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Autism spectrum disorder (ASD) is a heterogeneous disorder characterized by repetitive
behaviors and social impairments, often accompanied by learning disabilities. It has
been documented that the neuropeptide oxytocin (OXT) ameliorates core symptoms
in patients with ASD. We recently reported that chronic administration of intranasal
OXT reversed social and learning impairments in prenatally valproic acid (VPA)-
exposed rats. However, the underlying molecular mechanisms remain unclear. Here,
we explored molecular alterations in the hippocampus of rats and the effects of chronic
administration of intranasal OXT (12 µg/kg/d). Microarray analyses revealed that prenatal
VPA exposure altered gene expression, a part of which is suggested as a candidate in
ASD and is involved in key features including memory, developmental processes, and
epilepsy. OXT partly improved the expression of these genes, which were predicted to
interact with those involved in social behaviors and hippocampal-dependent memory.
Collectively, the present study documented molecular profiling in the hippocampus
related to ASD and improvement by chronic treatment with OXT.

Keywords: autism spectrum disorders, hippocampus, oxytocin, transcriptome analysis, valproic acid

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits
and repetitive behaviors (1). ASD involves heterogeneous and complex causal factors, both
genetically and environmentally. While it has been documented that various copy numbers or
single nucleotide variations are associated with ASD, multiple environmental factors such as
maternal infection, exposure to drugs or toxicants, and immune dysregulation have also been
implicated (2). Such diverse causes, their interactions, and the resultant complex symptoms make
it difficult to focus on particular targets and therapeutic approaches in ASD.

Abbreviations: ASD, autism spectrum disorder; DEG, differentially expressed gene; GO, gene ontology; HDAC, histone
deacetylase; LTP, long-term potentiation; MCODE, molecular complex detection; OXT, oxytocin; SHANK, SH3 and multiple
ankyrin repeat domains; VPA, valproic acid.
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The neuropeptide oxytocin (OXT) facilitates socio-
communicative behaviors in mammals (3). OXT or OXT
receptor deficiency impairs multiple social behaviors (4, 5). In
addition, plasma levels of OXT are significantly lower in children
with autism than in their normal counterparts (6, 7). Clinical
studies have documented that the intranasal administration of
OXT improves socio-emotional impairments in patients with
ASD (8, 9). Thus, OXT could be considered a suitable candidate
for treating the core symptoms in ASD.

Maternal use of the anti-epileptic drug valproic acid
(VPA) during pregnancy is suggested to increase the risk of
teratogenicity and ASD onset in offspring (10, 11). These
features are reproducible in animals; they represent defects
in the limbs and tail and ASD-like social deficits (12, 13).
In addition, transcriptome analyses have identified some key
molecular pathways for ASD in the amygdala and prefrontal
cortex of the model (12, 14, 15); alteration in signaling of
protein kinase A and Rho GTPases in the amygdala and
calcium signaling in the prefrontal cortex. These pathways
are related to synaptic plasticity, a pathological hallmark in
ASD (16–19), suggesting that molecular alterations in these
emotion-related regions are involved in the pathogenesis of
ASD. Especially, GTPases signaling defects are well documented
in neurodevelopmental disorders including ASD (20); Rho
GTPase Cdc42, a regulator of neurite outgrowth, is reduced
in autistic patients (21). Prenatal VPA exposure decreases
mRNA levels of Rho GTPase-activating protein p250GAP
(22). In addition, p21-activated protein kinase exchange factor,
a Rho GTPase regulatory protein, interacts with SH3 and
multiple ankyrin repeat domains (SHANK) proteins in spines
to regulate postsynaptic structure (23). Since mutations in
SHANK gene have been associated with neurodevelopmental and
neuropsychiatric disorders, including ASD (24), it is noteworthy
that recent findings show that OXT restores neurite abnormalities
in hippocampal cultures with SHANK3 deficiency through
amelioration of Rho GTPase levels (25). Thus, prenatally VPA-
exposed animals are a valid ASD model in terms of behavioral
phenotypes and epigenetic modulation of gene expression as an
environmental factor.

In our previous studies, we had reported that prenatal VPA
exposure impairs learning and long-term potentiation (LTP)
in the hippocampus of rats and that chronic administration
of intranasal OXT ameliorates learning disabilities (26, 27). In
line with our observations, intranasal administration of OXT
blocked the learning disability in prenatally VPA-exposed or
restraint stress-exposed animal models (28–30). In contrast,
Hara et al. demonstrated that a single dose of OXT was
effective for social impairment only for a short period and not
for memory impairment (31). These reports suggest that the
mechanisms of action of chronic OXT would involve molecular
alterations in addition to the acute activation of oxytocinergic
signaling. However, it remains unclear which molecular pathways
are affected by chronic administration of OXT. Furthermore,
molecular profiling in the dorsal hippocampus, a critical region
for learning and memory, and partly implicated for social
behaviors (32, 33) has not been investigated in a prenatally
VPA-exposed model.

In the present study, we explored transcriptome profiling in
the hippocampus of prenatally VPA-exposed rats. It was seen
that prenatal VPA exposure altered the expression levels of genes
involved in multiple behaviors and developmental behaviors,
some of which were documented as candidate genes in ASD. We
also demonstrated that the chronic administration of intranasal
OXT partly ameliorated these alterations.

MATERIALS AND METHODS

Animals
Animal studies conformed to the Regulations for Animal
Experiments and Related Activities at Tohoku University and
were approved by the Committee on Animal Experiments at
Tohoku University (approval number: 2020PhA-007). Every
effort was made to use minimum the number of rats and
minimize their discomfort. Animals were bred in a conventional
environment (temperature, 21–23◦C; humidity, 50–60%; 12-h
light-dark cycle) with free access to normal chow and water.
Three pregnant Sprague-Dawley rats (Japan SLC, Shizuoka,
Japan) received a single administration of oral VPA (600 mg/kg;
Sigma-Aldrich, St. Louis, MO, United States) on day 12.5 as
described previously (27). Two control rats received water in the
same way. Rats gave birth from 7 to 14 pups per litter, of which
3–8 were males (sex ratio of male to female was about 1:1.1). Sizes
and body weights of pups were not affected by VPA treatment, as
reported by a previous study (26). Only male pups were included
in this study because of the higher incidence of ASD in males than
in females and even in prenatally VPA-exposed models (34).

Oxytocin Treatment
On day 21 of birth, the rats were randomly divided and
subsequently received vehicle or OXT administration: 3 pups
from 2 control rats and 6 pups from 3 VPA-treated rats, with the
latter further divided into 3 vehicle- or OXT-treated groups of 3
pups each. Male pups received intranasal OXT (Peptide Institute,
Osaka, Japan) dissolved in saline at a dose of 12 µg/kg/d, which is
in a range of that promoting social behaviors in rodents (35–37),
using a pipette tip on postnatal day 21–55. The liquid volume of
OXT solution was changed in the range of 2–10 µL according to
the growth of rats. The dose and period of treatment were the
same as those in a previous study where OXT attenuated autistic
behaviors in prenatally VPA-exposed rats (27).

Identification of Differentially Expressed
Genes in Microarray Analysis
Total RNA was extracted from the dorsal hippocampus on
postnatal day 56. As with most transcriptome analyses, the
number of samples per condition is 2–5 for the analyses
using VPA-treated ASD models (12, 14, 15). Therefore, we
decided that three samples per condition would be sufficient
for this study. Expression profiles were determined using Rat
Gene 2.0 ST array systems (Affymetrix, Santa Clara, CA,
United States) and analyzed using Transcriptome Analysis
Console software (version 4.0; RRID:SCR_018718; Affymetrix).
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Differentially expressed genes (DEGs) were evaluated as follows:
(1) P < 0.05, in a one-way analysis of variance computed by
limma (38), (2) more than 1.5 fold-change (both increase and
decrease) between control and vehicle-treated VPA groups. (3)
Expression levels (in log2 scale) more than 6.6 at least in one
group. Among these, significantly different (improved) values
between the vehicle-treated VPA and OXT-treated VPA groups
were further investigated. Expression levels were normalized to
those of the control group. Microarray data were deposited in the
GEO database (accession number: GSE196500).

Gene Ontology Enrichment Analysis
Gene ontology (GO) enrichment analysis was performed using
Metascape (RRID:SCR_0166201) (39). To obtain the most
comprehensive data, gene identifiers were converted from Rattus
norvegicus to Homo sapiens orthologs. GO terms classified
in biological processes were collected under the following
conditions: a minimum count of 3, P < 0.01, and an enrichment
factor (the ratio between the observed counts and the counts
expected by chance) > 1.5. Cytoscape App (RRID:SCR_003032)
was used to create and plot the enrichment network (40).

Protein-Protein Interaction Enrichment
Analysis
To investigate protein networks consisting of proteins that
form physical interactions each other in DEGs, protein-
protein interaction analysis was performed using databases
including BioGrid (RRID:SCR_007393) (41), InWeb_IM (42),
and OmniPath (43) in Metascape. The molecular complex
detection (MCODE) algorithm (RRID:SCR_015828) (44) was
applied to identify tightly connected modules in each network.
MCODE analysis was performed with default settings; detection
when there are at least three genes in a network.

Gene-Disease Association and
Regulatory Interaction Analysis
To reveal the involvement of DEGs in diseases and their
transcriptional regulation, DisGeNET (RRID:SCR_006178)
(45) and TRRUST (46) were performed in Metascape. The
algorithm was the same as that of the GO enrichment analysis
discussed above.

Overlapping With Autism Spectrum
Disorder Risk Genes and Predictive
Analysis of Interaction
Two databases were used to explore the overlap between DEGs
in the VPA model and candidate genes in ASD patients:
SFARI (RRID:SCR_0042612) and Krishnan’s datasets Genome-
wide predictions of autism-associated genes3 (47). Gene lists
in SFARI were scored as follows: S (syndromic), 1 (high
confidence), 2 (strong candidate), and 3 (suggestive evidence). In
Krishnan’s dataset, gene list associated with ASD are separated

1http://metascape.org
2https://gene.sfari.org/
3http://asd.princeton.edu

between brain regions and developmental periods, and the
hippocampus in middle-late childhood (ID: HIP. 11) was selected
to be appropriate for comparison with the results of this
study. Additionally, to predict the interactive networks between
DEGs improved by OXT and ASD candidate genes, Krishnan’s
dataset was used.

RESULTS

Gene Expression Profiles in the
Hippocampus of Prenatally Valproic
Acid-Exposed Rats
Gene expression profiles of the hippocampus were compared
between the control, vehicle-treated VPA, and OXT-treated VPA
groups (n = 3 per group). Hierarchical clustering tended to
separate the vehicle-treated VPA group from the others, except
for one sample from the OXT-treated VPA group (Figure 1A).
Microarray analysis revealed that 377 genes differed significantly
by more than 1.5-fold between the groups (Figure 1A). Among
these, 174 genes were considered DEGs (see section “Materials
and Methods”). We then analyzed the biological processes of
DEGs between the control and vehicle-treated VPA groups.
GO enrichment analysis revealed that DEGs were roughly
associated with multiple functions, including signaling, behavior,
and developmental processes (Figure 1B). An in-depth analysis
further indicated that DEGs are involved in chemical synaptic
transmission, short-term memory, brain development, as well
as nervous system development (Figure 1B). These results
suggest that prenatal VPA exposure affects multiple genes in the
hippocampus that are involved in synaptic function, learning
and memory, and neurodevelopment, all of which are the key
features of ASD. In particular, the enrichment network analysis
also indicated that chemical synaptic transmission (#1) serves
as a hub function in these biological processes (Figure 1C).
Protein-protein interaction analysis further predicted that several
interactive networks are formed among the DEGs (Figure 1D).
Interestingly, histone deacetylase 1 (HDAC1) and specificity
protein 1 (SP1), both of which are regulated by VPA (48, 49),
were identified as factors for the transcriptional regulation of
DEGs (Figure 1E).

Autism Spectrum Disorder-Associated
Molecular Changes in the Hippocampus
by Prenatal Valproic Acid Exposure
We next addressed which human diseases are associated with
DEGs. Notably, DEGs are known to be enriched in ASD-
associated [mental disorders, Gilles de la Tourette syndrome
(50), and various types of epilepsy] and learning disability-
associated (cognition disorders and mental deterioration)
diseases (Figure 2A). To further reveal the relationship with
human ASD, the overlap between DEGs and ASD candidate
genes was investigated using two databases. Eight DEGs were
included in the SFARI database, and Ahi1 was indicated as a
cause of syndromic ASD (Figure 2B). In addition, 13 DEGs
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FIGURE 1 | Transcriptome profiling in the hippocampus of prenatally VPA exposed rats. (A) Hierarchical clustering of DEGs between groups. Expression levels were
normalized to those of the control. (B) Biological processes of DEGs in GO enrichment analysis. Top, parent; Down, child annotations, respectively. (C) Enrichment
networks between clusters of biological processes. Shown numbers are the same with those of child annotations in panel (B). (D) Protein-protein interactive
networks between DEGs. Shown by MCODE1 represents a strongly connected network. (E) Analysis of transcriptional regulation of DEGs. HDAC1 and SP1 are
detected as significant regulators. VPA, valproic acid; DEG, differentially expressed gene; GO, gene ontology; MCODE1, molecular complex detector; HDAC, histone
deacetylase; SP1, specificity protein 1.

overlapped with gene sets in the hippocampus of ASD in middle-
late childhood in Krishnan’s database (Figure 2C). Collectively,
these results suggest that molecular profiles in the hippocampus
could underlie autistic behaviors, including learning disabilities
seen in prenatally VPA-exposed rats.

Effects of Chronic Administration of
Intranasal Oxytocin on Gene Expression
in the Hippocampus of Prenatally
Valproic Acid-Exposed Rats
To explore the molecular mechanisms by which chronic OXT
treatment improves the prenatal VPA exposure induced autistic
behaviors, significantly improved populations by OXT among

DEGs were extracted (Figure 3A). Chronic administration of
intranasal OXT (12 µg/kg/d) significantly upregulated 13 genes
and downregulated two genes among the DEGs (Figure 3B).
GO enrichment analysis revealed that these improved genes
belonged to partly similar processes with DEGs (Figure 1B),
including the developmental process, signaling, and import
across the plasma membrane, and different genes such as those
involved in epithelial tube morphogenesis and response to steroid
hormone (Figure 3C). These GO genes formed networks with
each other except for aging, and epithelial tube morphogenesis,
and thus would serve as a hub annotation (Figure 3D). Finally,
interactive networks were predicted between ASD candidates
and DEGs improved by OXT using Krishnan’s database (except
for Mt-nd3, which were not registered in the database). The
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FIGURE 2 | Disease-associated profiling and overlap with ASD candidate genes. (A) Association between DEGs and human diseases. Venn’s diagrams depict
overlap between DEGs and candidate genes for ASD registered in SFARI (B) and Krishnan’s database (C), respectively. ASD, Autism spectrum disorder; DEG,
differentially expressed gene.

FIGURE 3 | Effect of chronic treatment of intranasal OXT on prenatal VPA exposure-induced molecular changes. (A) Summary of (top) upregulated and (bottom)
downregulated DEGs by OXT (12 µg/kg/day). (B) Quantification of expression levels of genes improved by OXT. The levels were normalized to those of the control.
The top and bottom of the bar depict the highest and the lowest of values, respectively. The line within the bar shows the median (n = 3 per group). *P < 0.05 and
**P < 0.01 vs. control; #P < 0.05 and ##P < 0.01 vs. vehicle-treated VPA. (C) Biological processes of DEGs in GO enrichment analysis. Left, parent; Right, child
annotations, respectively. (D) Enrichment networks between clusters of biological processes with child annotations. (E) Predictive interaction between DEGs
improved by OXT and ASD candidates in Krishnan’s database. Shown are top 10 of candidates connecting strongly with our gene sets. DEG, differentially expressed
gene; OXT, oxytocin; GO, gene ontology.
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predicted top 10 genes that interacted with 14 of the DEGs
improved by OXT are shown in Figure 3E. Of these, three genes
were reported to be involved in social behaviors, learning, and
memory (Table 1). Chronic administration of intranasal OXT
has the potential to partly regulate the molecular pathways in
the hippocampus involved in ASD-like behaviors induced by
prenatal VPA exposure.

DISCUSSION

Valproic acid is an inhibitor of HDACs that epigenetically
modulates gene expression (48). It has been suggested that
VPA-induced teratogenicity results from HDAC inhibition. The
effects of HDAC inhibitors on fetal teratogenicity are suppressed
by their analogs with lower potency against HDACs (51,
52). Interestingly, it has been reported that the prenatal VPA
exposure-induced social deficits were ameliorated by chronic
administration of HDAC inhibitors at postnatal days (13),
supporting the critical role of epigenetic modulation by HDAC
inhibition for both onset and amelioration of ASD. In the present
study, HDAC1 and specificity protein 1 were implicated as
transcriptional regulators of DEGs, suggesting the relevance of
the hippocampus in ASD-like molecular profiling and behaviors
induced by prenatal VPA exposure.

The dorsal and ventral hippocampus primarily function
in cognition and emotion, respectively; inhibition of protein
synthesis in the dorsal hippocampus decreases fear memory
consolidation (53). The dorsal hippocampus lesion also impairs
spatial memory (54). Optogenetics experiments suggested that
activity in the ventral hippocampus is required for social
memory recall in mice (55). In terms of emotional behaviors,
in contrast, the dorsal and ventral parts are reported to
oppositely regulate anxiety in rodents; muscimol infusion
into the dorsal hippocampus provokes anxiety, while into
the ventral part has anxiolytic effects (56). In addition,

TABLE 1 | Relationship of the predicted genes to hippocampal function and
ASD-like behaviors.

Genes Function in the hippocampus and
ASD phenotypes

Sources

Egfr Enhancement of LTP through
recruitment of NMDA receptor GluN2B
subunit by EGFR activation

(68)

Rarb Impairments of LTP, AMPA
receptor-mediated synaptic
transmission, spatial memory, and
social recognition by reduction in RARβ

levels

(74)

Ntrk2 Impairments of hippocampal LTP and
learning in TrkB knockout mice;
Reduction of TrkB levels and LTP in the
hippocampus and impaired learning
and sociability in an inbred ASD model

(69, 70)

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; EGFR, epidermal
growth factor receptor; NMDA, N-methyl-D-aspartate; RARβ, retinoic acid receptor
β; TrkB, tropomyosin receptor kinase B.

dorsal-ventral neural circuits in the hippocampus contribute
to social memory (57). These reports suggest that the dorsal
hippocampus is also involved in emotion, although the
degree of contribution is likely to be less than in the
ventral part. It is noteworthy that hippocampal volume is
altered in ASD patients compared to typically developed
individuals, although there is a discrepancy whether the
volume increases or decreases (58, 59). Functional magnetic
resonance imaging showed that neural connectivity in the
anterior hippocampus (ventral part in rodents) was reduced
in ASD patients (60). However, there are few reports on the
anatomical and functional findings of the dorsal hippocampus
in ASD patients.

In this study, 174 genes were identified as DEGs in the
hippocampus of prenatally VPA-exposed rats. Among these,
only 32 genes were also identified as DEGs in the amygdala or
prefrontal cortex of prenatally VPA-exposed models (12, 14, 15),
suggesting a distinct pattern of molecular changes between the
brain regions in models such as ASD patients (47). According to
the gene-disease analysis, prenatal VPA exposure affects a subset
of genes in the hippocampus involved in both ASD- and learning
disability-associated diseases (Figure 2A). Using transcriptome
profiling, our study thus demonstrated that the hippocampus is
a key region in terms of its contribution to ASD phenotypes,
including learning disabilities.

We identified some key molecular changes induced by
prenatal VPA exposure and upregulated by OXT. Secreted
frizzled-related protein 1 is an endogenous inhibitor of Wnt
signaling (61), which gets activated in both the brains of ASD
patients and the hippocampus of prenatally VPA-exposed rats
(62, 63). Interactive networks also revealed a relatively higher
connection between Sfrp1 and Rarb (Figure 3E). Transcription
of cluster of differentiation 38, which is critical for OXT release
(64), is regulated by RARs (65). The severity of ASD has been
reported to negatively correlate with serum levels of vitamin A
(66). Notably, Lai et al. reported that maternal deficiency of
vitamin A in rats induced ASD-like behaviors and decreased the
expression levels of cluster of differentiation 38 and retinoic acid
receptor β in the hypothalamus and OXT in the serum of the
offspring, all of which were rescued by maternal supplementation
of vitamin A (67). These reports suggest that the molecular
pathways involved in Wnt signaling, including secreted frizzled-
related protein and retinoic acid receptor β, play a critical role in
ASD pathology and improve following chronic OXT treatment.
Epidermal growth factor receptor and tropomyosin receptor
kinase B were also predicted to interact with DEGs improved
by OXT (Figure 3E and Table 1), and these genes are reported
to be involved in social behaviors, learning, and hippocampal
LTP (68–70). Oxytocinergic signaling activates epidermal growth
factor receptor to promote LTP maintenance (71). Both Ntrk
deletion, specifically in oxytocinergic neurons and Bdnf deletion,
impair maternal behaviors against offspring in mice (72). These
reports support that OXT is involved in the molecular pathways
underlying not only social behaviors but also hippocampus-
dependent learning and memory. To the best of our knowledge,
this is the first report to evaluate effects of OXT on molecular
alterations in the dorsal hippocampus of an animal model of
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ASD. However, a limitation of this study is that it did not evaluate
the effects of OXT on molecular alterations in the amygdala
and prefrontal cortex, regions related to emotion and well-
investigated in ASD. As mentioned above, it is likely that the
pattern of molecular alterations is distinct between brain regions
in ASD. In order to further confirm the efficacy of OXT for ASD,
the effects on molecular alterations in these regions should be
investigated in the future.

In this study, chronic administration of OXT was conducted
at adolescence just after weaning in order to avoid the risk of
parental abandonment. Interestingly, maternal administration
of OXT is implicated to suppress postnatal pathogenesis in
animal models of ASD through enhancing excitatory/inhibitory
switching of γ-aminobutyric acid during development (73).
This suggests the possibility of maternal administration of
OXT may reduce the risk of postnatal development of ASD,
even when epilepsy patients are medicated with anticonvulsants
including VPA during pregnancy. Further study is needed
in the future to investigate the possibility of maternal OXT
medication for restoration of postnatal ASD development and
molecular alterations.

In summary, the present study demonstrated that prenatal
VPA exposure affects the molecular pathways involved in ASD-
like phenotypes in the hippocampus. Chronic administration of
intranasal OXT partly ameliorated these alterations, which would
underlie the improvement of social and learning disabilities seen
in the prenatally VPA-exposed ASD model.
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