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Abstract: In this paper, an optimized three-dimensional (3D) pairwise point cloud registration
algorithm is proposed, which is used for flatness measurement based on a laser profilometer. The
objective is to achieve a fast and accurate six-degrees-of-freedom (6-DoF) pose estimation of a large-
scale planar point cloud to ensure that the flatness measurement is precise. To that end, the proposed
algorithm extracts the boundary of the point cloud to obtain more effective feature descriptors of the
keypoints. Then, it eliminates the invalid keypoints by neighborhood evaluation to obtain the initial
matching point pairs. Thereafter, clustering combined with the geometric consistency constraints of
correspondences is conducted to realize coarse registration. Finally, the iterative closest point (ICP)
algorithm is used to complete fine registration based on the boundary point cloud. The experimental
results demonstrate that the proposed algorithm is superior to the current algorithms in terms of
boundary extraction and registration performance.

Keywords: 3D point cloud registration; boundary extraction; boundary-based registration; flat-
ness measurement

1. Introduction

Flatness is an important component of geometric tolerance and has a wide range of
testing applications in many fields, such as for precision machinery, military manufac-
turing, and electronics. The traditional flatness measurement scheme is limited by many
factors, such as precision, detection speed, and equipment cost, which cannot meet the
increasingly stringent detection requirements in production lines. Machine vision has
become widely used for flatness measurement. Among various machine vision schemes,
a laser profilometer [1,2] is suitable for fast and high-precision flatness measurement be-
cause of its excellent point cloud acquisition ability. However, to improve the repeatability
of flatness measurement, the relative position of each sampling point must be fixed in
repeated measurements, which is undoubtedly a difficult problem when the initial pose
of the objects to be measured differs significantly. To solve the above problem, the rigid
registration technology of a three-dimensional (3D) point cloud is used to achieve six
degrees-of-freedom (6-DoF) [3,4] pose estimation of the object to be measured.

The iterative closest point (ICP) and its variants [5–10] are the most widely used point
cloud registration methods due to their simplicity and good performance. However, the
main problems in point cloud registration for flatness measurement are as follows: Because
of its high computational complexity, the ICP algorithm cannot efficiently process large-
scale point clouds obtained by a laser profilometer. In addition, the ICP method may suffer
from the local optimum problem because it considers the closest point as the corresponding
point [11], especially when the point cloud is not well initialized. Conversely, to overcome
the local minimum problem, the coarse-to-fine registration strategy [12] is widely used.
However, in the case of point clouds with curvature-invariant surfaces [13], the coarse
registration precision is low, which adversely affects subsequent fine registration.
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In this paper, an optimized 3D point cloud registration algorithm is proposed, which
realizes the registration of large-scale planar point clouds in flatness measurement. We
introduce an improved 3D point cloud boundary extraction method, which obtains approx-
imate boundary points through coarse estimation. Then, it removes outliers and extracts
accurate boundary points through fine estimation in the neighborhood of the approximate
boundary points. Compared with the traditional boundary extraction method, the opti-
mized method introduces the idea of a hierarchical strategy to avoid evaluating every point,
thereby greatly improving the efficiency of calculation. Then, point cloud registration is
acquired based on the boundary information. We calculate the feature descriptor of the
boundary point cloud to overcome the problem of weak uniqueness of feature descriptors
in curvature-invariant surfaces. We concurrently designed an algorithm to eliminate in-
valid keypoints and mismatches for the boundary point cloud to achieve fast and accurate
coarse registration. Finally, the boundary point cloud is input to the ICP framework to
accomplish fine registration, which significantly reduces the computational complexity
and maintains accuracy. The experimental results show that the proposed algorithm can
effectively extract the boundary of a 3D point cloud and obtain better registration accuracy
and computation efficiency in several point clouds to ensure fast and accurate flatness
measurement based on a laser profilometer. The main contributions of this study are
as follows:

1. An improved 3D point cloud boundary extraction method is proposed. This method
integrates a hierarchical strategy, an outlier filter, and a traditional boundary extraction
algorithm to increase computational efficiency.

2. A novel boundary-based registration method is presented in this study. It achieves
coarse-to-fine registration based on a boundary point cloud, which significantly
improves the situation in which ICP is prone to fall into local minima and low
calculation efficiency and has high registration precision.

3. We apply the proposed large-scale planar point cloud registration algorithm to the
laser profilometer-based flatness measurement for greater efficiency and accuracy.

The remainder of this paper is organized as follows. Related work is described
in Section 2. The proposed method is detailed in Section 3. The experimental results
and analyses are presented in Section 4. Conclusions and perspectives are presented in
Section 5.

2. Related Works
2.1. Boundary Extraction

Since the original point clouds obtained by the scanning device have a large number
of points and contain a lot of curvature-consistent surfaces, boundary feature extraction
is needed to improve data utilization. The point cloud boundary plays an important role
in boundary-based registration. The efficient and accuracy of point cloud registration
will be directly affected by the boundary extraction performance. A variety of boundary
extraction methods have been developed. Wang et al. [14] introduced an approach to fusing
boundary data extracted in a 2D image and 3D point cloud to obtain the 3D boundary
characteristics with increased accuracy; however, the accuracy of identifying the target
object from the background in the depth image may affect the final performance of the
algorithm. Chen et al. [15] achieved point cloud boundary detection, which combined the
k-nearest neighbors angle method [16,17] with the geometric distribution of point clouds.
However, the applicability of the two-way nearest points search method is poor, and for
the large-scale point clouds, using each point for k-nearest neighbors search will be time
consuming. The improved Hough transform [18] was successfully applied to boundary
extraction of point clouds, reducing the computational complexity, but the final result is
susceptible to the performance of normal calculation. Chen et al. [19] used an improved k-d
tree method to search the k neighbors in point cloud; then, they established the least-squares
microcut plane by the sampling point and its k-nearest neighbors and projected them onto
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the plane, and the boundary points were extracted according to the judge criterion of field
force and a sorting method based on the vector deflected angle and distance.

In general, existing boundary extraction algorithms can achieve high accuracy, but for
large-scale point clouds, most of them take a long time because of the k neighbors searching
and normal estimation for each point.

2.2. Coarse Registration

One of the core technologies for 3D point cloud data processing, 3D point cloud regis-
tration is widely used in many fields, such as 3D reconstruction [20], 3D recognition [21],
and simultaneous localization and mapping (SLAM) [22]. For registration, it is critical to
obtain a coordinate transformation matrix between a set of point clouds across several
views into the same coordinate system using particular algorithms or statistical rules. The
local registration algorithms easily fall into a local optimum when the initial pose of the
point cloud sets is arbitrary. To solve this problem, a coarse-to-fine strategy is proposed,
where the coarse registration can estimate a rough transformation matrix between two
surfaces without strict requirements of the initial pose, and the fine registration refines the
approximate transformation [23].

Handcrafted feature-based methods are widely used for coarse registration. These
methods entail two significant steps: extracting geometric characteristics and identifying
correspondences [24]. In step one, features such as fast point feature histogram (FPFH) [25],
3D scale-invariant feature transform (SIFT) [26], signature of histogram of orientation
(SHOT) [27], rotation projection statistics (RoPS) [28], local feature statistic histogram
(LFSH) [29], binary shape context [30], and plane structure [31] are calculated as the
primitives for registration. Then, using various matching strategies, such as geometric con-
sistency constraints [27], Hough transform [32], search for inliers [33], and non-cooperative
games [34], the corresponding features are identified to calculate the transformation be-
tween point clouds. The accuracy of registration based on these methods greatly depends
on the quality of feature extraction; however, the robustness, generalizability, descriptive
capacity, and uniqueness of geometric features may not be sufficient, especially in point
clouds with curvature-invariant surfaces.

Instead of feature descriptor calculation and corresponding identification, the four-
point congruent set (4PCS)-based registration methods [35] find a transformation between
point clouds using constant affine invariance ratios for the distances between pairs of
points. These methods are highly efficient with good anti-noise ability [36] and can work
well for point cloud sets with small overlaps. Mellado et al. [37] greatly enhanced the 4PCS
algorithm by applying a splitting and indexing strategy. Semantic keypoint-based 4PCS
(SK-4PCS) [38] combines the advantages of keypoint-based 4PCS (K-4PCS) [39] to reduce
unnecessary points and uses the semantics of keypoints to decrease the complexity of the
search for corresponding congruent sets. Nevertheless, the coplanar sets in the 4PCS-based
algorithm may not take full advantage of the geometric features of planar point clouds.

Another coarse registration scheme is the probabilistic method. These methods are
highly robust to outliers, noise, and occlusions. However, because it is highly time-
consuming, the utility of probabilistic registration is severely limited. Jian et al. represented
the distributions of point clouds as Gaussian mixture models (GMMs), which transform the
registration problem into minimizing the statistical discrepancy between two GMMs. The
coherent point drift (CPD)-based method [40] uses GMMs to describe the corresponding
relationship between two sets of points and considers the registration to be a problem of
probability density estimation, which can be solved by the expectation-maximization (EM)
algorithm. Gao et al. [41] proposed a novel probabilistic registration method, FilterReg,
which uses a Gaussian filter and twist parameterization to achieve robust point cloud
registration with fast computational performance.

Recently, deep learning-based methods have been used to solve the problem of 3D
point cloud registration. 3DMatch [42] establishes correspondences by learning a local
volumetric patch descriptor. Deng et al. [43] presented PPF-FoldNet, which uses a folding-
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based auto-encoder to learn 3D local descriptors. Aoki et al. [44] considered Point Net
as learnable “imaging” and introduced the Lucas and Kanade (LK) algorithm to achieve
3D point cloud registration. The deep closest point [45] method proposes a simple archi-
tecture, which addresses key issues in each part of the classical ICP pipeline to obtain
the transformation between a pair of point clouds. These deep learning-based methods
achieve outstanding performance at small-scale point cloud registration; however, limited
by the calculation complexity and the amount of data, they do not apply to large-scale
point clouds.

2.3. Fine Registration

ICP [5] is the best-known algorithm for fine registration, which alternates between
searching point cloud correspondences and finding the optimal solution by the least-
squares method to update the alignment. However, owing to the establishment of cor-
respondences by searching the nearest points in the iterative process, the ICP algorithm
has low computational efficiency and often stalls at suboptimal local minima. Therefore,
several ICP variants have been proposed to solve these problems. To broaden the basin con-
vergence of ICP, Fitzgibbon [6] introduced the Levenberg–Marquardt ICP algorithm that
enlarges the range of convergence and improves computational efficiency. Yang et al. [7]
proposed a global optimal ICP (Go-ICP) to solve the local minimum problem. However, Go-
ICP is sensitive to occlusion and partial overlap and is significantly more time-consuming
than ICP. To improve the accuracy and efficiency, point-to-plane [8], point-to-projection [9],
and plane-to-plane [10] correspondence error metrics have been used in ICP variants.

Magnusson [46] extended the normal distribution transform (NDT) algorithm to
3D space to realize registration. The main concept of this method is to present a point
cloud pair as a set of Gaussian distributions. Subsequently, the Hessian matrix method
is used to optimize the probability of the Gaussian distribution of the point cloud pair to
realize registration. In contrast to the ICP algorithm, NDT and its variants [47] achieve
fine registration without a good initial pose and avoid time-consuming searches for the
closest points.

In summary, it is difficult for most extant 3D point cloud registration algorithms to
achieve accurate registration for point cloud with curvature-invariant surfaces. In addition,
for large-scale point clouds, it is hard work to reduce the processing time while retaining
the registration accuracy.

3. Proposed Methods

The proposed registration method for a large-scale planar point cloud follows the
same framework as the SHOT-ICP algorithm but is optimized hierarchically. Figure 1
shows the flowchart of this method, which involves three steps. The details are presented
as follows:

1. Boundary Extraction: Given the input point cloud sets P and Q, we introduce a novel
boundary extraction algorithm to obtain the boundary point clouds efficiently and
eliminate the noise caused by the acquisition equipment.

2. Coarse Registration: After boundary extraction, the obtained point clouds are de-
scribed by SHOT descriptors. To obtain accurate correspondences, we designed an
invalid keypoints elimination method based on the least square (LS) fitting of point
clouds in the neighborhood of keypoints. Then, we obtain a cluster of keypoint pairs
based on the geometric consistency constraints. Subsequently, the random sample
consensus (RANSAC) iteration is used to eliminate further the mismatched keypoints
and estimate the approximate transformation Mc.

3. Fine Registration: Finally, the roughly registered boundary point clouds are combined
into the ICP algorithm to obtain the fine transformation Mf. By adopting two steps
of rotation and translation with the parameters Mf, the input point clouds can be
registered accurately.
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Figure 1. Flowchart of the proposed registration method for a large-scale planar point cloud.

3.1. Optimized Boundary Extraction Algorithm

To achieve more efficient and accurate registration, we characterize the large-scale
planar point cloud as its boundary points. The proposed boundary extraction method is
a variant algorithm that introduces a hierarchical strategy to improve the computational
efficiency and combines the statistical outlier removal filter (SOR) [48] to remove the noise
around the boundary. Figure 2 shows the principle of the traditional k neighbors angle
method-based boundary point cloud extraction method in a point cloud library (PCL).
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(b) An illustration of a boundary point.

As shown in Figure 2a, the boundary extraction method is based on the point neigh-
borhood. The neighborhood of each point pi is defined as a set that includes the k-nearest
points of the center pi, where k = 30. The covariance matrix C with dimension 3 × 3 is
created to estimate the surface normal and the eigenvectors and eigenvalues are calculated
by eigen-decomposition:

pi =
1
k

k

∑
a=1

pa
i (1)

C =
1
k

k

∑
i=1

(pa
i − p)(pa

i − p)T (2)

Cvj = λjvj, j ∈ {1, 2, 3} (3)

where pa
i , a ∈ (1, k) is the a-th k-nearest point of pi, pi is the centroid of all k-nearest points

of pi, and vi and λi respectively are the j-th eigenvectors and eigenvalues of the covariance
matrix C. The eigenvector corresponding to the minimum eigenvalue is identified as the
normal vector of the neighborhood. For the normal vectors of all points, the viewpoint
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position is introduced to solve the problem of ambiguous orientation. Then, based on
the normal vector ni, the unit orthogonal vectors u, v are obtained to construct the local
coordinate system.

In the local coordinate system of the pi, by connecting pi and pa
i , we can obtain the dot

product of
(
pi − pa

i
)

with u and v. Since pa
i is probably distributed around the plane upiv;

there is an approximate formula: θa + γa = π/2. Hence, θa ∈ (−π, π) can be calculated as:(
pi − pa

i
)
u(

pi − pa
i
)
v
=
‖pi − pa

i ‖2‖u‖2cosθa

‖pi − pa
i ‖2‖v‖2cosγa =

cosθa

cosγa = tanθa (4)

θa = arctan2[(pi − pa
i )v, (pi − pa

i )u] (5)

θa is calculated for each k-nearest point, which is sorted in ascending order to obtain
the set, {θ1, θ2, θ3, . . . , θk}. Subsequently, the differences between two adjacent angles
are obtained as ∆θt = θt+1 − θt and t ∈ {1, 2, . . . k− 1}, which can be transferred to
∆θt = 2π− θt + θ1, and t = k. If the maximum angle difference is ∆θmax = max

1≤t≤k
∆θt above

a certain threshold π/2, the point pi can be identified as a boundary point cloud, as shown
in Figure 2b.

The traditional boundary extraction algorithm can achieve good results, but it is
time-consuming if all points are involved in the operation. Furthermore, the original point
cloud data must be filtered effectively and denoised, which can enhance the accuracy
of subsequent processing. To solve these problems, we propose an improved boundary
extraction algorithm, which first obtains approximate boundary points and then identifies
the accurate boundary points and removes the outliers through a radius search of the
rough boundary points (Figure 3). The working details are presented in Algorithm 1. In
this study, the outlier removal factor α is set to 0.5.

Algorithm 1. Optimized Boundary Extraction Method

Input: Source point cloud S
Output: Boundary point cloud T without outliers

1 V←Voxel Down-sampling S
2 for each point pi in V, do
3 pi =

1
k ∑ pa

i

4 C = 1
k ∑
(
pa

i − pi
)(

pa
i − pi

)T

5 Cvj = λjvj, j ∈ {1, 2, 3}
6 Boundary identification
7 Add boundary points into R
8 end
9 Z←radius search for each point in R
10 for each point qi in Z do
11 Search for the k-nearest points: qa

i , i ∈ (1, k)

12 di =
∑ ‖qi−qa

i ‖2
k

13 end
14 µ← ∑ di

n

15 σ←

√
∑ d2

i−
(∑ di)

2

n
n−1

16 for each point qi in Z, do
17 if di ≥ µ + ασ then
18 continue
19 end
20 Boundary identification
21 Add boundary points into T
22 end
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Figure 3. Result of the optimized boundary extraction method. The down-sampling points are first
obtained to identify the rough boundary points, and then, we search for the accurate boundary points
and eliminate the outliers based on the neighborhood points of the approximate boundary points.

3.2. Elimination of Invalid Keypoints

To establish the local correspondences between two boundary point clouds to realize
coarse registration, we obtained the keypoints of the boundary by uniform down-sampling
and calculated their descriptors. We utilize a robust descriptor capable of reflecting the
geometric structure of the boundary point cloud: SHOT, which constructs a normalized
histogram by counting the geometric distribution of point clouds in the constructed local
reference frame around the keypoints. In particular, the local reference frame uses an
isotropic spherical grid with 32 spatial bins that results from two elevation divisions, two
radial divisions, and eight azimuth divisions. Each spatial bin can be further divided into
11 sub-bins according to the spatial distribution. Hence, the SHOT descriptor can ultimately
be represented as a 352-dimensional vector. The correspondences can be identified as a
keypoint pair, the descriptors’ Euclidean distance of which is less than a certain threshold.

Boundary-based SHOT descriptors can overcome the problem of weak uniqueness
in a curvature-consistent surface, thus reducing the number of mismatches. However,
there are still many non-corresponding keypoint pairs with similar spatial distributions.
Therefore, we designed a method to evaluate the neighborhood of each keypoint based on
LS fitting to remove invalid keypoints distributed on the linear boundary that may cause
mismatches due to their ambiguous descriptors. As shown in Figure 4, point clouds in the
neighborhood of each keypoint are fitted as an LS straight line, and the average distance
from all point clouds to the LS line is calculated and is used to evaluate the descriptiveness
of the descriptor of the keypoint. If the average distance is less than a certain threshold, the
keypoint is identified as invalid.
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The target LS line can be represented by a unit vector, D and the centroid in the
neighborhood g, yielding:

l(ε) = εD + g (6)

The objective function of LS fitting can be defined as:
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n

∑
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with every other point in the neighborhood. Owing to the constraint DTD = 1, ‖Gj‖2

2 can

be written as DT
(

GT
j Gj

)
D, and Formula (6) can be transformed to:

f = DT
n

∑
j=1

[(
GT

j Gj

)
E−GjGT

j

]
D, and H =

n

∑
j=1

[(
GT

j Gj

)
E−GjGT

j

]
(8)

where is E a three-dimensional unit matrix. To find the minimum, the key is to obtain
the eigenvalues and eigenvectors of H. The details of the invalid key point elimination
method are given in Algorithm 2 from which we can obtain the coarse correspondences.
The elimination threshold, ζ = 0.2γ, and the correspondence identification threshold,
ψ = 3γ are utilized in this study. γ is the resolution of the input point cloud, which can be
calculated as:

γ =

m
∑

i=1
‖ci − c′i‖2

m
(9)

where ci is the i-th point in the point cloud, c′i is its nearest neighbor point, and m is the
number of points in the input point cloud.
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Algorithm 2. Invalid Keypoints Elimination Method

Input: K′, K′′ , f′, f′′ : Keypoints sets and their corresponding SHOT descriptors sets of input point
cloud pair
Output: Coarse correspondences C

1 for each point pi in K′ do

2 H← ∑
[(

GT
j Gj

)
E−GjG

T
j

]
3 Hij = λjij, j ∈ {1, 2, 3}
4 Sorting the eigenvalues: λ1 ≤ λ2 ≤ λ3, and the corresponding eigenvectors are i1, i2, i3

5 if λ1
n > ζ then

6 continue
7 end
8 dc ← min‖f′i − f′′j ‖2
9 if dc < γ then

10 Add
(

K′i , K′′j
)

into C;

11 end
12 end

3.3. Correspondence Clustering

Given the coarse correspondences, point cloud registration can be achieved by the
RANSAC algorithm. RANSAC iteratively and randomly samples a subset to generate the
hypothesis transformation by the singular value decomposition (SVD) method and then
tests all the remaining correspondences to detect the best transformation, which is defined
as the transformation with the highest percentage of inliers.

The time complexity in the RANSAC iteration depends on the number of input corre-
spondences and the inlier ratio. Therefore, we cluster correspondences based on geometric
consistency constraints before inputting them to the RANSAC framework to improve
the convergence rate. We iteratively consider the correspondence of the descriptor with
the smallest Euclidean distance as the center of a hypothesis cluster and then expand the
cluster with the remaining correspondences of which the geometric consistency evaluation
values to the cluster center are less than the threshold ϕ = 1. Subsequently, we identify
a valid hypothesis cluster for which the membership exceeds a certain threshold, η = 50.
The working details of the correspondence clustering are described in Algorithm 3.

Algorithm 3. Correspondence Clustering

Input: Coarse correspondences C
Output: Fine correspondences M

1 Sort C in ascending order according to the Euclidean distance between two descriptors of
each matching pair to attain a new set of correspondences: C′ = {(ui, vi)|i = 1, 2, 3 . . . , n}
and ci = (ui, vi)

2 for each correspondence ci in C′ do
3 if ci is unavailable then
4 continue
5 end
6 Assume a cluster Ca, and then add ci into Ca
7 for each correspondence cj in C′ do
8 If cj is unavailable or j = i, then
9 continue
10 end
11 ∆dij ← ‖ui − uj‖2 − ‖vi − vj‖2
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12 If ∆dij ≤ ϕ, then
13 Add cj into Ca

14 end
15 end
16 if Ca.size > η, then
17 Add Ca into L
18 Set ci in Ca unavailable
19 end
20 end
21 Sort L in ascending order according to the number of correspondences of the cluster to

attain a set L′ = {Ck|k = 1, 2, 3, . . . , m}
22 M← Cm

3.4. Registration and Flatness Measurement

According to the fine correspondences set, the coarse transformation Mc between
point cloud pairs can be calculated using the RANSAC and SVD algorithms. Subsequently,
fine registration is completed by submitting a coarse registered boundary point cloud
into the ICP framework, which greatly reduces the computational complexity and retains
precision. The final transformation matrix Mf can be expressed as:

M f =

(
R T
0 1

)
(10)

where R is the rotation matrix with 3 × 3 dimensions and T is the translation vector with
3 × 1 dimensions.

To ensure repeatability in flatness measurements, the consistency of flatness sampling
locations must be ensured. As shown in Figure 5, we first set a point cloud with the
standard position as the source point cloud and set the sampling points in its coordinate
system. Then, the point cloud of the object to be measured is used as the target point cloud,
and the transformation matrix Mf between the two point clouds is obtained. Finally, we
utilize the transformation matrix Mf to map the standard sampling points to the coordinate
system of the target point cloud and search for the nearest points of the converted sampling
points as valid data points to achieve the flatness measurement. The mapping of points
can be expressed as: (

x′i , y′i, z′i, 1
)T

=

(
R T
0 1

)
(xi, yi, zi, 1)T (11)

where (xi, yi, zi) is the standard sampling point, and
(
x′i , y′i, z′i

)
is the converted sam-
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4. Experimental Results and Discussion

To verify the efficiency of the proposed method, we first evaluated our optimized
boundary extraction algorithm based on different large-scale planar point clouds, which
were acquired with a profilometer. Then, the proposed mismatched elimination method
was evaluated on the same dataset. Third, the performance and computational efficiency
of our registration algorithm were compared with those of other methods. Finally, the
proposed registration method is applied to realize laser profilometer-based flatness mea-
surements. As shown in Figure 6, the point cloud dataset includes four point clouds,
M1, M2, M3, and M4, which were scanned from the four models using the LMI Gocator
2350 laser profilometer, were used in our experiments. The experiments were conducted
based on an open-source PCL. All experiments in this study were run on a computer
equipped with an AMD Ryzen 7 4800H, 2.9 GHz CPU, and 16.0 GB of memory.
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from left to right are M1 : γ1 = 0.2782, M2 : γ2 = 0.0815, M3 : γ3 = 0.2496, and M4 : γ4 = 0.0754, respectively.

4.1. Boundary Extraction

For the first experiment, we validate the boundary extraction algorithm proposed
in this paper by comparing it with the SOR-boundary extraction (BE) algorithm in PCL.
The SOR-BE makes all points involved in the calculation, which significantly increases
the processing time. In contrast, our approach first obtains a rough boundary to select the
region of interest (ROI); then, it contrapuntally removes outliers and extracts boundary
points in the ROI to reduce computational complexity.

Table 1 shows the quantitative results of the computational complexity of the two
methods. Since the proposed algorithm reduces the number of points in the calculation by
at least 61.7%, the processing time is reduced by more than 55.7%. In particular, for point
clouds with a simple boundary composition, the acceleration effect of our approach is more
obvious, and the processing time can be reduced by 75.8%. In addition, the number of
boundary points obtained by our method is approximately the same as that of the SOR-BE
algorithm. Figure 7 shows the comparison results of the boundary extraction for point
clouds in M1 and M2 using the two methods. Owing to the use of voxel down-sampling and
ROI selection, our algorithm has better anti-noise performance but suffers from reduced
extraction capability for tiny boundaries.
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Table 1. Comparison between boundary extraction results of two methods.

Point Cloud Number of
Original Points Method Number of

Involved Points
Number of

Boundary Points
Processing Time

(ms)

M1 356,522
SOR-BE 356,522 10,140 2235

Ours 56,038 9688 763

M2 306,724
SOR-BE 306,724 20,402 1937

Ours 117,345 19,783 859

M3 283,972
SOR-BE 283,972 10,829 1864

Ours 51,787 10,301 597

M4 340,065
SOR-BE 340,065 4762 2095

Ours 36,516 4778 507
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4.2. Mismatches Elimination

Feature matches based on boundary point clouds can overcome the problem of mis-
match caused by the weak uniqueness of descriptors in planar point clouds. For compari-
son, we calculated the SHOT feature descriptor before and after the boundary extraction
of the M1 point cloud, and the comparison results are shown in Figure 8. Since most of
the space composition of the planar point cloud is almost identical, the resulting feature
descriptors tend to be similar, and mismatched pairs are prone to occur. In contrast, the
feature descriptors for the point cloud after boundary extraction are unique, which results
in more correspondences that are accurate.
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Figure 8. Comparison results of the uniqueness of descriptors between a planar point cloud and
its corresponding boundary point cloud. For each point cloud, we select two sampling points and
calculate their SHOT descriptors. The histograms show the differences between the two descriptors.

Correspondences can be obtained by calculating the Euclidean distances between the
descriptors. The proposed invalid keypoints elimination and correspondence clustering
algorithm can improve the accuracy of matching point pairs. We experimented on four
point clouds and compared the accuracy among original correspondences, boundary-based
correspondences, and correspondences after using our identification algorithm. Figure 9
displays the comparison result and, for a more intuitive presentation, we rotate a pair of
point clouds parallel to each other according to the rotation matrix between them and
display their correspondences. In this case, a higher proportion of parallel lines between
two point clouds means a higher proportion of correct correspondences.

As shown in Figure 9, there are a large number of mismatched pairs in planar point
clouds, which may lead to a waste of computation and a decrease in the accuracy of point
cloud registration. In this case, we extract the boundary of the point cloud and recompute
the descriptors to match the keypoints, because the number of invalid descriptors decreases
while the descriptive capacity of descriptors is enhanced, and the ratio of mismatches
decreases significantly. Subsequently, the proposed invalid keypoint elimination and
correspondence clustering algorithm are further used to identify the correspondences.
Table 2 shows the quantification result of the inlier ratio of correspondences, where we
use the remaining correspondences after RANSAC iteration as the ground truth. For
all the different models, mismatches in the original point clouds are more numerous
than those in the boundary point clouds; however, for textured point clouds such as
M2, boundary extraction slightly improves the descriptive capacity of the descriptors.
In addition, the proposed correspondences identification algorithm can maintain the
inlier ratio of correspondences above 93.6%, which provides a good input dataset for the
RANSAC algorithm to achieve efficient coarse registration.
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Table 2. Quantification result of the inlier ratio of correspondences under several conditions for
different point clouds.

Point Cloud M1 M2 M3 M4

Original 7.868% 10.694% 69.716% 13.384%

Boundary 31.462% 45.695% 75.432% 38.747%

Identified 97.191% 100% 98.701% 93.608%

4.3. Point Cloud Registration

In this experiment, we evaluated the registration performance of the proposed algo-
rithm. For comparison, several coarse-to-fine strategy methods, such as SHOT-ICP (SICP),
Super4PCS-ICP (SPICP), and another global registration method, NDT, were applied in
our experiment. We used point clouds in the dataset (M1, M2, M3, M4) for registration,
and each type of point cloud in the dataset was obtained from different views by using
the laser profilometer. The root-mean-square error (RMSE), which calculates the Euclidean
distance between transformed input sets, was adopted to evaluate the accuracy of the point
cloud registration.

RMSE =

√√√√ 1
N

N

∑
k=1
‖R f pk + T f − qk‖

2
2 (12)

where pk and qk are the points in the input point cloud sets, and Rf and Tf are the rotation
matrix and translation vector in the final transformation matrix Mf.

The processing time and registration accuracy of these algorithms were tested first.
We tested all algorithms with the same iteration-stopping criteria; either the number of
iterations exceeded 50 or the difference between adjacent transformations was less than the
threshold ε. Since the setting of the threshold ε is subject to the point cloud density, we set
ε = 0.0005γ, where γ is the resolution of the input point cloud. To average the variance
caused by point cloud acquisition devices and enhance the reliability of the experiment, we
selected five pairs of samples from each type of point cloud and ran the algorithm 20 times
for each pair to report the average values of the results.
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The experimental results of the four methods are listed in Table 3. It is apparent
that the proposed algorithm performs better in the registration of large-scale planar point
clouds than the other three algorithms. Compared with other methods, the proposed
method saves at least 39.93% of the average runtime in the coarse registration stage and
reduces the average total runtime by at least 34.42%. The proposed method makes two
major contributions that significantly reduce registration runtime. In the coarse registration
stage, the proposed mismatches-elimination method effectively increases the ratio of
inlier correspondences and therefore accelerates the convergence speed of the RANSAC
algorithm. Conversely, in the fine registration stage, because the boundary-based ICP
greatly reduces the number of points in the iteration, the computational efficiency is
significantly improved.

Table 3. Performance comparison of different algorithms in coarse and fine registration stages.

Point Cloud Number of
Points

Algorithm
Coarse Registration Fine Registration

Timec (ms) RMSEc (mm) Timef (ms) RMSEf (mm)

M1 355,762

SICP 6532 0.4586 21,541 0.0921

SPICP 3681 0.1746 17,340 0.0561

NDT — — 6947 0.0736

Ours 2102 0.0821 2603 0.0490

M2 314,200

SICP 6389 0.0423 19,571 0.0173

SPICP 5032 0.0296 17,143 0.0153

NDT — — 4526 0.0221

Ours 2141 0.0311 2968 0.0164

M3 291,469

SICP 5374 0.2314 16,872 0.0764

SPICP 4509 0.1689 15,868 0.0433

NDT — — 4698 0.0872

Ours 1820 0.1052 2327 0.0422

M4 355,139

SICP 5126 0.1199 18,963 0.0413

SPICP 3291 0.0456 15,213 0.0213

NDT — — 4971 0.0523

Ours 1422 0.0350 1650 0.0187

The SPICP algorithm is more effective than other methods for registration accuracy on
textured point clouds, but our method exhibits a smaller error for textureless point clouds.
In the SICP algorithm, registration accuracy is limited to the uniqueness of the SHOT
descriptors. As for the SPICP algorithm, the coplanar sets cannot take full advantage of the
geometry of the planar point cloud, which affects the accuracy of registration. In contrast,
our method can overcome these problems and achieve accurate point cloud registration
based on boundary information. Figure 10 shows the visualization results of registration
using these four algorithms, which indicates that in most cases, the proposed method
performs better with less registration error than the other three methods.
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Ours). The first column shows the two source scans for each model. The registration error for each model is measured by
the change of color according to the color bar, and the measurement unit is mm.

To evaluate further the algorithms, we tested the stability of the proposed method for
Gaussian noise perturbation. The scanned data usually contain noise points, resulting in
multiple errors. In addition, the noise points are attached to the point cloud rather than
being free, which makes it difficult to filter out completely and affects the registration result.
Hence, the anti-noise ability of the algorithm is significant. Gaussian noise was added to
a certain sample in each type of point cloud, and the standard deviations were 0.1, 0.2,
0.3, 0.4, and 0.5. For each sample, we ran each algorithm 100 times to report the average
registration errors to eliminate the random noise effect. Figure 11 shows the results of
adding different levels of Gaussian noise to the M2 point cloud sample.
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Figure 11. Gaussian noise is added to the point cloud in the M2 point cloud sample; the standard deviations from left to
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Figure 12 shows the results of the anti-noise experiment. We used the average RMSE
to evaluate the different algorithms’ robustness to noise. Figure 12a–d displays similar
registration error trends; SPICP and our method are more robust to noise, especially in
the case of low noise interference. In contrast, because the NDT algorithm achieves point
cloud registration based on optimizing the probability distribution rather than searching
for the nearest point to iterate, it is less affected by the increased noise level but has
worse performance at low noise interference than the other algorithms. In addition, the
descriptive capacity of descriptors in point clouds with a curvature-consistent surface is
susceptible to noise, resulting in the low anti-noise ability of the SICP. By comparing Figure
12a–d, the RMSEs of the same algorithm on different models are not the same. This may
be caused by different model resolutions, structures, or surface features, but overall, our
method achieves the best performance among all models.
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The algorithms’ performance for registering point clouds with different sampling
structures and densities was also tested. We sampled the point cloud models in dataset
(M1, M2, M3, M4) to get the synthetic data. Uniform and Poisson disk sampling structures
were utilized to sample the model point clouds. To perform a controlled evaluation, we
set the ratio of the removed points from 0 to 0.75 to represent different sampling densities
for both sampling modes. Similarly, RMSE between registered synthetic data and a model
point cloud was used to reflect the stability of the registration algorithm for different
sampling structures and densities. To average the variances caused by point cloud down-
sampling, we ran 20 times for each pair of point clouds and reported the average values of
results. Figures 13 and 14 show the results of the registration errors of the four algorithms
under different sampling perturbation.

As shown in Figures 13 and 14, with the decrease of the remaining points, RMSEs
all show an upward trend, but for different sampling structures, the registration errors
are different. Since the Poisson disk sampling generates new random points, and the
uniform sampling removes a certain number of points from the origin data, the former
changes the structure of the origin point cloud more significantly, which causes larger
RMSE. In general, the registration errors of NDT and SICP algorithms are larger under
different sampling structures and densities, while our method and SPICP have higher
accuracy. Since the SHOT descriptor is normalized to sum up to 1, SHOT-based algorithms
achieve robustness to variations of the point densities. In addition, our method further
enhances the descriptive capacity of the descriptor, thus achieving more accurate point
cloud registration.
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4.4. Application to Flatness Measurement

The proposed algorithm was applied to flatness measurements based on a laser
profilometer to verify the effect of point cloud registration accuracy on the measurement
results. We tested five different types of objects corresponding to M1, and for each type,
we constantly changed its pose in the process to obtain 20 results to report the average
value of the results and their standard deviation. For a more significant comparison, as a
control, we selected the SICP, the performance of which differed most from our registration
methods. Furthermore, we used the measurement from a ZEISS CONTURA 9/16/8 RDS
coordinate measuring machine (CMM) as a reference, the sampling points of which are set
to be the same as the standard sampling points in the point cloud.

Table 4 shows the average and standard deviations obtained by the two methods. The
results obtained by these algorithms were approximately the same as the reference values.
However, owing to the higher accuracy of our registration method, the reproducibility stan-
dard deviation of the resulting measurements was smaller and could be controlled below
0.0023 mm. In addition, because 200 sampling points were selected in this experiment, the
processing time required by the CMM was more than 20 min, whereas the method based
on our algorithm combined with the laser profilometer takes less than 20 s, which is more
suitable for batch testing.
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Table 4. Average, standard deviation, and the reference value of flatness measurement by the
two methods.

Reference
Average (mm) Standard Deviation (mm)

SICP Ours SICP Ours

1 0.1034 0.0977 0.0986 0.0036 0.0019

2 0.1655 0.1338 0.1395 0.0034 0.0021

3 0.1039 0.0945 0.0938 0.0041 0.0023

4 0.0943 0.1071 0.1082 0.0035 0.0020

5 0.1565 0.1295 0.1336 0.0038 0.0012

5. Conclusions and Future Work

This paper presents an accurate, efficient, and stable algorithm for large-scale planar
point cloud registration. In this approach, coarse-to-fine registration is achieved based
on the boundary information. Our improved boundary extraction method filters out the
outliers and obtains accurate boundary points after an approximate location. In addition,
we introduce an LS-based invalid keypoints elimination method and cluster the correspon-
dences based on geometric consistency constraints to improve the speed and accuracy of
registration. The proposed method was tested on four types of large-scale planar point
clouds. The experimental results show that our method is both efficient and fast and
that it accurately determines the optimal transformation under different levels of noise.
In addition, our method successfully overcomes the problems raised in the introduction
and can be widely applied to flatness measurement or other applications requiring point
cloud registration.

However, the proposed algorithm has certain limitations. The registration accuracy of
the method in this study is largely dependent on the accuracy of the boundary extraction
result, while it requires experience in selecting optimal down-sampling voxel sizes and
search radii in different environments. In addition, the descriptive capacity of the descrip-
tors also affected the results. Future work will include a progressive strategy for boundary
extraction and a more efficient descriptor for the boundary point cloud.
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