bees in our data set. For each bee, we simulated a number
of sequences that closely matches the average number of distinct strains observed per bee (6 strains per
bee for guaA, gluS, and rimM; 16 strains per bee for pflA). Each strain was generated following a Poisson
process by introducing a number of SNPs that matches the average number of SNPs observed across
strains found in the same bee (Fig. 1). Simulations were conducted with CoreSimul (53) either by
introducing SNPs randomly along each sequence to test the impact of PCR artifacts or by introducing
SNPs with different probabilities across codon positions to test the effect of purifying sequence on strain
inference. The relative probability of substitutions across codon positions was defined empirically based
on the distribution of observed SNPs across the distinct strains inferred by each marker: 0.12, 0.10, and
0.78 for guaA, 0.17, 0.04, and 0.79 for gluS, 0.14, 0.04, and 0.82 for pflA, and 0.20, 0.09, and 0.71 for rimM
at the first, second, and third codon positions, respectively. The scripts used for the simulations are
available at https://github.com/lbobay/CoreSimul.

Data availability. All raw sequencing reads are deposited in NCBI Sequence Read Bioproject under
accession numbers PRJNA562505 and PRJNA415093. All other data generated are included in the
supplemental material files.
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