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Plasma as a resuscitation fluid for volume-depleted shock:
Potential benefits and risks
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1 | INTRODUCTION

The clinical state of shock constitutes a relative or abso-
lute deficiency of circulating volume for adequate oxy-
gen delivery to meet the metabolic demands.1 Although
shock states differ in epidemiology, etiology, and patho-
physiologic pathways, a common denominator of shock
is endothelial barrier dysfunction.2,3 Different kinds of
shock states, such as occurring after major surgery,
trauma, and in sepsis, can result in strong pro-inflammat-
ory host responses with ensuing endothelial hyper-
permeability.4–6 Loss of endothelial barrier results in
leakage of fluid into surrounding tissue, contributing to
edema, tissue hypoxia, and organ failure.6 This loss of
fluids further aggravates the intravascular circulatory
volume deficiency during shock. Obviously, septic and
traumatic shock are different entities, with different

etiologies and differences in initiation of host response
and coagulation response. However, endothelial activa-
tion with loss of endothelial barrier integrity is a com-
mon finding in both shock states.

In trauma-induced shock, current resuscitation strate-
gies consist of the early transfusion of whole blood or a
balanced ratio of plasma, platelets, and red blood cells.7,8

The aim of resuscitation is to ensure adequate oxygen
delivery and to correct coagulopathy. Plasma transfusion
may play a key role, as trials point toward improved sur-
vival with high dose or early use of plasma transfusion
compared to standard care.9–11 Upon reaching surgical
hemostasis, it is general practice to stop transfusion.
However, as a result of ongoing inflammation and endo-
thelial activation, patients can continue to be fluid depen-
dent, which is often responded to with crystalloids.
However, liberal use of crystalloids in traumatic
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hemorrhagic shock is associated with increased mortality
and increased endothelial permeability, inflammation,
and reduced perfusion of vital organs.12–14

In septic shock, the primary treatment of shock is vol-
ume resuscitation with crystalloid or colloids, as advo-
cated in guidelines.15 However, comparable to traumatic
hemorrhagic shock, use of a restrictive fluid balance
reduces the occurrence of organ failure as well as mortal-
ity in sepsis.16–18 most likely, the association between the
amount of infused volume and adverse outcome in shock
states is related to increased shedding of the glycocalix,
breakdown of adherent junctions, and tight junctions
resulting in an increased gradient of leakage over the
hyper permeable endothelium.19

Taken together, due to a relative or absolute deficiency
of intravascular volume, patients with shock are likely to
need volume expansion to maintain perfusion pressure.
This poses a challenge to the treatment of shock, as fluid
therapy is both a cornerstone of therapy as well as a foe.
Different fluids may have differential effects on endothe-
lial integrity. Low-protein-content fluids seem to aggravate
shedding of glycocalix,20 whereas protein-rich fluids such
as plasma may be superior to normal saline in protecting
the glycocalix and endothelial barrier function.21

Transfusion with plasma as a volume expander in
shock may seem controversial at first, but one needs to
consider that despite the fact that plasma is transfused in
millions of patients annually, there currently is limited
understanding of its mechanisms of action. In traumatic
blood loss, transfusion of plasma may improve survival
by decreasing exsanguination.7,10 The common percep-
tion is that plasma is a pro-coagulant blood product, by
replenishing coagulation factors. However, as plasma
contains coagulation factors but also anticoagulant pro-
teins, the net effect of plasma on coagulation may be neu-
tral. In line with this, plasma transfusion increases the
amount of coagulation factors as well as levels of anti-
coagulant proteins,22 resulting in unchanged thrombin
generation, at least in non-bleeding critically ill patients
with an inflammatory-driven consumption coagulopathy.
In patients with traumatic hemorrhagic shock, it is not
apparent whether the mechanism of effect of plasma is
directly related to the correction of coagulopathy.23 In
rats with hemorrhagic shock, deranged thrombin forma-
tion was somewhat restored with resuscitation with
plasma but not with crystalloids, but whether this relates
to prevention of dilutional coagulopathy or to a specific
pro-coagulant effect of plasma is not clear.24,25 Other
mechanisms of the protective effect of plasma may be at
hand. These may include preservation of the glycocalix,
decreasing inflammation and decreasing endothelial leak.
This review aims to discuss the potential of plasma as a

resuscitation fluid in shock, with an emphasis on possible
mechanisms of benefit on the activated endothelium.
Studies comparing plasma with other fluids on (markers
of) endothelial integrity have found effects both in
(models of) trauma-induced shock and in septic shock.
As loss of endothelial integrity may be a common denom-
inator of shock, we will discuss both these shock states.

2 | THE EFFECT OF PLASMA ON
THE ENDOTHELIAL GLYCOCALIX

The glycocalix is a luminal endothelial carbohydrate-rich
gel-like layer, anchored to glycosaminoglycans, proteo-
glycans, and other glycoproteins.26 Together with endo-
thelial intercellular connections, the glycocalix regulates
endothelial barrier integrity. In shock states, shedding of
constituents of the glycocalix, such as syndecan-1 and
heparan sulfate, results in endothelial permeability.27–29

Proof that syndecan-1 plays a role in preservation of
endothelial barrier integrity was shown in a murine
model, in which syndecan-1 knockout mice challenged
with lipopolysaccharide had more lung edema, organ
failure, and mortality compared to wild types.30

2.1 | Trauma

In patients with trauma, circulating levels of glycocalix
constituents are associated with adverse outcome.28 In a
trial evaluating the effect of prehospital plasma,10 use of
early plasma compared to standard care, was associated
with a reduction on markers of glycocalix shedding, as
well as with a reduction in inflammatory cytokines and
vascular endothelial growth factor.31 As these markers
were reduced long after the resuscitation had ceased,
preservation of the glycocalix seems a likely mechanism
of the beneficial effects of prehospital plasma. Of interest,
the benefit of prehospital plasma was also shown for the
subgroup of TBI patients.32 Although mechanisms are
not clear, benefits of plasma in the specific setting of TBI
may not be related to volume expansion but again to a
reduction of endothelial dysfunction,31 which may have
contributed to preservation of the blood brain barrier.
The benefit of plasma may also relate to the duration of
shock and hence the severity of endothelial injury, given
that plasma may be particularly beneficial in patients
with long transport times to the hospital.11 Further proof-
of-concept is provided in experimental trauma models, in
which plasma compared to crystalloid resuscitation
improved oxygenation, and reduced inflammation, endo-
thelial injury, capillary leakage, and hence, tissue

S302 COMMENTARY



edema,24,33–35 associated with restoration of the thickness
of the glycocalix layer in organs.25

2.2 | Sepsis

In patients with septic shock, the endothelial glycocalix is
also degraded,29 the severity of which is associated with
organ failure and mortality.36 Although confounding by
disease severity cannot be ruled out, it appears that the
amount of crystalloid fluids during resuscitation of septic
shock is associated with the amount of degradation, as
evidenced by high-circulating heparin sulfate.36 In con-
trast to crystalloids, in a rodent sepsis model, transfusion
of plasma was associated with reduced mortality, associ-
ated with reduced endothelial injury and lung edema.37

In an observational study in critically ill patients, plasma
infusion is associated with reduced circulating syndecan-1
levels.38 Of note, studies which have applied plasma
exchange as a last resort for refractory septic shock have
noted a decreased mortality and improved organ failure
compared to either historic controls or in a propensity-
matched analysis in children and adults.39–41

Taken together, shock results in glycocalix shedding.
Compared to crystalloids, use of plasma may be superior
in preserving the glycocalix.

3 | POTENTIAL COMPONENTS
IN PLASMA THAT MAY MEDIATE
PROTECTIVE EFFECTS IN SHOCK

3.1 | Albumin

Circulating proteins are of significant importance for
endothelial stability and health. The most abundant pro-
tein in plasma is albumin, with an average protein level
ranging between 30 and 50 g/dL. The major functions of
albumin are maintaining plasma colloid oncotic
pressure,42 and regulating endothelial permeability.43,44

Hypoalbuminemia occurs commonly in shock patients
and is associated with mortality.45 In vitro, removing
albumin causes glycocalix degradation, most likely due to
cleaving of the endothelial glycocalix components from
the underlying endothelium by matrix metalloproteinases
(MMPs).44 In vivo, albumin restores the endothelial glyco-
calix, an effect that appears to be independent of osmotic
pressure, because at the same osmotic pressure, colloids
do not have this restorative effect.46 In a rodent model of
hemorrhagic shock, resuscitation with albumin 5%, which
resembles protein content of the body, restored glycocalix
thickness as compared to crystalloids, associated with less

shedding of syndecan-1.34 In a rat endotoxemia model,
albumin infusion reduced endothelial dysfunction while
reducing inflammation and oxidative stress.47

The mechanism by which albumin (or plasma) is
protective is not known but may involve lipid mediator
sphingosine-1-phosphate (S1P, Figure 1). Infusion of
plasma or plasma-derived albumin stimulates the release
of S1P from its major source, which are red blood cells
and platelets. In shock states, S1P protects endothelial
barrier function by reduction of oxidative stress and
cytokine secretion,48 by strengthening endothelial cell
tight junctions,44,49 and by inhibiting MMPs.44,50 In sep-
tic shock patients, low S1P levels are associated with
organ failure and mortality.51 To our knowledge, there is
a lack of data on S1P levels in hemorrhagic shock
patients.

Trials on albumin infusion in septic shock patients
predominantly show no effect52–54 on mortality and
organ failure.52,54 However, post-hoc analysis showed
a potential benefit in the subgroup of septic shock
patients.54 Also, in patients with hypoalbuminemia,
albumin reduced organ failure when compared to
crystalloids.53 Meta-analyses of studies have also
yielded conflicting results, although pooled data from
the more robust large-scale studies suggest a benefit
of albumin.55 Endothelial dysfunction has not been
used as a primary outcome in these studies. Thereby,
whether plasma confers a benefit due to albumin con-
tent is not known. Besides albumin, other proteins
may play a role in preservation of the glycocalix dur-
ing shock.

3.2 | Adiponectin

Adiponectin is a cytokine that is produced in adipose tis-
sue. Its circulating plasma levels range from 2 to
30 μg/ml, making up around 0.01% of the plasma protein
content.56–58 Adiponectin has widespread physiological
functions, including glucose and lipid metabolism. Fur-
thermore, adiponectin has broad anti-inflammatory and
vasoprotective effects.59 (Figure 1). The role of
adiponectin in preserving endothelial barrier function
was shown in mouse sepsis models, in which
adiponectin knock-out compared to wild-type animals
showed upregulation of vascular adhesion molecules,
pro-inflammatory cytokine production and more severe
organ failure.60,61 In vitro, adiponectin-reduced TNF-a
induced endothelial permeability.62

On the one hand, patients with septic shock have
decreased plasma levels of adiponectin,63–67 associated
with organ failure and mortality.65,66 On the other hand,
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higher levels of plasma adiponectin68,69 are also linked to
mortality.68 These contradictory data suggest a dual regu-
latory role of adiponectin. In patients with traumatic
hemorrhagic shock, low levels of adiponectin are found.70

In a mouse model of hemorrhagic shock, low adiponectin
levels were replenished following resuscitation with
plasma as well as following adiponectin infusion, thereby
preventing endothelial permeability.70 As plasma
depleted from adiponectin did not prevent permeability,
adiponectin appears to mediate the protective effects of
plasma resuscitation.70

3.3 | Antithrombin

Antithrombin (AT) is a glycoprotein produced by the
liver, and has anticoagulant properties (Figures 2 and 3).
In both traumatic hemorrhagic and septic shock, AT
levels are decreased, associated with organ failure.71,72 In

a preclinical model of hemorrhagic shock, resuscitation
with plasma increased syndecan-1 expression in the lung
compared to controls, indicating an intact glycocalix.73 A
role for AT in restoring glycocalix was demonstrated, as
AT-deficient plasma did not restore syndecan-1 expres-
sion, while AT-deficient plasma supplemented with puri-
fied AT maintained syndecan-1 expression.73 In sepsis
trials, supplementing AT have failed to demonstrate
reduction of mortality.74 Some observational studies do
however show a mortality benefit when supplementing
AT in patients with sepsis-induced disseminated intravas-
cular coagulation.75,76

3.4 | ADAMTS13

Upon activation, endothelial cells secrete von Willebrand
Factor (VWF),77 which can form larger multimers (ULVWF)
with high platelet-binding potential. In normal conditions,

FIGURE 1 Proposed mechanisms of albumin, S1P and adiponectin on endothelial barrier function. In shock, adiponectin, albumin and

S1P levels are commonly low. Plasma transfusion can replenish these components. Moreover, albumin also stimulates red blood cells and

platelets to release S1P. S1P binds to S1P1 receptors activating Rac1. Rac1 activation has widespread physiological functions in the

endothelial cell. It upregulates both endothelial tight junctions and adherent junctions and induces actin cytoskeletal reorganization

strengthening endothelial barrier function, reducing endothelial permeability. Also, RAC1 inhibits MMP function resulting in reduced

glycocalyx breakdown further retaining endothelial function. By replenishing adiponectin, inflammation is reduced by adiponectin-mediated

inhibition of TNF-α and reduction of inflammatory cell response. By binding of adiponectin to AdipoR2, NF-κβ signaling is inhibited leading

to reduced inflammation, endothelial permeability, and activation. AdipoR2, adiponectin receptor 2; MMP, matrix metalloproteinase; Rac1,

Ras-related C3 botulinum toxin substrate 1; RBC, red blood cell; S1P, Sphingosine-1-Phosphate; S1P1, sphingosine-1-Phosphate receptor 1;

TNF-α, tumor necrosis factor-α
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ADAMTS13 (a disintegrin and metalloproteinase with
thrombospondin type 1 motifs, member 13) cleaves ULVWF
multimers into smaller fragments, reducing its pro-
thrombotic activity. In multiple shock states such as trau-
matic and septic, there is increased VWF release,
multimerisation, and a simultaneous reduction in
ADAMTS13 (Figures 2 and 3).78–80 This ADAMTS13-
ULVWF imbalance is associated with organ failure in
patients with sepsis or trauma.78–80 Plasma contains normal
levels of ADAMTS13. We showed in sepsis patients that
plasma transfusion replenishes low ADAMTS13 levels, asso-
ciated with reduced release of VWF into the circulation.38

Plasma exchange improves the ADAMTS13-ULVWF imbal-
ance in thrombotic thrombocytopenic purpura by removing
inhibitory antibodies and ULVWF from the circulation in
addition to replenishing functional deficiency in
ADAMTS13.81 In severe COVID-19 infection, plasma
exchange decreased the incidence of acute kidney injury,
associated with an improved ADAMTS13-VWF disbalance.82

In trauma, clinical studies are sparse, but in trauma
models it has been shown that replenishing ADAMTS13

was associated with decreased endothelial permeability
and organ failure.83–85

Taken together, we highlighted some potential path-
ways of benefit of plasma, although most likely not
reaching full comprehension. Alternatively though,
plasma may just be not as bad as crystalloids in terms of
glycocalix shedding, and no specific pathway is present.
Which component in plasma mediates benefit remains
an important research question.

4 | A POTENTIAL OVERARCHING
BENEFIT OF PLASMA ON THE
ENDOTHELIAL SURFACE

In addition to the effect that specific proteins or peptides
circulating in plasma may have on the endothelial cell
wall, there may also be an overarching benefit of plasma.
Approximately 1/3 of circulating blood volume is not
flowing, but remains in close proximity to the endothelial
surface layer. This fixed plasma is in balance with

FIGURE 2 Proposed mechanisms of shock-induced microthrombi formation. Shock results in inflammation-mediated activation of the

endothelial cells with release of VWF. High amounts of VWF will multimerize and form prothrombotic ULVWF multimers with high

platelet-binding affinity. In normal conditions, ULVWF multimers are cleaved by ADAMTS13 into smaller, less prothrombotic VWF

monomers. However, as ADAMTS13 levels are decreased during shock, the ULVWF multimers will promote platelet aggregation, resulting

in microthrombi formation. This process may result in obstruction of microcirculation, inflammation, increased endothelial permeability,

edema which leads to organ damage. Furthermore, the thrombin burst in shock is not counterbalanced by antithrombin. Antithrombin

levels and activity are low in shock, further fueling thrombin-induced platelet aggregation and microthrombi formation. ADAMTS13, a

desintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13; AT, antithrombin; ULVWF, ultra-large von Willebrand

Factor multimers; VWF, von Willebrand Factor
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proteins on the glycocalix and the endothelial surface,
and is also in balance with the dynamic equilibrium of
the flowing circulating plasma volume. Although data

are sparse, we speculate that plasma is superior to clear
fluids in preserving this natural balance between fixed
versus circulating plasma volumes.

FIGURE 3 Legend on next page.
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5 | POTENTIAL EFFECTS OF
PLASMA ON OXYGEN DELIVERY
AND TISSUE PERFUSION IN
SHOCK: SUMMARIZING SOME
CONCEPTS

Several mechanisms of protection may be at play
(Figure 4). If plasma decreases endothelial leakage com-
pared to crystalloids, use of plasma will result in
improved expansion of the intravascular volume, with
improved oxygen delivery and possibly less organ injury,
at least in those shock states in which tissue perfusion
(and not cellular oxygen consumption) is impaired. Also,
if plasma prevents dilutional coagulopathy with ensuing
blood loss during bleeding, this will increase intravascu-
lar volume. Lastly, plasma may improve an unbalanced
coagulation system, relative to the coagulation status of
the patient. By correcting an “overshoot” in pro-
coagulant activity with a reduction in microthrombi-
driven endothelial activation, plasma may contribute to
improved microvascular perfusion and less organ injury.
Such “overshoot” pro-coagulant activity is apparent in
sepsis but also in traumatic patients who survived the ini-
tial bleeding, conversion into a hyper-coagulable state is

common.86 Vice versa, in hypo-coagulable patients,
plasma may decrease blood loss by restoring coagulation
abilities. However, proof for most of these concepts in
clinical studies is hitherto sparse. Also, if these concepts
hold true, it is not known which mechanism is the most
relevant.

6 | DIFFERENCES BETWEEN
PLASMA PRODUCTS

In general, three different plasma transfusion products exist:
single donor fresh frozen plasma (FFP), multiple donor-
pooled solvent detergent plasma (SDP), and dried plasma
that can be derived from either single donor or pooled
pathogen-inactivated plasma. Traditionally, FFP has been
the only product available. Recently, in an effort to mitigate
adverse events of plasma transfusion, various countries have
switched to SDP. SDP is a pooled plasma product (usually
more than 100 donors) that is exposed to multiple washing
and filtration steps. As noted, pooling of plasma dilutes any
potentially harmful antibodies (anti-HNA and HLA) that
could induce TRALI. The washing process eliminates lipid-
enveloped viruses, cells, and cell-derived debris from the

FIGURE 3 (A) Proposed effects of crystalloids on shock-induced microthrombi formation. (B) Proposed effects of crystalloids on shock-

induced microthrombi formation. The proposed effects of crystalloids (A) and plasma (B) on the formation of shock microthrombi formation

are shown. Infusion of crystalloids leads to dilution of ADAMTS-13 and AT, which promotes platelet aggregation and microthrombi

formation aggravating endothelial permeability and organ injury. Furthermore, crystalloid infusion directly leads to glycocalyx breakdown

which may be caused by a protein poor environment. Plasma transfusion is thought to replenish proteins such as ADAMTS-13 and AT. By

replenishing ADAMTS-13, ULVWF multimer formation is hampered resulting in reduced platelet aggregation. By replenishing AT,

thrombin-mediated platelet aggregation is inhibited. Both processes lead to less microthrombi formation and thus less obstruction of the

microcirculation and associated organ damage. Furthermore, plasma is thought to be directly beneficial to the glycocalyx by providing a

protein-rich environment. ADAMTS-13, a desintegrin, and metalloproteinase with thrombospondin type 1 motifs, member 13; AT,

antithrombin; ULVWF, ultra-large von Willebrand factor multimers; VWF, von Willebrand factor

FIGURE 4 Effects of plasma

relative to crystalloids for patients in

intravascular volume-dependent shock
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product, including cytokines.87 In addition, the amount of
residual cells and cell-derived micro particles is lower in
SDP when compared to FFP.88,89 Reduction of all these
mediators may theoretically reduce immunologic effects of
plasma transfusion.

In vitro, incubation with SDP reduced LPS-induced
cytokine production when compared to incubation with
FFP, although endothelial permeability did not differ.90,91

Trials that have compared FFP to SDP have mostly
focused on coagulation outcomes. With regards to endo-
thelial protection, in a pilot trial in cardiothoracic surgery
patients, SDP compared to FFP was associated with less
syndencan-1 release,92 and reduction in time on the ven-
tilator. In terms of adverse events, a retrospective study
in critically ill children showed that SDP, but not FFP,
was independently associated with reduced mortality.93

Observational studies also showed a reduction in TRALI
in institutions that switched from use of FFP to use of
SDP,94,95 although other factors in clinical practice may
also have played a role.96–98 In a prospective observa-
tional study in critically ill children, SDP reduced 30-day
mortality compared to the use of FFP.93

The availability of freeze-dried plasma to be immedi-
ately available for patients who need resuscitation
urgently for hypotension secondary to severe sepsis has
improved the feasibility of using plasma for this pur-
pose.99 Data from both in vitro and in vivo animal models
indicate that the endothelial protective effects of dried
plasma are similar to that of standard FFP, indicating
that dried plasma may be just as effective clinically at
improving intravascular volume, oxygen delivery, and
perfusion as well as achieving hemostatic balance.88,91,100

7 | ROADBLOCKS IN THE USE
OF PLASMA FOR SHOCK

7.1 | Transfusion-related acute lung
injury

Plasma can result in transfusion-related acute lung injury
(TRALI). We have previously argued that TRALI is a rel-
evant syndrome in the critically ill, contributing to mor-
tality.101 Thereby, the hypothesis that plasma may be a
beneficial resuscitation fluid may seem in strong contrast
to our previous scientific work. However, it is in fact our
previous finding that plasma stabilizes the endothelium
that has led us to this hypothesis.38 Concerning the risk
of TRALI, following implementation of use of males-only
for plasma donation, the association between plasma and
TRALI has consistently reduced by around two thirds of
cases,102 due to reduction in antibodies. In addition, the
use of pooled plasma also has reduced TRALI incidence

due to dilution of residual antibodies. Residual TRALI
cases are now thought to be caused by blood products
other than plasma.

7.2 | Transfusion-associated cardiac
overload

Like TRALI, transfusion-associated cardiac overload
(TACO) appears more common in the critically ill and
typically presents with bilateral pulmonary infiltrates
with hypoxemia. In contrast to TRALI, the pathophysiol-
ogy underlying the lung edema of TACO is hydrostatic in
nature. Risk factors are patient conditions associated with
an impaired ability to handle fluid loading of a blood
product, including cardiac or renal disease.103 Thereby,
TACO can occur following volume loading due to any
blood product, and does not pertain to plasma in particu-
lar. Also, in resuscitation of shock, expanding the circu-
lating volume is a wanted intervention. Nevertheless,
when patients with shock and concurrent renal or car-
diac failure are treated, volume overload can occur.
Straightforward interventions that have been shown to
decrease the risk of TACO are reduction of infusion
speed and the administration of diuretics.104

7.3 | Shortage of donors

Plasma is a blood product, derived from blood donors. As
such, plasma supply is limited, in particular as females
are banned from plasma donation. Engaging the society
that shock is a major health care problem and that
plasma is beneficial, would be paramount to ensure ade-
quate donor supply. Furthermore, identification of which
plasma components are beneficial in shock is a logical
and necessary step. Supplementing the necessary compo-
nent may lead the way to targeted treatment, in which
patients may differ from which component is needed,
based on a specific condition or based on specific patient
factors. Thereby, increased understanding of the mecha-
nisms of action of plasma is warranted.

8 | THE WAY FORWARD

We have argued that there is support to investigate the
efficacy of plasma for the treatment of volume-depleted
shock, with the aim to preserve endothelial and epithe-
lial barrier integrity, improve intravascular volume, and
ultimately oxygen delivery to reduce cellular and organ
injury. Despite a worldwide use, knowledge on the
effects of plasma on organ failure is highly limited. We
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suggest specific mechanisms of action are possible that
await exploration. As shock is a major health care prob-
lem, we call for the need for research aimed at an
improved understanding of which plasma components
mediate beneficial effects, with the ultimate aim to move
toward component therapy for the treatment of shock
states.
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