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Abstract

Purpose

The exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead
to new techniques in computed tomography (CT) that take advantage of the additional spec-
tral information provided. We introduce a method to reduce metal artifact in X-ray tomogra-
phy by incorporating knowledge obtained from SCT into a statistical iterative reconstruction
scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR).

Method

The proposed algorithm consists of two main components: material decomposition and pe-
nalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisi-
tions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based
on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used
as an object in this study. A total of three dental implant shapes were simulated separately
to test the influence of prior knowledge on the overall performance of the algorithm. The
generated projection data was first decomposed into three basis functions: photoelectric ab-
sorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram
was calculated and used as input in the reconstruction, while the spatial information of the
gold implant was used as a prior. The results from the algorithm were assessed and bench-
marked with state-of-the-art reconstruction methods.

Results

Decomposition results illustrate that gold implant of any shape can be distinguished from
other components of the phantom. Additionally, the result from the penalized maximum

PLOS ONE | DOI:10.1371/journal.pone.0124831

May 8, 2015 1/15


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0124831&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Reduction of Metal Artifact Using Photon-Counting Based Spectral CT

likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR re-
constructed slices in comparison to other known techniques, while at the same time details
around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true
attenuation value in comparison to other algorithms.

Conclusion

Itis demonstrated that the combination of the additional information from Spectral CT and
statistical reconstruction can significantly improve image quality, especially streaking arti-
facts caused by the presence of materials with high atomic numbers.

Introduction

Artifacts occur frequently in X-ray Computed Tomography (CT). They are generally described
as the discrepancy between the CT numbers of the reconstructed image and the true attenua-
tion coefficients of the object [1]. Artifacts degrade the diagnostic quality of CT images and
may result in incorrect evaluation of clinical images. Beam hardening is one of the main
sources of artifact in CT, due to the polychromatic nature of x-rays [2, 3]. As the photons pene-
trate through an object, more low energy photons are absorbed, resulting in a shift of the x-ray
spectrum to a higher energy range. This causes two types of artifacts: cupping artifacts and
dark streaking between dense objects [1, 3].

One other cause of artifacts is the presence of high Z-materials in the field-of-view such as
hip prostheses, metal implants and dental fillings [1, 4]. These materials have high attenuating
properties, resulting in the photon starvation phenomenon, whereby the amount of photons
reaching the detector is highly reduced [5]. The ‘missing information’ on the projection data
cause incorrect calculations during the conventional analytical image reconstruction process,
thus leading to severe streaking and dark and bright shading around the metal implant. Vari-
ous methods have been developed for metal artifact reduction (MAR) [6-12]. One popular
technique is in-painting. In this method, regions associated with metal are ‘replaced’ by inter-
polating neighboring values in the sinogram. [11-13]. In detail, the technique involves masking
or segmenting the CT images to obtain the metal only image, forward projecting it, removing
the metal-only data from the original sonogram and interpolate the missing sinogram from its
neighbors before re-reconstructing the modified sinogram. While this method removes most
of the streaking artifacts in the image, it has limited effectiveness, as it is prone to reintroduce
other artifacts due to interpolation errors, causing a loss of details especially around metal im-
plants. Another advanced method is to recover the high frequencies of an uncorrected image,
which contain edge information and noise, and recombine it with the MAR-corrected image
[14]. This technique has been shown to preserve details around the metal implant; however, it
is very dependent on the optimal segmentation of the metal from other high frequency compo-
nents in the image such as bone.

A unique approach from Stayman et al. [5] uses a model-based penalized maximum-likeli-
hood estimation to reduce the effects of metal artifacts. In the method, known as Known Com-
ponents Reconstruction (KCR), information on the shape and composition of the metal in the
scanned object is derived from a computed-assisted design (CAD) model and is incorporated
into the iterative reconstruction process as prior. CT images reconstructed using this technique
have shown significant reduction of streaking artifacts and dark shading caused by the presence
of metal, when mono-energetic x-rays are used.
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Advancement in detector technology has contributed to the development of energy-resolved
photon counting detectors [15-17]. Photon counting detectors have the ability to discriminate
incoming photons based on their energies, hence obtaining the spectral information of the ob-
ject in a single scan at the same tube voltage [18, 19]. In this technique also known as Spectral
CT (SCT) imaging, photon-counting detectors split the x-ray spectrum into several predefined
energy bins, enabling the acquisition of separate CT data in each energy bin. With prior knowl-
edge of the materials present in the object, it is possible to perform material decomposition on
the projection data [18-20]; therefore additional information of the shape and location of the
metal in the object can be determined. Although metal decomposition method is also a com-
mon technique in dual-energy CT (DECT) [21], SCT has the advantage that the spectral infor-
mation can be obtained in a single scan and thus issues such as additional dose and cross-
scatter contamination in the case of dual-source CT (DSCT) can be avoided [22].

Our work adopts the same concept of incorporating prior knowledge into the reconstruc-
tion algorithm. However, instead of using a CAD model, we utilize the additional information
obtained from Spectral CT as a priori for our reconstruction. We present a new algorithm to
reduce metal artifacts in CT images based on a two-step approach; in step one our algorithm
performs material decomposition on the spectral data to determine the shape and the spatial
location of the gold, and step two incorporates that information as a prior into a penalized
maximum log-likelihood reconstruction algorithm.

This paper is structured as follows: in the Methods section, we introduce our material de-
composition technique and the penalized maximum likelihood reconstruction algorithm. In
the Results section we present the reconstructions from our algorithm and compare them to
conventional FBP and iterative approaches. Further, we investigate the influence of accurate-
ness of the shape and the spatial location towards the performance of our reconstruction algo-
rithm. Finally, in the Discussion section, we discuss the possibility and the challenge of using
our technique in a clinical setting.

Methods

An overview of our algorithm is illustrated in Fig 1 as well as in the pseudo code in Algorithm 1.
Our algorithm consists of two steps: material decomposition of the Spectral CT data (A) and
the penalized maximum likelihood iterative reconstruction (B). We call our algorithm Spec-
tral-driven Iterative Reconstruction (SPIR).

Material decomposition

The material decomposition method is based on works in [18] and [19].

In diagnostic imaging, x-ray is primarily attenuated by photoelectric absorption and Comp-
ton scattering. Photoelectric effect occurs mostly at the lower x-ray energies and can be approx-
imated by the E energy dependence [20]. At higher x-ray energies, Compton effect is more
dominant and the cross-section can be derived from the Klein-Nishina function [20]. In the
presence of materials with distinctive k-edge discontinuity, such as gold, the linear attenuation
coefficient can be described as:

o o1 S S
Y%, E) = A,(%) 75 + A, (¥)fin (E) + A3 (X)fou (E) (1)
where A}, A, and A; denotes the local density of the basis function, fiy the Klein-Nishina func-
tion and f,,, the mass attenuation of gold.

In order to estimate the parameters A, an equal or more number of x-ray photon counts

measurements (i.e. bins) are required. For a photon-counting detector with N energy bins, the
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Fig 1. An overview of the SPIR technique. In the first of two steps, the projection data is decomposed into several basis functions from which the pseudo-
monochromatic projection is calculated and the metal image is reconstructed. Using these as input and prior respectively, the image is iteratively
reconstructed in the second step, while at the same time knowledge on the location and density of the metal implant is enforced and corrected.

doi:10.1371/journal.pone.0124831.g001

number of photons 4,, detected in an energy bin can be estimated as:

(418, A) = [S,(ED(E)expl(~AE*  Afis ~ A, )DIE)E "

The index n refers to the n™ energy window, while @(E) denotes the photon flux and S,,(E)
the spectral response of the detector. S, (E) equals to 1 if the photons are detected in the corre-
sponding bin and 0 if they are elsewhere. In this work, we neglected the effect of detector re-
sponse D(E) because the simulated detector is assumed to be ideal.

As the number of energy bins exceeds the number of basis functions, the system is over-de-
termined. We used the maximum likelihood parameter estimation method to estimate the line
integrals of the individual components. Assuming the counting procedure follows a Poisson
distribution, the likelihood function given by measurement results (m;. . .my) can be written
as:

e ) (3)
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With A, we mean A, A,, A;. It is more convenient to minimize the negative log-likelihood
[19], therefore we can re-write the likelihood function as a function of parameters A, as:

L(m,ym, |7, (A), .oy 2, (A)) = —In(P)

L(m,...m, |7y (A), ... 2, (A)) 2 [4,(A) — m,InZ,(A)] ®

n=1

This maximum likelihood technique yields the sinograms of photoelectric effect, Compton
scattering and the attenuation of gold. From these basis functions, we calculated a pseudo-
monochromatic projection data at 55 keV and used as the input of our penalized maximum
likelihood iterative reconstruction technique. The calculated pseudo-monochromatic projec-
tion data is hereafter notated as y*. At the same time, we reconstructed the gold component of
the decomposition using a standard filtered-backprojection (FBP). We performed an image-
processing step on the gold image to remove residual noise from the material decomposition
process and better localize the position of the metal implant. The image-processing step in-
volves applying zeros on pixels that have values less than 10% of the maximum pixel value of
the image. Finally the information on the density and position of the gold implant is passed as
a prior into our statistical reconstruction scheme.

Penalized maximum likelihood iterative reconstruction

For reconstruction we used a penalized maximum likelihood approach. This Poisson-statistics-
based algorithm uses the raw measurements rather than the logarithms of the data, and thus it
is believed to solve nonlinearity of the logarithm and handle low radiation scans.

The goal of the algorithm is to maximize a cost function y, which consists of a likelihood
term L and regularization term R. L indicates how the reconstructed result matches the input
sinogram;

ft = argmax¥(u), ¥ (1) = L(n) — BR(n) (5)

where g indicates the image matrix in attenuation values. It describes the probability of how
the reconstructed result matches the measurement [23]. R is a regularization term given in [24]
and can controlled by B. The regularization term is written as:

R = 3 wab(x,— x,) (6)

where y/(t) is the penalty function. The definition of wj is given later on.

Adding a penalty term to regularize the problem leads to a faster convergence and an en-
forcement of desired and beforehand known image properties like smoothness and edge pres-
ervation. We used Lange’s [25] function as penalty function y(?) in the regularization term.
Lange’s penalty has the feature to eliminate noise as well as preserve edges in the images.

Y(t) = 0°|t/d] —log(1 + |t/d])] (7)

¢ is a constant as the edge threshold in denoising.
In order to maximize this optimization problem, we made use of the separable paraboloidal
surrogate (SPS) technique [23]. Each update step is given by:

BPlbexp(—FP[i']) — '] — B wub (x, — x)]

H = T ey 4 A w3 ®)

where y* is the monochromatic projection data. FP [] and BP [] denote the forward- and
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backward projection respectively; wjy/() the regularization term; x; are pixels in image y, while
x; are neighboring pixels of x;. wj, indicates the distance-weight between x; and x. []+ denotes
the operation of removing negative values. b is the x-ray intensity at the source.

Selecting the constants 8 and & for the regularization was done subjectively. The user de-
fined the trade-off point between the data fidelity term and the roughness term. This was done
by a specification of a desired target noise level of the reconstructed image.

Prior to each update step as in (8), the location and density of the gold determined in the
previous section are pre-computed into exact pixel values in image matrix y, where metal mate-
rial is located. The modified image matrix with prior information is noted as y*.

In each update step, a subset of three angles is taken in the forward and back projection to
compute an update of y. These angles are randomly chosen from the total number of projec-
tions to accelerate the optimization process. In this work, we consider a full iteration when all
projections are chosen (360° rotation). Our previous experiments indicate that a convergence
can be seen after 10 to 15 full iterations, thus for this work we choose 15 iterations as our
stopping criteria.

Simulation set-up
We simulated a phantom based on the information provided by the Phantom-Group (IMP,
University Erlangen-Niirnberg, Erlangen, Germany). It consisted of 16 molars, one of which

has a dental implant made of pure gold (density 19.3 g/cm3). Two of the molars were removed
to simulate a gap (see Fig 2). In this work, we experimented with different shapes and sizes of

. Soft Tissue

. Teeth

. Metal Implant

Spine

. Bone Marrow

Fig 2. One of the virtual phantoms used in this work. It contains several anatomic components of a jaw such as soft tissue, spine, bone marrow and teeth.
A metal implant is embedded on one of the teeth. In this work, we simulated three different shapes of metal implants: circle, horseshoe and triangle.

doi:10.1371/journal.pone.0124831.9002
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dental implants. This was done to test the influence of prior knowledge on the overall perfor-
mance of our SPIR algorithm. For the simulation, we used a mathematical phantom made with
known geometry, instead of a voxel phantom, in order to accelerate the simulation process.
The photon transport mechanism was simulated using a Monte-Carlo simulator based on
EGSnrc C++ class library [26, 27]. The EGSnrc is a general purpose Monte Carlo package that
can be used to simulate the transport of photons and electrons in any arbitrary geometry for
particles in the energy range from 1 keV to 10 GeV [27, 28]. In all simulations the Compton in-
teraction was modeled in the impulse approximation [29], the photon cross-section was taken
from the XCOM [30] tabulations and all photons were tracked to an energy of 1 keV. The x-ray
source was generated at tube voltage of 125 kV with Wolfram target and aluminum filter of
thickness 2.7mm, yielding mean spectrum energy of 55.457 keV. A diagram of the spectrum is
shown in Fig 3. A total of 3.10x10'® photons were released at the source. A clinical dental CT
system with a source to detector distance of 80 cm, source to isocenter distance of 60 cm and a
detector with 2200x2200 pixels of 0.01 x 0.01 cm” size was modeled. The detector was operated
in photon-counting mode with each photon discriminated according to its kinetic energy into
62 bins, with each bin having a bin width of 2 keV. These individual energy bins were summed
together after the complete simulation to obtain spectral CT projection data with six energy
windows. The implementation of 2 keV energy windows allowed us to choose the optimal num-
ber and size of the energy windows after the simulation. This step enabled a significant reduc-
tion in computational time. In order to make the simulations as realistic as possible, all physical
effects such as Rayleigh scattering, atomic relaxations and photoelectron angular sampling were
taken into consideration. The detector was assumed to be ideal, thus effects such as charge shar-
ing and pulse splitting can be neglected. However, we included the two main sources of noise in
a photon-counting CT system: quantum noise and noise from scattered photons. Further, one

X-ray Spectrum

Counts

Energy In keV

Fig 3. The X-ray spectrum used in the simulation. The x-ray source was generated at tube voltage of 125 kV with Wolfram target and aluminum filter of
thickness 2.7mm, yielding mean spectrum energy of 55.457 keV.

doi:10.1371/journal.pone.0124831.9003
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of the advantages of energy-resolved photon-counting detectors is the ability to eliminate elec-
tronic noise during acquisition. Thus it can be omitted in our simulation.

Implementation

Our SPIR algorithm was implemented partly in Matlab (The Mathworks, Inc., Natick MA)
with links to in-house developed C++ libraries. For the material decomposition, we used the
simplex method (Nelder-Mead simplex direct search method) included in the Optimization
Toolbox to solve the negative log-likelihood minimization. Iterative reconstructions are known
to be computationally intensive and time-consuming, therefore we implemented the projection
and back-projection model as well as the penalty function on a OpenCL platform for execution
on a NVIDIA Tesla C1060 graphic card [31, 32]. As a result, we are able to accelerate the re-
construction process and significantly reduce the computation time, while preserving the num-
ber of iteration and image quality.

In summary a simplified version of the algorithm can be found as pseudo code in Algorithm 1.

Algorithm1 pseudo code
A« initialize parameters A;, A,, Az
fori=1tomaxprojectiondatado
for j =1 tonumber of detector elements do
N A " .
A— mannZI[An(A) —m 1nl (A)]min
end for
end for
Hmeta1¢— FBP[ A3
pu«— initial reconstruction
d = BP|y* - FP[1]]
fork=0tomax iterationdo
form=1 tonumber of subset do
W= e
1 — FP]
h—b-exp(—1)—y
L « BP|h]
e [t (L= BR)/(d+ BR)]
end for
end for

*

Results

In the first step of our algorithm, the projection data were first decomposed into three basis func-
tions that describe the total attenuation in the scanned object. Fig 4 illustrates the original model
and the results of decomposition into three basis component images: (A) photoelectric effect,
(B) Compton scattering and (C) gold attenuation. One can see that the spatial location of the
gold implant is accurately detected and distinguished from other anatomic structures of the
phantom such as teeth and spine. On a closer visual inspection, the shape of the metal implant is
exact and resembles the original model, as illustrated by the top row of Fig 5. Subtracting images
of the gold component image from the original model show only a slight difference of 1 pixel be-
tween the images, which can be attributed to discretization error in the simulation, indicating
the high accuracy of the material decomposition technique. Further, the average difference in
density between the decomposed metal and the original model is about 1.5% or 0.285g/cm’.

The second step of our algorithm involves the statistical reconstruction of the pseudo-
monochromatic data, with the information of the gold component used as a prior. Fig 6 pres-
ents the full-view and the zoom-in of the images reconstructed with three different
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Compton scattering Gold Implant

Photoelectric effect

Original Model

Horseshoe Circle

jangle

T

X 4
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Fig 4. The original model of the phantom and the images of the decomposed basis functions reconstructed with filtered back-projection (FBP).
The second column shows photoelectric attenuation, third column the Compton scattering, and the fourth column the gold attenuation. Row-wise are the
different shapes of the metal implant: first row circle, second row horseshoe, and bottom row triangle. It can be seen that, the location of the gold implant is
accurately detected, while the gold implant can be distinguished from other parts of the phantom, especially the teeth. The reconstructed images are
normalized to 1, and have WW of 0.2 and WL of 0.1.

doi:10.1371/journal.pone.0124831.9004

reconstruction algorithms: FBP, penalized maximum likelihood iterative reconstruction on the
plain absorption data without prior information (IR), and SPIR. In the first row, the recon-
struction using FBP produces images with massive streaks and black and white shadings, espe-
cially around the metal implant. The presence of these artifacts severely degrades the
diagnostic quality of the image, while at the same time information near the implant is lost.
Using the more advanced IR algorithm these artifacts are significantly reduced, as shown by
images in the second row; however the dark and bright shadings around the implant are still
visible. In the third row one can observe that the incorporation of prior information obtained
from the material decomposition technique into the reconstruction algorithm delivers notably
improved images: bright streaks are reduced significantly without compromising the anatomi-
cal information, while the shadings around the dental implant are considerably eliminated, as
displayed in the zoom-in. The SPIR algorithm is not only able to reduce the artifacts, but also
preserve the edges and valuable anatomical details near the implant.

We analyze the results quantitatively by selecting a line-of-interest and collected pixel values
(attenuation values) along the line, as indicated by the green line in the middle column images
of Fig 6, and compare it to the true theoretical values used in the Monte Carlo simulation. Fig 7
illustrates the line profiles of the three reconstruction algorithms. On the y-axis, the theoretical
attenuation values of several anatomical components such as teeth and the gold implant are
shown as dashed lines. From the graph one can see that the artifacts in the FBP images cause a
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Circle Horseshoe Triangle

Zoom

Difference
/
[

Fig 5. The zoom-in of the metal implants. The zoom-in of the metal implants obtained shown in the top-row indicates the accuracy of the material
decomposition technique in detecting the metal implant. When compared to the original model, only a slight difference as in 1 pixel is observed, which can be
attributed to discretization error. The average difference in density is about 0.285 g/cm3. The top-row images are normalized to 1, with WW of 1.0 and WL of
0.5. The bottom-row images have WW 1.0 and WL of -0.5.

doi:10.1371/journal.pone.0124831.9005

Circle Horseshoe Triangle

SPIR

-1000

Fig 6. The reconstructions of the phantom using different algorithms. The reconstructions of the first row is done using FBP, second row penalized
maximum likelihood iterative reconstruction without prior (IR), and the third row Spectral-driven Iterative Reconstruction (SPIR). Column wise are the different
shapes of metal implant at full-view and zoomed-view. The first column-pair has the shape circle, second column-pair horseshoe, and third column-pair
triangle. Allimages have WW of 1000 HU and WL of 4000 HU.

doi:10.1371/journal.pone.0124831.9006
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Fig 7. The vertical line profiles as marked in Fig 4 for different reconstruction algorithms. The line profile from SPIR algorithm reflects the true
attenuation values best, in comparison to FBP and IR.

doi:10.1371/journal.pone.0124831.9007

massive fluctuation of values. The IR algorithm produces a smooth profile but does not return
attenuation values similar to the true theoretical one. SPIR algorithm is the only one to produce
robustly and reproducibly the true theoretical value.

Computationally, our FBP algorithm needs 5 seconds to reconstruct an image. For the same
image the IR and our proposed SPIR algorithm took about 20 minutes for 15 iterations.

Further, we investigate the influence of accurate localization and detection of the metal im-
plant on the performance of our SPIR algorithm. Fig 8 shows the result of reconstruction pre-
suming that the prior information on the metal implant is inaccurate; i.e. the metal implant is
smaller or larger than the original size by 1 to 2 pixels. From the images, one can notice that
SPIR suffers badly under such conditions. Artificially induced artifacts in the form of bright or
dark shadings appear near the metal implant, resulting in the loss of details near the implant.

Discussions

In this work, we propose an algorithm that combines spectral information and statistical recon-
struction to reduce metal artifacts caused by the presence of high Z-materials. We demonstrate
that the projection data generated from photon-counting detectors (PCD) can be accurately de-
composed into several basis functions, providing additional knowledge on the components in the
underlying scanned object. This information can be used as a prior into a penalized maximum
log-likelihood iterative reconstruction, in which the true spatial location and density are enforced
and corrected. We tested our algorithm with Monte Carlo simulated data of jaw phantoms that

PLOS ONE | DOI:10.1371/journal.pone.0124831
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C
_

-1000

Fig 8. The influence of the prior information on the outcome of the model-based iterative reconstruction. The results with a smaller (A and B) or larger
(D and E) metal implant show that inaccurate prior results in a less than optimal image. The reconstruction result with the original model is shown in C for
comparison. Allimages have WW of 4000 HU and WL of 1000 HU.

doi:10.1371/journal.pone.0124831.g008

contain various shapes of dental implants. The results from our algorithm are promising, where
a significant reduction of streaks in the image, elimination of bright and dark shadings, and the
preservation of edges and anatomical details especially near the metal implant can be seen.

Previous work has shown the advantages of model-based reconstruction [5], in which prior
information is incorporated into a reconstruction process to reduce artifacts as a result of the
presence of high-Z number materials. The KCR method yields a significant reduction of streaks
as well as the dark shades near the metal, while preserving the anatomical information in the
background. Nevertheless, CAD based reconstruction is very dependent on the exact informa-
tion of the component in the image; an inaccurate prior may result in a less than optimal image
as confirmed by our findings in Fig 8. This problem will be challenging in daily clinical routine
as the metal components are sometimes deformed due to prostheses experiencing significant
wear prior to imaging. Our SPIR algorithm can overcome this difficulty by performing material
decomposition on the projection data and consequently the location and shape of the metal
component can be detected with minor discrepancies, as evident by the images in Fig 5. Fur-
ther, the ability to accurately detect any shape of implant indicates that our method can be gen-
eralized and extended to other part of the body such as extremity or spine.

Another feature of our algorithm is the ability to generate pseudo-monochromatic projection
data from the decomposed sinogram. This is particularly advantageous as this minimizes errors
during reconstruction, thus producing images of high quality. In CT the attenuation of photons is
material and energy dependent as shown in (1). Lower energy photons are more rapidly absorbed
than higher energy photons. However, in most CT reconstruction algorithm the x-ray energy is
averaged; thus the energy-dependency is neglected, causing the occurrence of beam hardening

PLOS ONE | DOI:10.1371/journal.pone.0124831 May 8, 2015 12/15
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artifacts [1, 4, 23]. This error can be mitigated in multi energy CT or Spectral CT due to the more
accurate modeling of the energy and material dependence of the x-ray attenuation, which enables
the calculation of a pseudo-monochromatic projection data at different energy levels.

We note that the successfulness of the material decomposition technique is limited to the in-
formation of chemical composition of the metal implant. In this work, we used metal implant
made of pure gold that has a distinctive k-edge property. Implants made out of a mixture of
several unknown metals (alloys) may pose a challenge to the decomposition technique. Howev-
er, this technique works well as long as the chemical composition of the metal is known before-
hand so that accurate basis functions are chosen for decomposition.

In a conventional detector, incident photons are converted to optical photons at the scintil-
lator and these signals are further amplified by the photomultiplier. These analog signals are
then integrated and converted to digital signals. The whole detection and amplification pro-
cesses are inefficient, while the digitization may induce some noise in the signal sampling. On
the other hand, photon-counting detectors count single photons, thus it is already discrete in
nature. The concept of electron holes avoids amplification and conversion process, making
photon-counting detectors efficient and ‘noise-free’. This has several advantages. Firstly, due to
the ‘absence’ of electronic noise at the detector, low dose acquisition protocol is possible with-
out compromising the quality of the CT image. Secondly, low energy photons that contain
valuable contrast information can be correctly detected. In an energy-integrating detector, low-
energy photons may get ‘mixed’ with electronic noise. However, in energy resolving single pho-
ton-counting detector such problem does not arise, thus valuable information contained in the
low-energy photons can be preserved.

The additional information provided by SCT is valuable for a variety of clinical applications—
for example quantitative K-edge imaging [18], the usage of high-Z contrast agents [33, 34] and
plaque detection and characterization [34, 35]. Nevertheless, photon-counting spectral CT scan-
ners are still unavailable in the in the clinics due to several technical limitations. The slow read-
out rate restricts the ability of PCD to detect high x-ray flux, resulting to pulse pile-up and pho-
tons wrongly discriminated at the detector. Currently, photon-counting detectors are able to
measure photon flux levels up to 50Mcps/mm? [19, 35]. In comparison, photon flux up to 10°
photons s”' mm™ is common in conventional CT. In addition, pulse splitting due to K-fluores-
cence from Cd (26.7 keV) or Te (37.8 keV) atoms of the detector elements will also contribute to
inaccurate photon counting and discrimination. Many techniques and methods are in develop-
ment to overcome these technical limitations [19]. If these technical hurdles can be overcome
and such detectors can be deployed clinically, one could foresee the integration of spectral infor-
mation to improve the diagnostic image quality while possibly reducing the radiation dose to the
general patient population.

In this paper, we focus on the possibility of dental implant artifact reduction by incorporat-
ing spectral information obtained from PCDs. We have demonstrated the ability of our algo-
rithm in detecting metal component in projection space. However, the same technique can also
be used in detecting other k-edge containing material such as contrast agent, thus we see the
potential SCT playing an integral part in clinical diagnostics. In conclusion, we have demon-
strated that the information provided by SCT will be a central key in medical imaging, especial-
ly in overcoming image quality issues in clinical CT such as metal artifacts.
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