
Citation: Segarra, S.; Naiken, T.;

Garnier, J.; Hamon, V.; Coussay, N.;

Bernard, F.-X. Enhanced In Vitro

Expression of Filaggrin and

Antimicrobial Peptides Following

Application of Glycosaminoglycans

and a Sphingomyelin-Rich Lipid

Extract. Vet. Sci. 2022, 9, 323.

https://doi.org/10.3390/

vetsci9070323

Academic Editor: Chengming Wang

Received: 23 May 2022

Accepted: 21 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

veterinary
sciences

Article

Enhanced In Vitro Expression of Filaggrin and Antimicrobial
Peptides Following Application of Glycosaminoglycans and a
Sphingomyelin-Rich Lipid Extract
Sergi Segarra 1,* , Tanesha Naiken 2, Julien Garnier 2, Valérie Hamon 2 , Nathalie Coussay 2

and François-Xavier Bernard 2

1 R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain
2 Bioalternatives, 86160 Gençay, France; t.naiken@bioalternatives.com (T.N.);

j.garnier@bioalternatives.com (J.G.); valerie.hamon.de.almeida@qima.com (V.H.);
nathalie.coussay@qima.com (N.C.); fxb@bioalternatives.com (F.-X.B.)

* Correspondence: ssegarra@bioiberica.com; Tel.: +34-934904908

Abstract: Filaggrin is an epidermal protein involved in skin barrier formation and hydration, whose
expression is altered in canine atopic dermatitis (CAD). CAD patients also present an abnormal
immune response with an altered expression of antimicrobial peptides (AMPs), such as β-defensins
and cathelicidins. Sphingolipids and glycosaminoglycans (GAGs) have been reported to improve the
skin barrier in several animal species, including dogs. Our objective was to evaluate the in vitro effects
of a sphingomyelin-rich lipid extract (LE), a hyaluronic acid-rich GAG matrix, and their combination,
on the expression of filaggrin and human β-defensin 2 (hBD-2). Filaggrin expression was quantified
in a reconstructed human epidermis (RHE), and hBD-2 in normal human epidermal keratinocyte
(NHEK) cultures. LE and GAGs were tested at 0.02 mg/mL, with or without adding a cytokine
mix. A significant increase in mean hBD-2, compared to the control (99 pg/mL) was achieved with
LE (138 pg/mL) and LE+GAGs (165 pg/mL). Filaggrin increased with GAGs (202% ± 83) and LE
(193% ± 44) vs. the stimulated control, but this difference was statistically significant (p < 0.05) only
with LE+GAGs (210% ± 39). In conclusion, the tested GAGs and LE enhance filaggrin and AMP
expression in vitro, which might benefit CAD patients if applied in vivo.

Keywords: filaggrin; antimicrobial peptides; canine atopic dermatitis; glycosaminoglycans;
sphingolipids; sphingomyelin; β-defensin; hyaluronic acid

1. Introduction

Canine atopic dermatitis (CAD) has been defined as a prevalent, genetically predis-
posed, chronically relapsing, progressive, pruritic, and inflammatory skin disease with
characteristic clinical features and well-defined breed predispositions [1,2]. Recent ad-
vances indicate that it is actually a multifactorial and complex inflammatory syndrome [3].
Its pathogenesis is not yet completely understood, but it involves several factors leading to
epidermal barrier dysfunction, immune dysregulation, and dysbiosis of the skin [3–5].

The skin barrier plays a key role in CAD, and epidermal barrier dysfunction occurs
in both human and CAD, allowing penetration of irritant substances, microbes, and en-
vironmental allergens. This, in turn, stimulates the local immune system and induces
a Th2- immune response [6–8]. One of the main targets of the multimodal approach to
CAD management is restoring epidermal barrier function and integrity [4]. Although it is
still not clear whether the defective skin barrier is pre-existing or is secondary to allergic
inflammation, it has been suggested that some of the skin barrier anomalies may develop
secondary to the underlying skin inflammation [9]. Lipid alterations have been reported in
CAD with decreased levels of free fatty acid and ceramides in the stratum corneum (SC) [6].
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Filaggrin is one of the most important epidermal proteins involved in the keratiniza-
tion process. An abnormal catabolism of filaggrin occurs in atopic dermatitis and has been
suggested as a cause for an abnormal skin barrier. Its expression can be modulated by
genetics but also by inflammation [10–13]. Filaggrin distribution in the skin of dogs is
similar to that of human and mouse skin [14]; however, compared to humans, the knowl-
edge concerning the role of filaggrin in CAD is limited, and some conflicting results have
been published when it comes to changes in its expression in atopic canine skin [15]. In
dogs, atopic skin has been reported to feature lower filaggrin expression [16,17] as well as
increased filaggrin-metabolizing enzyme activity [10]. In addition, disrupted profilaggrin
degradation into filaggrin has a negative impact on barrier function and on the normal
keratinization process. Moreover, reduced breakdown of filaggrin may contribute to de-
creased formation of natural moisturizing factors (NMFs). This, in turn, negatively affects
skin hydration and UV light protection [10,18–20].

The affected atopic skin is frequently complicated by secondary microbial infections
with Staphylococcus pseudintermedius and Malassezia pachydermatis. For this reason, the
management of atopic dermatitis becomes even more challenging [7,21]. In fact, secondary
infections can trigger relapses in patients with CAD that had been controlled [1]. Antimi-
crobial peptides (AMPs) are small immuno-modulatory proteins that have antimicrobial
activity against bacteria, fungi, and viruses. AMPs also modulate innate and adaptive
immune responses. In the skin of atopic dogs and people, there is an alteration in the ex-
pression of AMPs, including β-defensins and cathelicidins [20,22–26]. More specifically, in
people, lower concentrations of the AMP human β-defensin 2 (hBD-2) have been reported
in skin atopic patients, and a deficiency in AMP has been reported as a potential reason
explaining the susceptibility to bacterial skin infection in these patients [27]. In dogs, a
lower expression of β-defensin genes has been described in both lesional and non-lesional
skin from CAD patients compared to normal dogs [28]. AMPs are, therefore, elements to
take into consideration within the etiopathogenesis of atopic dermatitis and perhaps also
when approaching treatment targets.

Sphingolipids are essential components of the eukaryotic cells’ plasma membrane, and
they form the multilamellar water barrier in the SC of the epidermis, contributing to the
epidermal permeability barrier function. Ceramides are the main epidermal sphingolipids,
and decreased ceramide content in the epidermis leads to water loss and skin barrier
dysfunction in dogs and in people [29–31]. On the other hand, hyaluronic acid (HA) is
a glycosaminoglycan (GAG) and a major component of skin extracellular matrix. It is
involved in the inflammatory response, angiogenesis, and tissue regeneration process, and
it plays a key role in wound healing processes, including hemostasis, inflammation, cell
proliferation, and remodeling [32,33].

Prior studies conducted using a lipid extract (LE) with a high content of sphingomyelin
(Biosfeen®3, Bioiberica S.A.U., Palafolls, Spain), either alone or in combination with a HA-
rich GAG matrix ingredients (Dermial®, Bioiberica S.A.U., Palafolls, Spain), describe their
beneficial effects on skin health. More specifically, the application of this LE led to increased
levels of ceramides and the number of lamellar bodies [34] in an in vitro model of skin
equivalents, and when used in vivo, improvements in clinical signs were seen in a canine
model of atopic dermatitis using a colony of high-IgE, experimentally sensitized atopic
beagles [35]. Moreover, previous in vitro testing also supports the effects of this GAG
matrix, showing enhanced proliferation and migration of fibroblasts and migration of
keratinocytes, as well as increased elastin production and skin hydrating capacity [36–38].

The objective of these studies was to evaluate the in vitro effects of the abovementioned
GAGs and LE, and their combination, on the expression of filaggrin and AMPs in order to
better characterize their mechanisms of action and to further explore the potential beneficial
effects of such products on skin health, especially in companion animals.
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2. Materials and Methods
2.1. Test Compounds

Two products were tested in these studies: a sphingomyelin-rich lipid extract (LE;
Biosfeen®3, Bioiberica, S.A.U., Palafolls, Spain) and a source of GAGs (Dermial®, Bioiberica,
S.A.U., Palafolls, Spain) containing a high concentration of HA (60–75%), dermatan sulfate,
and collagen. Both products were used at non-cytotoxic concentrations, which were selected
based on a prior cell viability MTT assay.

2.2. Culture of Primary Keratinocytes under Basal Conditions

Normal human epidermal keratinocytes (NHEK) were obtained from surgical samples
of healthy chest skin as previously described [39]. The use of these samples for research
studies was approved by the Ethical Committee of the Poitiers Hospital (Poitiers, France).
The cells were seeded in 96-well plates and cultured at 37 ◦C and 5% CO2 for 24 h in
keratinocyte serum free medium supplemented with 0.25 ng/mL epidermal growth factor,
25 µg/mL pituitary extract, and 25 µg/mL gentamycin (Invitrogen Life Technologies,
Carlsbad, CA, USA) at 37 ◦C and 5% CO2. Then, they were treated or not (control) with the
test compounds (LE and GAGs), alone or in combination, at 0.02 mg/mL each. In order to
simulate stimulated conditions (skin inflammation), a cytokine mix containing oncostatin
M (OSM; R&D systems, Minneapolis, MN, USA), interleukin 17 (IL-17; R&D systems,
Minneapolis, MN, USA), and tumor necrosis factor α (TNF-α, R&D systems, Minneapolis,
MN, USA), at 5 ng/mL each, was added to the medium (stimulated control). The cells were
then incubated for 72 h at 37 ◦C and 5% CO2. All experimental conditions were performed
in triplicate.

2.3. Culture of Reconstructed Human Epidermis under Cytokine Mix–Stimulated Conditions

Reconstructed human epidermis (RHE) samples were prepared as previously de-
scribed [40]. Briefly, suspensions of primary human keratinocytes from surgical samples
of pediatric foreskins were cultured on 0.5 cm2 polycarbonate culture inserts (Millipore,
Molsheim, France) in Epilife medium (Invitrogen Life Technologies, Carlsbad, CA, USA)
supplemented with Epilife supplements and then transferred to the air–medium interface
for 10 days and grown in Epilife medium (Invitrogen Life Technologies, Carlsbad, CA,
USA) supplemented with 1.5 mmol calcium chloride and 50 µg/mL ascorbic acid. The
10-day-old RHE samples were then placed in a culture medium containing or not (control)
the test compounds (LE and GAGs; systemic application), alone or in combination, at
0.02 mg/mL each, and preincubated for 24 h at 37 ◦C and 5% CO2. Then, the RHE samples
were stimulated with a cytokine mix of interleukin 4 (IL-4; R&D systems, Minneapolis, MN,
USA), IL-13 (R&D systems, Minneapolis, MN, USA), IL-22 (R&D systems, Minneapolis,
MN, USA) and TNF- α (R&D systems, Minneapolis, MN, USA) at 3 ng/mL each, and the
treatment with the test compounds was renewed or not (stimulated control). The RHE
samples were further incubated for 48 h at 37 ◦C and 5% CO2. A non-stimulated and
non-treated control condition was performed in parallel. All experimental conditions were
performed in triplicate.

2.4. ELISA Test

After incubation, the culture supernatants were collected for quantification of hBD-2
release using a specific ELISA kit (BD-2 Human Development, PeproTech, Neuilly-sur-
Seine, France) following the manufacturer’s instructions. The values were reported in
pg/mL.

2.5. Immunofluorescence Labeling

The RHE samples were washed and fixed with formaldehyde solution. Fixed tissues
were dehydrated with increasing ethanol concentrations and embedded in paraffin, and
sections were carried out using a microtome (5 µm thickness). The sections were deparaf-
finized and incubated at 92 ◦C and pH 6 in a retrieval target solution in order to optimize
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antigen–antibody interaction. After saturation using a phosphate buffered saline solution
(PBS)-Tween-5% milk solution, the sections were incubated at room temperature for 1 h
with anti-filaggrin (Santa Cruz, Dallas, TX, USA) antibody. The binding sites recognized
by the primary antibody were then revealed with a secondary fluorescent antibody (goat
anti-mouse Alexa 488; Molecular probes, Eugene, OR, USA). Nuclei were labeled with
propidium iodide (Sigma-Aldrich, Saint-Louis, MO, USA). Sections were observed using a
NIKON E400 microscope. The images were captured using a NIKON DS-Ri1 and processed
with NIS-Elements 4.13.04 software (Nikon, Tokyo, Japan). The fluorescence intensity and
the surface area of the epidermis were measured using ImageJ software. The values of
fluorescence intensity were normalized to the total epidermis surface area and reported as
arbitrary units (AUs).

2.6. Statistical Methods

All results are expressed as mean ± SEM. The inter-group comparisons were per-
formed by an unpaired Student’s t-test. Results were considered as significant when
p < 0.05. The p values were as follows: * p < 0.05.

3. Results
3.1. Antimicrobial Peptide Expression

A beneficial impact of the tested products was observed for AMP expression. More
specifically, under basal conditions, a significant increase (p < 0.05) in mean hBD-2 produc-
tion compared to the Basal Control (99 pg/mL; 100%) was achieved with LE (138 pg/mL;
139%) and the combination of LE with GAGs (165 pg/mL; 167%) (Figure 1). On the other
hand, although it reached higher levels of hBD-2 release, the application of GAGs alone
did not achieve a significant effect compared to the Control. As expected, the cytokine mix
induced a marked hBD-2 release (>10,000 pg/mL; p < 0.001 vs. Basal Control).

Figure 1. β-defensin 2 (hBD-2) production by normal human epidermal keratinocytes treated with
cytokine mix (OSM + IL-17 + TNF-α at 5 ng/mL each) adding the test compounds (LE and GAGs),
alone or in combination, at 0.02 mg/mL each, or not (Control). Mean ± SEM values of % of basal
control are shown. Different letters indicate statistically significant differences.
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3.2. Filaggrin Expression

As expected, the Stimulated Control induced a strong inhibition of filaggrin expression
(100%) compared to the Non-stimulated Control (mean ± SEM = 580% ± 137; p < 0.05).
When the effect of LE and GAGs was evaluated, both products led to increased filaggrin
expression. However, although higher levels were obtained with GAGs (202% ± 83) and LE
(193% ± 44) compared to the Stimulated Control, this difference was statistically significant
(p < 0.05) only with the combination of LE and GAGs (210% ± 39) (Figure 2). In the case of
GAGs, this might be explained by the greater SEM.

Figure 2. Filaggrin expression in reconstructed human epidermis (RHE) under cytokine mix (IL-4 +
IL-13 + IL-22 + TNF-α at 3 ng/mL each)-stimulated conditions and treated or not (Stimulated Control)
with the test compounds (LE and GAGs), alone or in combination, at 0.02 mg/mL each. Mean ±
SEM values of % of stimulated control are shown. Different letters indicate statistically significant
differences.

When sections of the RHE samples were observed under the microscope, the impact
on filaggrin expression of the tested products could also be seen (Figure 3).
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Figure 3. Immunofluorescent staining of filaggrin (green fluorescence) in reconstructed human
epidermis (RHE) under cytokine mix (IL-4 + IL-13 + IL-22 + TNF-α at 3 ng/mL each)-stimulated
conditions and treated or not (Stimulated Control) with the test compounds (LE and GAGs), alone or
in combination, at 0.02 mg/mL each. Scale bar: 50 µm. Original magnification ×40.

4. Discussion

In the past, CAD was considered a histamine-driven type I hypersensitivity triggered
by inhalant allergens, with IgE being a key player in the pathogenesis. Nowadays, however,
it is seen as a very complex multifactorial syndrome, and it is well established that the skin
barrier plays a key role [5,41]. That is why targeting the skin barrier and aiming at restoring
it seems like an adequate treatment approach. This study reports there is a beneficial
effect of an LE, with or without GAGs, on AMP expression, and an enhanced filaggrin
expression with the combination of LE and GAGs. Therefore, this could help target critical



Vet. Sci. 2022, 9, 323 7 of 10

elements in the etiopathogenesis of CAD. Given the positive impact of these compounds
on such key factors involved in skin health, and particularly CAD, patients suffering from
such conditions might benefit from their application as part of the multimodal treatment
approach.

Lipid metabolism is key to preserving the integrity and function of the epidermal
barrier [42]. The application of lipid-containing topical products, such as shampoos, sprays,
and spot-ons, has been recommended as part of the multimodal therapeutic approach for
the chronic management of CAD, with the aim of restoring epidermal barrier function and
integrity [1]. This study reports that the tested compounds have an enhancing effect on
filaggrin expression. Filaggrin and its metabolites are directly involved in maintaining
skin barrier function and hydration. Since alterations in filaggrin metabolism can lead to
an abnormal skin barrier [10], the use of such products could contribute to improving the
management of CAD patients. A possible explanation for this positive impact on filaggrin
expression might be the ability of this LE to act on the inflammatory process occurring in the
skin [35], provided that filaggrin expression can also be modulated by inflammation [11].
Previous publications describe how other interventions, such as probiotics, have been tested
with the aim of providing beneficial effects for CAD by enhancing filaggrin expression,
without being successful [16]. A beneficial effect on skin inflammation could also be driven
by the HA contained in the tested GAG matrix, based on prior observations [33,36].

In addition, atopic dermatitis patients have a higher risk of developing skin infec-
tions [21]. In dogs, there is an increased risk of recurrent microbial skin infections. The
application of some topical antimicrobial products has been reported to lead to irritation
or drying of the skin and thus exacerbate epidermal barrier dysfunction and adversely
affect disease management [1]. The reduced AMP expression in atopic human patients
has been suggested as a cause for recurrent skin infections; as also happens in dogs, these
patients have an increased risk of developing secondary bacterial pyoderma and Malassezia
dermatitis [22,27]. A reduced expression of AMPs may also be involved in the pathogenesis
of CAD [13], and the reduced levels of AMPs and altered filaggrin metabolism occurring in
the impaired atopic skin barrier provide a favorable environment for bacterial coloniza-
tion [21]. Therefore, minimizing the development of secondary infections is also a target of
the CAD proactive approach [4], hence the importance of the positive effect observed in
this study in NHEK with the GAGs and LE tested.

It is also worth mentioning that, in this study, hBD-2 production was quantified in
NHEK, and one of the recent advances in our knowledge about atopic dermatitis over the
past few years is that keratinocytes are no longer considered just a physical inert barrier.
Instead, they are described as key players in the interaction between the nervous system
and the immune cells [4].

In veterinary dermatology, the topical application of lipid-based formulations aimed
at improving skin barrier dysfunction has been previously investigated in several studies
in dogs [43–52]. The combination of the above-mentioned GAGs and LE used in the
studies reported here has already been tested in CAD patients, leading to an attenuation
of the clinical worsening induced by house dust mites [35]. The new data provided in
this article describing an enhancement effect on the expression of filaggrin and AMPs
could help explain the mechanisms of action behind the observed clinical benefits. A more
thorough characterization of their mode of action should allow a more precise and rational
application as well as open the door to further investigations.

In terms of potential clinical applications, CAD is a chronic disease that cannot be
cured. In CAD patients, lifelong management is necessary, and treatment usually follows
a multimodal approach. One of the main targets is to address all potential contributing
flare factors of disease, and whether this management is successful or not will depend
on applying a tailored management strategy. This strategy needs to be affordable and
doable by the pet owner, hence the importance of adherence to treatment. Topical therapy
thus becomes key to restoring epidermal barrier integrity and function [1]. This LE might,
therefore, act as a bioactive moisturizer by enhancing skin barrier repair [53], and its use
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could fit within the proactive approach to CAD. Eventually, alone or in combination with
other therapies, the use of this LE could contribute to preventing flares and reduce the need
for rescue medication [4].

This study has some limitations that should be pointed out. First, our data show a
positive impact of the sphingomyelin-rich LE, alone or in combination with the HA-rich
GAG matrix, on hBD-2 expression, but an altered expression of the AMP cathelicidin has
also been reported in atopic dogs [22]. This was not evaluated in this study and would be
an interesting parameter to measure in future studies with these products. On the other
hand, although the data presented herein are promising, it would be interesting to test
compounds in vitro using canine cells instead of RHE. Lastly, further studies in patients
with atopic dermatitis are warranted in order to being able to validate in vivo these in vitro
observations.

Administration of these LE and GAGs to companion animals, either applied orally or
topically, might benefit dogs with atopic dermatitis or cats suffering from feline atopic syn-
drome. Depending on the outcome of such investigations, the potential of these products
should be better defined.

5. Conclusions

In conclusion, the beneficial effects of the sphingomyelin-rich LE used in these studies,
alone or in combination with an HA-rich GAG matrix, on filaggrin and AMP expression
point towards the potential usefulness of these natural extracts in patients with atopic
dermatitis in vivo and a possible preventive effect on disease onset.
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