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Abstract

Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk
factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation
of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic
and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models
(genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first
step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A
genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and
experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice
model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated
onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably
induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic
perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level.
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Introduction

Parkinson’s disease (PD) is a pernicious neurodegenerative

disease for which no cure exists. Two important cellular hallmarks

of this disease are the formation of cellular inclusions named Lewy

Bodies, and the degeneration of dopamine-containing neurons of

the ventral midbrain, mainly within the substantia nigra pars compacta

[1,2]. Lewy bodies appear to be the result of a degenerative

metabolic process implicating the aggregation of alpha-synuclein

protein, and the failure of energy-intensive biochemical mecha-

nisms such as disposal of damaged proteins [3]. Since the disease

arises from different causes: environmental toxicity, genetic

mutations and brain aging, general disease prevalence can hardly

be defined [4]. However, fundamentally to all biological systems,

metabolic energy homeostasis is critical, especially in cells that

consume energy at high rates, such as brain neurons.

Toxins used in farming, such as paraquat (herbicide), rotenone

(pesticide) and maneb (fungicide) are known to induce specific PD-

related symptoms in animal models [5]. These toxins inhibit

mitochondrial complexes 1 (paraquat and rotenone) and 3

(maneb) involved in cellular respiration. Also, solvents such as

toluene and n-hexane, and carbon disulfide used in solvents and

pesticides, have been shown to cause neuronal death by

mitochondrial damage [6]. MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine), inadvertently obtained in the incomplete

synthesis of the recreational drug MPPP (49-methyl-a-pyrrolidi-
nopropiophenone), leads to rapid appearance of PD symptoms

within few days [7–9]. Similarly to other ionophores, MPTP

uncouples cellular respiration and leads to a complete shutdown of

mitochondrial function and of other cellular processes. Genetic

mutations related to PD have been found in seven different genes:

PARK1, 3, 5, 8 (dominant) and PARK2, 6, 7 (recessive). These

genes encode proteins involved in neurotransmission (PARK1),

protein quality control and cellular stress responses (PARK2,

PARK5, and PARK7), regulation of mitochondrial function

(PARK6) and in the regulation of the cyclosqueleton and

protein-protein interactions (PARK8) [10]. Even though familial

forms of PD are not frequent (at most 20% of all PD cases),

elucidation of their molecular mechanisms could help to identify

causes of more common idiopathic forms of the disease [11–13].

Interestingly, a final common pathway of many PD gene defects

appears to be mitochondrial dysfunction with perturbations of

cellular energy production. In addition to the above-mentioned

factors, cellular dysfunctions linking PD to aging are not

completely identified, however it is known that the latter involves

reduced availability of metabolic energy and impaired clearance of

damaged proteins and cellular by-products. Therefore, it is likely

that this third factor is also linked to impaired regulation of cellular

energy [14].
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In this work, we have studied the effect of PD-related

perturbations on brain cells metabolism. Metabolites were

measured in brain tissue from Parkin KO (knockout) mice, as

well as in brain tissue exposed to the complex I antagonist CCCP

(carbonyl cyanide m-chloro phenyl hydrazone). The genetic model of

Parkinson’s disease selected for the present study was Parkin KO

mice that present mitochondrial efficiency reduction. This gene is

situated on locus 6q25.2–q27 [15] and codes for a E3-ubiquitin

protein ligase [16] involved in the degradation of damaged

proteins through the Ubiquitin Proteasome System (UPS) [17].

Parkin is also involved with Pink1 in mitophagy, a quality control

mechanism removing damaged mitochondria [18]. Impaired

mitochondrial and protein degradation may lead to protein

aggregation and perturbed cellular energetics. In the present

study, animals were produced by mating heterozygote mice to

obtain KO and wild-type (WT) littermates. Because a number of

toxins such as MPTP, and PD gene mutations including those in

the Parkin gene, perturb mitochondrial function and in particular

the complex I, we compared tissues obtained from Parkin KO

mice to WT tissues treated with CCCP. This ionophore is known

to dissipate the pH gradient across the mitochondrial membrane,

leading to the loss of ATP production, an energetic shuttle critical

for cellular metabolism [19].

As expected, energy production pathways are extremely robust

because of multiple feedback interactions, which in turn, induce

emergent properties such as homeostasis [20]. These regulatory

properties are likely to be extremely important in how the brain

reacts to the energetic perturbations/stresses occurring in PD.

However, it is extremely tedious to investigate this issue with

experimental data alone [21]. In that context, a dynamic

modelling platform can efficiently complement experimental

studies [22,23]. To evaluate the relative implications of measured

ex-vivo data, an in-silico platform was developed and model

simulations were used to rationally integrate the experimental

dataset and then allow studying mice brain cells metabolomic state

behaviour. From model simulations, we attempted to model the

impact of parkin gene KO and complex I blockade on energetic

cell metabolism. Therefore, in order to assess the dynamics of

metabolic events involved in this phenomenon, we developed a

kinetic-metabolic model describing concentrations in nutrients and

cell metabolites, as well as metabolic fluxes with time, in brain

tissue. The current study thus presents a kinetic-metabolic model

of central metabolism and energy metabolic pathways describing

the dynamics of energy related metabolites after PD inducing

perturbations.

Materials and Methods

The protocols that require evaluation have been approved by

the ‘‘Ethics committee of animal experimentation’’ of the

Université de Montréal.

Slice Preparation
Mouse brain slices were prepared and rapidly transferred in

Petri dishes. Two slices were evaluated each 10 min (for a total of

eight time points) and homogenised in an alcohol extractor to

arrest cellular metabolism. In two experiments, a control group

(wild type mouse) was compared to either the genetic model or the

toxin-induced model. Mice were anaesthetized with halothane and

immediately killed by decapitation. The brain was rapidly

removed and placed in ice-cold carboxygenated (95% O2 and

5% CO2) cutting-solution (glycerol-containing artificial cerebro-

spinal fluid (G-ACSF)) containing (in mM): NaCl, 125 mM; KCl,

2.5 mM; KH2PO4, 0.3 mM; NaHCO3, 26 mM; CaCl2, 2.4;

GLC, 10 mM; MgSO4, 1.3 mM; at 300 mOSM. The olfactory

bulbs and cerebellum were removed and the rest of the brain sliced

using a vibrating microtome (Leica VT1000SH) in order to make

300- mm thick coronal slices. During slice preparation, the tissue

was always maintained immersed in 4uC ACSF. Each slice was

delicately transferred to a Petri dish continuously perfused with

oxygenated ACSF. After preparation, brain slices from both mice

were allowed to recover for about 30 min.

Stress and Control Groups
Two brains (a control and a test sample) were sectioned and

processed in parallel for each experiment. Individual slices were

processed at a rate of one per 10 min for a total of about 75 min.

Parkin KO mice on a C57bl/6 background were used as a genetic

model of PD, and their oxidative phosphorylation capacity was

taken to be 90% of that of the wild-type (WT) [17]. Wild-type

littermates were used a control. A subset of slices from WT mice

were exposed to 10 mM CCCP to inhibit complex I function. The

inhibitor was added in the experimental group after the second

sampling, 15 min following the first extraction. After the collection

of two samples exposed to CCCP, remaining experimental slices

were transferred to a Petri dish containing normal ACSF, as for

the control group.

Preparation of Intracellular Extracts
The understanding of cells metabolic activity in response to

perturbations requires the simultaneous evaluation of many

compounds involved in the cellular metabolic network. Several

extraction methods for metabolite analysis have been reported,

and based on previously reported results [24–26] and our own

studies, a modified procedure using cold methanol was found to be

the most appropriate since it combines mild extraction strength

conditions and high enzymatic inactivation.

The two slices selected for each extract were transferred using a

brush from a Petri dish to a centrifuge tube, which was then

centrifuged at 21 000 g at 4uC for one min; the ACSF supernatant

was then removed using a flame-pulled Pasteur pipette. The pre-

weighted centrifuge vial was then reweighted to deduct the

collected fresh brain mass and 200 mL of an 80% v/v mixture of

methanol and water, cooled on dry ice, was added. The tissue was

then homogenized using a motorised pillar, vortexed and

sonicated to disrupt cell membranes, precipitate proteins and

arrest metabolic reactions. An additional 200 mL of methanol/

water was next added and the homogenization, vortexing and

sonication steps were repeated. The samples were maintained at

280uC for further analyses.

The sample was resuspended and vortexed after addition of

0.2 g of sand to improve homogenisation, and micro-centrifuged

at 21 000 g for 7 min at 4uC. The resulting supernatant was

collected and considered as the first extract. After the addition of

0.2 mL of ice-cold 50% v/v methanol/water to the pellet, the

sample was again vortexed, cooled in an ice-water bath and

sonicated for three rounds. The sample was then micro-

centrifuged at 21 000 g and 4uC for 5 min to produce the second

extract; the latter was added to the first. Next, 0.2 mL of ice-cold

water was added to the pellet and the vial was vortexed and micro-

centrifuged at 21 000 g and 4uC for 3 min to give the third extract.

Finally, the vial contained the pooled extracts was micro-

centrifuged at 21 000 g and 4uC for 5 min. The supernatant was

then filtered in a syringe with a 0.2 mm filter (Millipore) and stored

at 280uC until LCMS analysis.

Metabolomics and In-Silico Analysis of PD Models
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Sample Analysis
The samples were thawed and vortex mixed before analysis.

Samples were kept at 4uC during LCMS autosampling. Minimal

LCMS autosampling loading was performed since it has been

reported that metabolites degrade faster at higher temperatures,

compared to 280uC.
Nucleotide and organic acids together with sugar phosphates

quantification was performed as described in Hammami et al.

[27]. Quantification of metabolites (nucleotides and organic acids)

was performed by integrating peak areas and using standard linear

calibration curves. Extraction specific concentrations of metabo-

lites were calculated by normalizing the quantity of metabolites in

the slice extracts to the fresh weight of the slices. When the peak

area integration led to extrapolation from the linear standard

calibration curve, proper dilution was performed using 50% (v/v)

methanol in water and the sample reanalysed. The concentration

quantification methods used in the present study refer to whole

biological sample homogenisation; the various cellular compart-

ments components and volumes are summed in global concen-

trations values. Based on this extraction method’s limits, the model

considers an average brain slice cells composition.

Nucleotides Quantification
Nucleotides in extracts were analyzed using a 1290 UPLC

system coupled to a 6460 triple quadrupole mass spectrometer

(Agilent TechnologiesH). Nucleotides were separated by a Sym-

metry C18 column (WatersH) equipped with a Security C18

guard-column (WatersH) using ion-pair method. DMHA (N,N-

dimethylhexylanine, SigmaH) was used as an ion-pair reagent to

improve the signal-to-noise ratio with positive ionization mode.

Figure 1. Energy metabolism model for the cerebral tissue. The states of the model (in capital letters) are defined as follows: GLC, glucose;
G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-biphosphate; G3P, glyceraldehyde-3-phosphate; PEP, phosphoenolpyruvate;
PYR, pyruvate; GLY, glycogen; R5P, ribose-5-phosphate; Cr (PCr), creatine (phosphocreatine); LAC, lactate; ACA, acetyl-coenzyme-A; CIT, citrate; AKG,
a-ketoglutarate; SUC, succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate; GLT, glutamate; GLN, glutamine; NAD (NADH), nicotniamide
adenine dinucleotide (reduced); NADP (NADPH), phosphorylated nicotinamide adenine dinucleotide (reduced); ATP, adenosine-triphosphate; ADP,
adenosine-diphosphate; AMP, adenosine-monophosphate; O2, oxygen; ANPs, non-free adenosine-‘‘n’’phosphate nucleotides; Ve, extracellular volume;
subscript ‘‘e’’ refers to extracellular. Reactions (in italic) are defined in Supplementary Materials. The intracellular volume delimited by the dotted line
refers to the mitochondrial volume.
doi:10.1371/journal.pone.0069146.g001
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Sugar Phosphates and Organic Acids Quantification
Organic acids and phosphate sugars concentrations were

assessed using the aforementioned UPLC-MS/MS system using

a HypercarbH column and a Hypercarb pre-column (Thermo

FisherH).

Extracellular Components
ACSF cellular environment samples were taken directly from

the Petri dish. The four major extracellular components such as

glucose, lactate, glutamine and glutamate were measured with a

blood analyser (YSI 2700 Select Biochemistry AnalyzerH). Two
modules were used in parallel; glucose and lactate were measured

simultaneously on an analyser, while another measured glutamine

and glutamate simultaneously.

Statistical Analysis
Data are shown as mean 6 SEM (standard error of mean) of

n=3 independent experiments from brain slices prepared from

three mice. Outliers were removed using box-plot analysis.

Cell Populations
In the present study, complete brain slices were homogenized. It

was therefore not possible to distinguish between metabolites

originating from the different cell types (neurons, astrocytes,

oligodendrocytes, microglia, etc.). Considering that cell popula-

tions are not homogeneous throughout the rostro-caudal extent of

the brain, we were careful to select comparable sets of slices from

control and test samples. In addition, although PD is associated

with the degeneration of a limited number of brain regions

including the locus ceruleus and the substantia nigra pars

Figure 2. Effect of toxin exposure on energy dynamics. Experimental data of WT control (¤) and CCCP stressed (&) brain cells, and model
simulations of control (black line) and CCCP stressed (red line) cells. LACe (A), GLCe (B), LACe to LAC transport (C), GLCe to GLC transport (D), LAC
production (V_ldh) (E), GLC consumption (V_hk) (F), ATP (G), ATP-to-(ATP+ADP+AMP) (¤,&, black line, dotted red line) and ATP-to-
(ATP+ADP+AMP+ANPs) (thick red line) ratios (H).
doi:10.1371/journal.pone.0069146.g002
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compacta, in the present study, brain tissue was collected from the

whole brain. We did not attempt to collect only the ventral

mesencephalon, where the substantia nigra is localized, as this

would have lead to insufficient quantities of cells and thus of

metabolites; an experimental limitation determined from the

detection limit of the LCMS and UPLCMSMS equipments used.

Although in these mice the Parkin gene was knocked out from all

cells, it is possible that by analysing whole brains, we missed

perturbations in cell metabolism that were more specific to the

affected nuclei.

The Model
The metabolic pathways investigated in this study are presented

in Figure 1. Details concerning the model (transient mass balances,

parameters etc.) are provided in the Supplementary Material (SM);

with the description of the kinetic-metabolic model (Table S1),

fluxes’ kinetic formulation (Table S2), fluxes’ functions (Table S3),

state variables and initial conditions (Table S4), maximal fluxes’

rates, affinity, inhibition, threshold, stoichiometric ratios and other

constants (Table S5). All functions in Table S5 are widely used in

control engineering, and a description of secondary parameters

can be found in major textbooks in systems’ dynamics and control

engineering. The model structure and kinetics were taken or

adapted from literature [28–29; and references therein], and it was

implemented in MatlabH (The Mathworks, Inc.H) using the

Systems Biology ToolboxH (SBT) [30]. The model MatlabH code

is provided as supplementary material. The model accounts for

biochemical reactions occurring in all brain cells, mostly neurons

and astrocytes, and was constructed not to represent a specific

cerebral region nor cell type or function. We thus used

concentrations units (mM) for the metabolites and limited the

modelling to a generic set of reactions that are known to occur in

these cell types. This was to ensure a physiologically realistic model

that could eventually be adapted to other experimental investiga-

tions. Most of the molecules involved in the model are present in

relatively large amounts implying hundreds of thousands (or more)

of each molecule for a typical neuron. From a modelling

perspective, this means that the overall reaction system can be

meaningfully modelled within a deterministic framework to

describe cells’ metabolic network and dynamics. Other PD-related

modeling efforts also successfully used this approach [28;31–33].

Pathways Considered
In this work, we have limited our scope integrating central

carbon metabolism and energetic pathways. Pathways represented

in the model originate from a database of combined information

from literature as well as the web-database BioCyc.org [34]. The

model considers molecular transport across the cellular membrane

(identified with prefix ‘‘T’’, as T_glc for the transport of GLC). As

the main influx, glycolysis is described with a high level of detail.

The modelling is focused on highly controlled enzymatic reactions

(e.g. V_pfk for the flux of phosphofructokinase) and important

branch point. The pentose phosphate pathway (PPP), which is the

major pathway for anti-oxidative action, is represented with its two

glycolytic connecting points. Even if the latter pathway is

extensively simplified to a single state, the by-products stoichiom-

etry (regeneration of 2 NADPH for each GLC cycling through

PPP) is consistent with the full pathway. Pyruvate from the

glycolytic pathway is either converted to lactate through reversible

lactate dehydrogenase, or transferred to the mitochondria and

consumed in the TCA cycle. While some intermediates (such as

AKG) can be used as branch point to amino acids (GLT)

consumption/production, the cycle’s main function is to perform

reduction of NAD shuttles to NADH. This in turn allows ATP

regeneration from ADP by oxidative phosphorylation in the

mitochondria matrix. Although this pathway involves many

enzymatic complexes and sub-compartments, a simple one-step

reaction with parallel proton leakage is considered here.

The two major energetic buffers are considered: phosphocre-

atine and glycogen. Creatine kinase transfers the high energy

phosphate link from ATP to Cr and the resulting molecule PCr

can in turn be used to directly regenerate ATP during periods of

high demand. Glycogen is considered as a single state with a

reversible reaction from G6P. Although energy is used to obtain

G6P, glycogen can in turn be used temporarily if GLC transport

becomes limiting during periods of high-energy demand, thus

creating a buffer effect between low and high energy demand

periods [28].

Consideration on States
Most model states are determined as a distinct mass balance

with a rate of change equal to the difference between production

and consumption fluxes. Alternatively, moiety conservation is used

to reduce the number of differential equations, when possible. For

example, the sum of PCr and Cr is constant and Cr can be

expressed as ‘‘Cr = PCrTOT – PCr’’. In those cases, the unique

assumption is that the total pool of metabolites is constant over the

time frame of the experiment. This approach reduces the number

of differential equations and computing time. In energy metab-

olism, some enzymatic activities reach an extremely rapid

equilibrium and this can also be used to reduce the number of

differential equations, while still describing the associated state

variables with algebraic equations. As an example, even if uridine-

triphosphate (UTP) is necessary for glycogen storage, the enzyme

nucleoside diphosphate kinase covers the use immediately and stabilises

the UTP pool with ATP. In the model, we thus only represent

ATP as the global energy currency and its dynamics will be

representative of the overall energetic state.

Parameters Estimation
Although the model presented here could eventually be used to

estimate confidence intervals on the parameters, this was not the

immediate objective of the present work. Our objective was rather

to develop a kinetic-metabolic model structure that can be

challenged with experimental data. Along with this process of

model calibration, we tested its usefulness to retrieve various

fundamental informations (i.e. fluxes, parameter sensitivity etc.)

that can hardly be obtained experimentally, with regards to

energetic regulation during the early events of PD pathogenesis.

Figure 3. Basal indicator for WT and CCCP stressed models.
Model simulation of control (black line) and CCCP stressed (red line)
brain cells oxygen-to-glucose-consumption ratio.
doi:10.1371/journal.pone.0069146.g003

Metabolomics and In-Silico Analysis of PD Models

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69146



The parameters of the model were first estimated from the

available literature, as detailed below, and then calibrated

minimizing the error between simulations and experimental data,

as previously described [29]. The measured rate of GLC intake by

the brain tissue was also used to estimate the reaction rates, when

possible. Most of the enzymatic reactions are described using

simple Michaelis-Menten saturation-type kinetics. Being globally

accepted in the scientific community as a satisfactory mathemat-

ical abstraction for substrate-protein interactions, quantification of

the apparent affinity of proteins to their different substrates is

common, as shown by the large amount of work available in

comprehensive shared web-databases like brenda-enzymes.info [35].

Understanding that a model is a simplified representation of a

phenomenon, or of a network of biochemical reactions in this case,

the kinetic parameters determined in this work have to be seen as

global; they also include what is not described, such as metabolic

regulation as well as other biochemical reactions that are taking

place but that are lumped in this model. The parameter values

determined in this work may thus differ from the strict real value

for a biochemical reaction, but bring a global view on a group of

regulated biochemical reactions occurring around each metabolite

described in the model.

KM apparent Affinity
The affinity of protein-substrate interactions has not been

measured for all organisms or cell types. In this work we thus

gathered the most relevant values from the databases. When

possible, the affinity values were taken for mouse brain proteins

(see Table S5 in Supplemental material). Otherwise, the values

come from mammalian cells or from an average of many different

eukaryotic cells. However, these values were only used as

Figure 4. Effect of parkin gene knockout on brain cells energy dynamics. Experimental data of WT control (¤) and parkin knockout (&)
brain cells, and model simulations of control (black line) and parkin knockout (bleue line) cells. LACe (A), GLCe (B), LACe to LAC transport (C), GLCe to
GLC transport (D), LAC production (V_ldh) (E), GLC consumption (V_hk) (F), ATP (G), ATP-to-(ATP+ADP+AMP) ratio (H).
doi:10.1371/journal.pone.0069146.g004
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reasonable first estimates and were later adjusted during model

calibration process.

Feedback Regulation
In addition to multi-substrate and reversible Michaelis-Menten

flux expression, for specific enzymes or pathways, the mathemat-

ical description requires complementary feedback expressions to

improve its robustness and fidelity with regards to commonly seen

processed such as energy homeostasis. Hill inhibition kinetics on

phosphofructokinase, threshold activation and inhibition of

glycogen on the glycogen buffer pathway, and ADP to ATP

ratio-controlled oxidative phosphorylation are examples of feed-

back regulation mechanisms that were implemented.

VM Maximal Flux Rates
The maximum rate of model fluxes, especially glycolytic fluxes,

can be estimated from the basal (i.e. before perturbation) GLC

uptake rate and LAC excretion rate, as measured from the

extracellular GLC and LAC concentrations. The rate of GLC

intake imposes a global limit on the glycolytic fluxes and also on its

branchpoints; the sum of fluxes at a branchpoint has to balance

when in the ‘baseline’ steady-state. The rate of LAC excretion

indicates, indirectly, the proportion of GLC that underwent

complete oxidation, which in turn is an estimate for the TCA

fluxes. Thus, with known values for the KM and other kinetic

parameters (Table S5), if we have an estimate of the flux and

measurements for all of the concentrations, the kinetic equation

can be solved with VM as the only unknown. This gives a realistic

estimate for these parameters, at least for the ‘baseline’.

Subsequently, model fine-tuning was done both manually and

with computational optimisation routines included in the SBT. As

presented below, the model could benefit from further optimisa-

tion for specific experimental cases. However, within the scope of

this work, we considered sufficient to achieve a satisfactory overall

fit with one set of parameters for all of the experimental

conditions.

Stress Implementation
Another addition was also made to the model to allow a sudden

change linked to the addition of CCCP to the media (or in our

case, the transfer of slices in a CCCP prepared ACSF). Because

this ionophore uncouples the respiration chain as it increases

proton leakage across the membrane barrier, the stress is

represented in the model as an increase of the natural

mitochondrial leakage process. As the proton gradient has a

direct effect on the efficacy of the oxidative phosphorylation

pathway, and considering that pH gradients are not represented in

the model, the leakage is modeled as oxidizing directly NADH to

NAD without ADP phosphorylation to ATP. As the stress was

implemented as a pulse, such mathematical description is added to

the model using a sigmoidal-shape function. Since the toxin

diffuses easily into the brain slice, a fast acting sigmoid is imposed

in the opening pulse function. Finally, since the CCCP was washed

out of the slice relatively slowly, a slow acting sigmoid is added for

the pulse function closing term.

Results and Discussion

The complete model has 41 fluxes, 38 states, 82 literature

constants, 28 simulation related parameters, five in-vitro calculated

values and 46 in-silico defined parameters (Table S5) from model

calibration step to experimental dataset. The model considers two

zones, the cellular compartment with its interior volumes (cytosol

with mitochondria) and the extracellular medium, which includes

the extracellular matrix space. The model structure and param-

eters value calibration was performed using the experimental data

and literature. In addition to simple weight measures, blood

analysers and LCMS methods allowed for the qualification of 17

compounds, such as GLC, LAC, GLN, GLT, ATP, ADP, AMP,

NADPH, PYR, MAL, SUC, FUM, AKG, G6P, R5P, F6P and

PEP. Only the most significant data are presented in the following,

together with in-silico simulations; the remaining material is

provided in the Supplementary Materials.

In the following sub-sections, ex-vivo measured values from wet-

lab experimentations are presented with corresponding in-silico

results from computer simulations. The comparison of controlled

conditions to toxin exposure and parkin KO genetic modification

are presented successively.

Exposure to Toxins Induces Severe Energy Deregulation
In the wild-type tissue case (Figure 2), the model simulation was

in accordance with extracellular measurements. This indicates that

the overall consumption/production rates in the model are in

accordance with the experimental system.

The observed increase in GLC (+3% over 75 min) is not due to

GLC excretion from the slices. The Petri dish being open to

unsaturated air and sparged with dry gases, significant evaporation

is likely to have happened during the experiment. Effective

metabolites flows were then corrected by estimated evaporation

measurements and analysis of simulated fluxes; results showed that

the effect of evaporation was slightly stronger than GLC

consumption by the slices and thus had to be considered.

On the other hand, in the case of LAC, the increase was much

more significant (+50% in 75 min) and most of the increase is

likely to have arisen from LAC excretion from the slices. This

indicates an imbalance between glycolysis and oxidative phos-

phorylation, which is coherent with previous work on brain

physiology. Furthermore, the basal unstressed consumption ratio

of oxygen-to-glucose indicator, as calculated by equation 1 and

presented in Figure 3, is within the 3.5 to 5.5 range observed

physiologically [36]. This shows that the slicing process and

diffusion within the slice did not seem to affect the overall

metabolic rates. A severe diffusional problem would most likely

have resulted in a lower O2-to-GLC consumption ratio.

O2 consumption

Glu cos econsumption

~

6 Glu cos econsumption{
1
2
Lactateproduction

� �

Glu cos econsumption

ð1Þ

Results show that ATP profile for the wild-type tissue did not

exhibit any clear trend, and that experimental and measurement

noise may dominates. In the model, a consistent result (i.e. no

trend) is achieved because the negative feedback on various steps

of energy metabolism produces a homeostatic response in terms of

ATP. More specifically, hexokinase, phospho-fructokinase and

pyruvate kinase enzymes are activated when ATP is low, and

oxidative phosphorylation is inhibited when ATP is high (refer to

section 3.2 and reactions 26 (V_hk), 36 (V_pfk), 38 (V_pk) and the

ADP-on-ATP ratio as considered in reaction 32 (V_op) in Table

S2).

The short-term dynamic response during and following

exposure to CCCP reveals a rapid and significant drop of ATP

concentration that remains until the end of the experimental

period. This dynamic response is reproduced in the model by

different means. The uncoupling of oxidative phosphorylation by

Metabolomics and In-Silico Analysis of PD Models

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e69146



the CCCP causes the initial drop in energy. In this new state of low

energy, the metabolic regulation for nucleotides scavenging is

initiated [36] as described in equations 5 and 41, respectively from

Table S1 and Table S2. As the recovery from this stress

(nucleotide regeneration) is slow (reaction 16 in Table S2), the

system remains in a low energetic state for the duration of the

experiment.

Although experimental observations are on a relatively short

timescale, it is clear that the exposure to environmental toxins such

as CCCP can induce rapid and permanent changes of energy

metabolism. In our experimental system, ATP levels after

exposure to CCCP are reduced to 25% of their initial levels

without causing immediate tissue death. The latter result comes

from visual observation of the slices and also from the measured

changes in GLC and LAC, showing sustained metabolic activity

after exposure. This indicates a clear metabolic robustness even

after strong perturbations. It is possible that exposure to CCCP-

like toxins such as MPTP (as observed in humans) could be as

severe, with a significant drop in ATP, but without causing

immediate cell death. In the longer term (days or weeks), the lack

of complete metabolic recovery would however certainly lead to

necrosis and loss of dopaminergic neurons, which agree with the

literature on MPTP usage [7].

The only discrepancy between the modelling and experimental

data is the slower LAC increase in the simulation with CCCP

(Fig. 2-A). This suggests that the model with decoupled energy

production tends to re-uptake LACe contributing to re-balance

TCA. The principal cause for this TCA unbalancing is that the

model considers the NADH as a simple proton gradient. This

leads to strong reduction of NADH instead of proton leak and

further over availability of NAD. As a consequence, NADH

production by all NAD single co-substrate consuming enzymes

such as PYR dehydrogenase (V_pdh) and CIT dehydrogenase

(V_cdh) from TCA cycle are up-regulated. Hence, the global

unbalancing of the TCA cycle could be described in a more

complete way if all connected pathways were considered.

However, based on the measurements of extracellular lactate, its

rate of production after 60 min is not significant. Thus the model is

in accordance with this observation as shown in Figure 2.E.

Furthermore, the reduction of NADPH allows such a ‘‘turbo’’

mode for the overall metabolism as seen in Figure 3, where the

oxygen-to-glucose consumption ratio indicator increases to a high

value of 6 after a higher (,9) transient response. Although stable

for the considered timescale, such an operating mode would

eventually lead to higher risk of damage by oxidative stress and

loss of extracellular LAC.

Energy Robustness under Parkin KO Genetic Perturbation
Model simulations are in agreement with extracellular mea-

surements of cell energetics markers (Figure 4). In the same way as

for the control WT case, the KO model has overall consumption/

production rates that agree with that of the experimental system.

Although all profiles are generally similar to the genetically

unaltered model, a slight adaptation can be observed. While

lactate production is still positive, as the flux of lactate

dehydrogenase (V_ldh) is negative, the reaction rate is approx-

imately doubled. This result is probably a metabolic adaptation

following genetic modification. In fact, the deletion of the parkin

gene is likely leading to the accumulation of a number of damaged

proteins, such as misfolded alpha-synuclein, which could lead to

increased oxidative stress, as described by Cloutier and Wellstead

[37]. The most affected pathway of the model for this genetically

induced oxidative stress is the pentose phosphate pathway, since its

important cofactor NADPH allows regeneration (reduction) of

GSSH to GSH of the glutathione oxidative stress reducing

pathway (with glutathione reductase) [38]. Although the magni-

tude of the oxidative stress generation is multiplied by ten in this

case, cells’ energetic regulation seems to compensate for such

strong perturbation. The ratio of pentose phosphate over

glycolysis, with time, (Figure 5) reveals a variation of the

genetically stressed mouse model compared to both control and

CCCP stressed mice models, where simple energy regulation leads

to a global system adaptation at another possible operating point.

The use of the model thus allows detailed description of the

fluxes, invisible from an experimental level. In this case, tissue

from the KO mice exhibits identical molecular concentrations, but

increased reaction rates allowing a sustainable metabolism.

Conclusion
A mathematical model for brain energy metabolism in the

context of PD related stresses has been developed and validated

using experimental data. The major observation from this work is

that environmental exposure to a toxin such as the complex I

inhibitor CCCP is a severe stress in terms of deregulation of energy

metabolism and that a response is initiated when ATP levels are

irreversibly reduced. In the case of the genetic defect examined

(parkin gene KO), the modelling, supported by experimental

evidences, suggests that the biochemical regulation of energy

metabolism increases metabolic flows without affecting the

metabolite concentrations in order to allow the system to adapt

to a certain level of stress. Although the experiments and

simulations are on a relatively short timescale, the results suggest

how energy can be rapidly deregulated by strong environmental

stresses relevant to PD. In the long term, a certain level of

adaptation could certainly occur, but over time, some damage (i.e.

protein misfolding or oxidative stress) would accumulate, leading

Figure 5. Comparison of fluxes and metabolic ratios. Model
simulations of WT control (black line), CCCP stressed (red line) and
parkin knockout (bleue line) brain cells. Characteristic pentose
phosphate pathway flux rate (V_ppp) (A), Glucose consumption rate
(V_hk) –to- characteristic pentose phosphate pathway flux rate (V_ppp)
(B).
doi:10.1371/journal.pone.0069146.g005
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to cellular disorganisation and cell death [37]. Other integrative

modelling efforts also show that irreversible effects could be rapidly

induced in PD [39], which is coherent with the rapid onset of

neuronal dysfunction observed in humans exposed to MPTP [40].

Supporting Information

Table S1 In silico model mass balances.
(DOCX)

Table S2 Fluxes kinetics description.
(DOCX)

Table S3 Fluxes functions description.
(DOCX)

Table S4 State variables and initial conditions.
(DOCX)

Table S5 Maximal fluxes rates, affinity, inhibition,
threshold, stoichiometric ratios and other constants.
(DOCX)

Table S6 Model MatlabH code.
(DOCX)

Acknowledgments

We wish to thank Daminana Leo (Université de Montréal) for preparing
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