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Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical
manifestations. Multiple organ failure in SLE can be caused by immune dysfunction and deposition of autoantibodies. Studies
of SLE-susceptible loci and the cellular and humoral immune responses reveal variable aberrations associated with this systemic
disease. Invariant natural killer T (iNKT) cells are a unique subset of lymphocytes that control peripheral tolerance. Mounting
evidence showing reductions in the proportion and activity of iNKT cells in SLE patients suggests the suppressive role of iNKT
cells. Studies using murine lupus models demonstrate that iNKT cells participate in SLE progression by sensing apoptotic cells,
regulating immunoglobulin production, and altering the cytokine profile upon activation. However, the dichotomy of iNKT cell
actions in murine models implies complicated interactions within the body’s milieu. Therefore, application of potential therapy
for SLE using glycolipids to regulate iNKT cells should be undertaken cautiously.

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoim-
mune inflammatory disease with complex immunological
and clinical manifestations. Reduced immune tolerance and
abnormal activation of T and B cells lead to autoantibody
production mainly against protein-nucleic acid complexes,
such as chromatin, and small ribonucleoprotein particles.
These autoantibodies complexed with their cognate self-
antigens deposit within capillaries of various organs and sub-
sequently mediate systemic disorders. The commonly
affected organs include the skin, heart, kidneys, lungs, joints,
and central nervous system. This disease usually begins in
the 20–45-year age range, although it can occur at nearly any
age. SLE is more common in women than in men (>8 : 1).
Studies using animal models suggest a role of estrogens in

the disease development. The induction of SLE depends on
hereditary factors and environmental agents, and inherited
genes, infections, ultraviolet light, and some medications are
all involved. In general, triggers causing cell death, inefficient
clearance of apoptotic cells, and improper exposure of
intranuclear antigens to an uncontrolled immune system are
potential causes of SLE [1].

Reduced immune tolerance leading to an overt immune
response normally precludes various autoimmune disorders.
Regulatory T-cells play important roles in mediating periph-
eral tolerance and immune cell homeostasis. Among them,
the natural killer T (NKT) cells are a unique subset of
T lymphocytes. NKT cells, which express both NK1.1 and
the T cell receptor (TCR) in humans and most murine
models, are heterogenous containing both CD1d-restricted
and CD1d-nonrestricted populations. CD1d-restricted NKT
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cells might recognize glycolipids presented by CD1d for
development and activation. Type I NKT cells within the
CD1d-restricted population express an invariant TCR in the
mouse (Vα14Jα18) and human (Vα24Jα18) combined with
a limited but not invariant TCRβ chain repertoire (preferen-
tially Vβ8.2, Vβ7, or Vβ2 in the mouse and Vβ11 in human)
[2]. These cells are thus classified as invariant NKT (iNKT)
cells that account for more than 80% of CD1d restricted
NKT cells in mice. Type II NKT cells are also CD1d-
restricted; however, they express variable TCRαβ chain
combination and are difficult to identify. The most potent
agonist of CD1d-restricted NKT cells, α-galactosylceramide
(α-GalCer), a synthetic glycolipid similar to that from an
extract of marine sponges, is used widely to define the
number and function of type I NKT cells [3]. In this paper,
we use the term “iNKT cells” to describe CD1d-restricted
NKT cells; however, methods used to identify these cells are
described in the text when relevant to avoid confusion.

iNKT cells are innate-like lymphocytes. Immediately
upon activation through TCR engagement, iNKT cells
secrete a wide array of cytokines and chemokines. These
cells also exert cytolytic activity through granzyme B and
FasL-induced apoptosis. iNKT cells can upregulate CD80,
CD86, and CD40 on antigen-presenting cells (APCs) to
mediate downstream immune responses. Therefore, iNKT
cells are considered effector cells that bridge the innate and
adaptive immune response [4]. iNKT cells are associated
with various autoimmune diseases, including type I diabetes
experimental autoimmune encephalomyelitis, and arthritis
[5]. Studies also indicate that the number and function of
circulating iNKT cells decrease in SLE patients although the
immunophysiological role of iNKT cells in SLE is unclear.

Various murine lupus models have been used to inves-
tigate the effects of the aberrant number and function of
iNKT cells on disease activity. MRL/lpr mice, which have
a defective point mutation in Fas, spontaneously develop
inflammatory lesions affecting the skin and kidneys with
marked lymphoproliferation and autoantibody production.
CD1d-deficient MRL/lpr mice show exacerbated skin lesions
[6]. The other widely used murine model, NZB/W F1
(BWF1) mice show an increase in activated iNKT cells
with age; however, CD1d deficiency accelerates the onset
and progression of nephritis [7]. A chemical-induced lupus
model showed that exposure to hydrocarbon oils, such as
pristane, facilitates SLE progression through an unknown
mechanism. CD1d deficiency exacerbated lupus nephritis in
this model, suggesting a regulatory role of iNKT cells [8].

In this paper, we discuss recent studies using different
murine models to identify the possible roles of iNKT cells
in SLE.

2. Numerical Deficiency of iNKT Cells in
Human SLE

Changes in the number of iNKT cells are associated with
many autoimmune disorders in humans, such as SLE, psori-
asis, rheumatoid arthritis, and myasthenia gravis. In human
SLE, iNKT cell number is measured using various methods.

Measurement of the expression of TCR Vα24Jα18 mRNA
level indicates that the numbers of invariant TCR Vα24Jα18+

CD4 CD8 double negative (DN) T cells are reduced in
peripheral blood lymphocytes and in the rheumatoid syn-
ovium of patients with SLE [9, 10]. Flow cytometry
shows that the number of DN NKT cells expressing TCR
Vα24/Vβ11 is lower in the blood of SLE patients than in
healthy controls [11]. Because SLE patients develop progres-
sive lymphopenia, the absolute cell number is affected by
the reduction in total lymphocyte number. The proportion
of iNKT cells can be calculated to determine the level.
The frequency of NKT cells (percentages of CD56+CD3+

T cells among all lymphocytes) is lower in patients with
SLE than in controls [12]. Studies using 6B11 monoclonal
antibody, which binds specifically to the conserved CDR3
region of the Vα24Jα18 TCR [13, 14], have shown that
both the percentage and absolute number of iNKT cells are
lower in SLE patients than in healthy controls [15]. Another
subpopulation of human Vα24+CD8+ iNKT cells express
mainly CD161 (NK1.1) and recognize CD1d molecule [16],
and the cell number of this population is lower in patients
with SLE than in healthy controls [17].

iNKT cell deficiency correlates with Systemic Lupus
Erythematosus Disease Activity Index (SLEDAI) [15, 18],
suggesting that iNKT cells are involved in the control of
disease activity. Although immunosuppressive drugs corre-
lated significantly with log-transformed absolute iNKT cell
numbers (P = 0.036) in one study [15], the direct effect of
medication on iNKT cell numbers was excluded because SLE
patients without drug exposure had consistently lower iNKT
cell numbers than did healthy controls. Another study found
no correlation between drug therapy and the proportion of
NKT cells [19]. Thus, the reduction in NKT cells in SLE
patients does not appear to be a secondary response to drug
therapy.

3. Functional Deficiency in iNKT Cells in
Human SLE

In addition to the reduction in iNKT cells in human SLE,
the poor response of iNKT cells to α-GalCer has also
been demonstrated in SLE patients [11], whose proliferative
response of PBMCs was measured in cells cocultured with
α-GalCer. The magnitude of the responses varied between
subjects, and both good and poor responders were prevalent
among both patients and healthy controls. However, the
proliferation indices were significantly lower in patients than
in healthy controls (median 7.5 versus 28.7, P < 0.001) [20].
α-GalCer potently activated iNKT cells to produce IFN-γ
and IL-4. The levels of both mRNA and cytokines in the
supernatant of α-GalCer-induced PBMCs were lower in SLE
patients than in healthy controls.

The lower response of iNKT cells results mainly from
their impaired function rather than a defect in the pre-
sentation ability of CD1d-bearing cells. In one study, the
percentages of CD1d+ PBMCs and monocytes were similar in
SLE patients and healthy controls, and the expression level of
CD1d on PBMCs and monocytes was also indistinguishable
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between SLE patients and healthy controls [20]. To define
further the defective function of iNKT cells, sorted antigen-
presenting cells (APCs) from patients or controls were
cocultured with patients’ iNKT cells. CD3+6B11+ iNKT cells
from an SLE patient failed to proliferate upon α-GalCer
activation in the presence of monocytes from a healthy
control, but iNKT cells from a healthy control were expanded
successfully in the presence of monocytes from a healthy
control [20]. Another study confirmed that Vα24+ DN iNKT
cells from nonresponders fail to proliferate in the presence of
APCs from responders, whereas APCs from nonresponders
could expand iNKT cells from responders [11]. Another
study observed an increase in apoptosis of iNKT cells from
patients after 7 days of incubation with α-GalCer [15],
suggesting that the poor response of iNKT cells might partly
result from the susceptibility to activation signaling-induced
cell death.

Although the CD1d expression level on B cells and
CD1d+ B cells is significantly lower in patients than in con-
trols, in vitro coculture experiments indicate that monocytes,
but not B cells, are effective APCs for iNKT cells [15].

These data show that iNKT cells in SLE patients are
dysfunctional and suggest that activating this population
may have therapeutic potential.

4. Function of iNKT Cells Associated with
SLE Disease

Various murine models have shown the importance of
iNKT cells in SLE progression and systemic disorders. These
models have been analyzed and described in detail [21, 22].
In this paper, we focus on recent studies that clarify the
functions of iNKT cells and their associations with SLE.

4.1. Detection of Apoptotic Cells and Triggering of the Immune
Response. SLE can cause severe multiple organs failure
resulting from autoantibodies induction. These autoanti-
bodies target nuclear antigens that are theoretically inac-
cessible. It is hypothesized that the inefficient clearance of
apoptotic cells is the source of the antigen pool and that
secondary necrotic bodies fuel the inflammation [23–25].
Several genetic studies have identified SLE-susceptible loci,
such as CRP [26], and C1q [27], which is involved in clear-
ance of dead cells, and these data support the concept that
impaired apoptotic cell clearance is involved in SLE. Recent
data suggest that cleavage of autoantigens by granzyme B
during cytotoxic-T-lymphocytes- (CTL)-induced apoptosis
is involved in human systemic autoimmune diseases [28].
Because CTL-induced targets are often pathogen-infected
cells, the molecular mimicry between microbial antigens and
autoantigens is not the only explanation for the initiation of
autoimmunity after infection.

In one study of C57BL/6 mice, injection with irradiated
apoptotic cells induced autoantibody production [29]. In
this mouse model, deficiency in iNKT cells exacerbated the
effects of the disease by increasing the production of autoan-
tibodies and glomerular deposition of IgG immune complex
[30]. Injection of apoptotic cells rapidly upregulated the

expression of CD69 in splenic iNKT cells; the number of
IFN-γ-producing iNKT cells decreased and the number of
IL-10-producing iNKT cells increased in the injected mice.
Syngenic apoptotic cell transfer into CD19−/− mice induced
iNKT cells to limit the activation of wild-type B but not
CD1d−/− B cells that were adoptive-transferred, respectively,
into CD19−/− recipient. The production of both IgM and
IgG3 anti-DNA antibodies was reduced. These data suggest
that autoreactive B cells can be regulated by iNKT cells
triggered by apoptotic cells in a CD1d-dependent manner.

Increased levels of lysophosphatidylcholine and other
oxidized lipids are exposed on the outer leaflet of apoptotic
cells [31]. Immunization with these apoptotic cells induces
the production of IgM that recognizes oxidized lipids. NKT
cells may survey the lipid derivatives on apoptotic cells pre-
sented by APCs and then mediate immune tolerance. It was
shown recently that apoptotic cells with phosphatidylserine
exposed on the outer membrane leaflet can rapidly activate
iNKT cells through recognition by T-cell Ig-like mucin-like-
1 (Tim-1) on iNKT cells [32]. However, airway hyperactivity
was observed rather than improved outcome in this model.

4.2. Modulation of Antibody Production. The fact that SLE
progression can be caused by various abnormal stim-
uli of lymphocyte activation suggests the presence of high
immunoglobulin levels in the plasma of SLE patients.
However, as expected for a heritable trait, such as SLE,
analysis of the blood from relatives of SLE patients with
subclinical phenotypes should more precisely reflect the
pathogenic mechanism and the relationships with genetic
and cellular aberrations.

High plasma IgG levels have been noted in both patients
with SLE and their relatives [12, 19]. The levels of total IgG
and anti-dsDNA IgG in patients with SLE and their relatives
are associated with a low frequency of Vα24+ iNKT cells. This
result suggests that iNKT cells play an important role in the
regulation of IgG production.

Although an inverse relationship between iNKT cells
and IgG production has been observed in humans, murine
models reveal a dichotomy in the regulation of IgG produc-
tion by iNKT cells. One study showed that CD1d-reactive
iNKT cells contribute to the development of lupus in BWF1
mice by promoting autoantibody production by B cells [7].
Another study showed that purified iNKT cells but not
conventional T cells augment the in vitro secretion of IgM,
IgG, and anti-dsDNA antibodies by BWF1 B cells [33] and
that CD1d and CD40 are indispensable for this interaction.
In addition, adoptive transfer into irradiated nu/nu BALB/c
mice of T cells from the spleen of transgenic BALB/c mice
expressing the TCR Vα4.4Jα24 and Vβ9 chain recognizing
CD1d on syngenic B cells induced lupus and severe immune
complex glomerulonephritis, including the production of
anti-dsDNA antibodies, in the host mice [34].

Another view suggests that iNKT cells have a suppressive
role in the regulation of IgG production. In a model using
heterozygous Jα18+/− mice, which show similar pathophys-
iology to human SLE by having a reduced rather than
complete absence of iNKT cells, the mice had a significantly
higher anti-dsDNA IgG level and increased activation of
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autoreactive B cells [30]. Pristane-injected BALB/c mice
showed increased autoantibody production and exacerbated
nephritis [35, 36]. Further studies of mice with chemically
induced diseases examine that the deficiencies in CD1d-
restricted cells contribute to the disease.

In lipopolysaccharide-activated mouse models, recon-
stitution of active Vα14+ iNKT cells in Jα18−/− BALB/c
mice downregulated anti-dsDNA antibody and rheumatoid
factors production but did not change total IgG levels
[37]. iNKT cells increased total IgG production and the
appearance of activation markers on B cells through soluble
mediators and helper T cells, whereas autoreactive B cells
were impaired in a contact- and CD1d-dependent manner.
This highlights the ability of iNKT cells to distinguish
autoreactive from nonautoreactive B cells. Differences in
CD1d expression on autoreactive and nonautoreactive B
cells suggest differences in regulation between these cells
because CD1d expression is higher on dsDNA-responsive
autoreactive B cells.

The potent agonist of iNKT cells, α-GalCer, is used
widely to study the effect of iNKT cells in various disease
models. With the administration of C8-α-GalCer (with an 8-
carbon acyl chain), which skews the serum cytokine secretion
toward a Th2 pattern, 50% of BWF1 mice developed lupus
nephritis by 30 weeks. And 50% of control BWF1 mice devel-
oped proteinuria by about 36 weeks [38]. In contrast to α-
GalCer, injection of β-galactosylceramide, a 12-carbon acyl
chain containing glycolipid which rapidly reduced the ratio
of iNKT cells in the liver and spleen [39], ameliorated lupus
and reduced anti-dsDNA IgG2a production. This implies a
complicated role of iNKT cells during the progression of
autoimmunity and that alternative agonists of iNKT cells
produce different outcomes in murine SLE models.

4.3. Modulation of the Cytokine Profile. Abnormal cytokine
profiles have been implicated in the loss of immune tolerance
and in a variety of autoimmune diseases. Type I NKT cells
produce variety of proinflammatory cytokines, including
Th1-, Th2-, and Th17-related cytokines. However, the
pathophysiology of human SLE is contradictory to be related
to the cytokine alteration by NKT cells in patients. Although
early reports demonstrated defective Th1 and excessive Th2
responses in lupus [40], recent data suggest that the levels
of both Th1 (IFN-γ, IL-12, and IL-18) and Th2 (IL-4, and
IL-10) cytokines are increased in the sera of lupus patients
[41, 42]. Intracellular cytokine staining reveals comparable
IL-4- and IFN-γ-expressing lymphocytes in PBMCs from
SLE patients without nephritis and healthy donors [43, 44].
However, in a subgroup of patients with severe lupus nephri-
tis, the intracellular cytokine ratio shifts to a Th1 phenotype
[44, 45]. In disease-alleviated SLE patients, decreased IFN-
γ-producing cells and increased IL-4-producing CD4+ T
cells were observed after corticoid treatment [43] and low-
dose UV phototherapy [46], respectively. Although Th1/2-
related cytokines might contribute to SLE progression and
severity, the cytokine profiles of activated iNKT cells from
SLE patients are yet to be determined.

In addition to Th1- and Th2-related cytokines, iNKT
cells can also express IL-17 and IL-21 [47, 48]. IL-17 has

recently been implicated in the pathogenesis of SLE [49].
Evidence indicates that production of IL-17 is abnormally
high in sera of SLE patients [42] and is correlated with
SLE disease severity [49, 50]. When activated by IL-17, the
PBMC of patients with lupus nephritis produced higher
level of total IgG, anti-dsDNA IgG, and IL-6 [51]. IL-
17 production is also high in murine models affected by
lupus nephritis [52–55]. It shows spontaneously developed
germinal centers in the spleen where IL-17+ T cells colocalize
with IL-17R+ B cells [55] providing the suggestion that IL-
17+ T cells impact B cells in lupus disease. The main source
of IL-17 in SLE patients derives from double negative (DN)
TCRαβ+CD4−CD8−T cells [56]. DN T cells are scarce in
healthy individuals, but they expand in peripheral blood of
SLE patients and infiltrate into kidney with lupus nephritis
where they produce proinflammatory cytokines, including
IL-17, IL-1β, and IFN-γ [56–58]. Also in lupus murine
models, DN T cells are important IL-17 producer [52]. It
also demonstrates elevated plasma levels of IL-21 as well
as percentages of IL-21 expressing T cells in SLE patients
compared with healthy controls [59, 60]; nevertheless, there
is no correlation between IL-21 and disease severity or anti-
ds DNA titers [59].

The study of CD1-lipid reactive T cells is much more
complicated in humans than in mice. In addition to CD1d,
CD1a-, b-, and c-restricted T cells in humans are relatively
diverse with CD4+, CD8+, or CD4−CD8− double negative
(DN) populations. Although Vα24 DN NKT cells are numer-
ically decreased in SLE patients, the influence of the subsets
of other CD1-lipid reactive T cells on SLE pathogenesis in
humans should be further investigated.

In murine models, treatment of adult BWF1 mice (age
8–12 weeks) with α-GalCer exacerbated the disease activity,
whereas treatment of young BWF1 mice (age 4 weeks)
ameliorated SLE symptoms [61]. Moreover, transfer of
NK1.1+ T cells from aged SLE mice to young BWF1 mice
(before the onset of renal failure) induced proteinuria and
swelling of the glomeruli. It has been indicated that iNKT
cells expand in aged BWF1 mice and the authors reported
that α-GalCer administration induced predominant IFN-γ
production in old mice [7]. Use of a blocking anti-CD1d
monoclonal antibody to treat BWF1 mice augmented the
Th2 responses and ameliorated lupus [61]. These results
suggest that the impact of α-GalCer treatment on disease
in BWF1 mice varies with age and imply that the cytokine
profile of iNKT cells influences the progression of SLE.

In pristane-induced nephritis models, the effect of α-
GalCer differs between mouse strains. In BALB/c mice, Th2
responses are induced by treatment with α-GalCer, which
protects mice against nephritis. Conversely, in SJL/J mice,
treatment with α-GalCer increases the Th1 responses and
exacerbates disease [62]. The differences in the effect of α-
GalCer seem to correlate with the cytokine profile produced
by activated iNKT cells. It is the common regulatory mech-
anism in several autoimmune diseases, such as experimental
autoimmune encephalomyelitis, and type 1 diabetes.

iNKT cells mediate various immune responses, including
maintenance of self-tolerance, tumor surveillance, and the
response to microbial pathogens. Given the limited TCR
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Figure 1: The function of iNKT cells in murine lupus models. iNKT cells in the mouse that express invariant TCR, Vα14Jα18, are CD1d-
restricted T lymphocytes. The antigens presented by CD1d can be microbial components, endogenous antigen, iGb3, or oxidized lipid (Ox-
lipid) derivatives from apoptotic cells. DCs and monocytes are potent APCs that activate iNKT cells both directly through TCR engagement
and indirectly through IL-12. Immediately upon activation, iNKT cells release Th1-, Th2-, and T17-related cytokines, depending on the
antigen presented and/or the characteristics of the APCs. The proinflammatory cytokines, IFN-γ and IL-17, lead predominantly to SLE
exacerbation. iNKT cells can sense apoptotic blebs through Tim-1, which recognizes phosphatidylserine (PtdSer) exposed on the outer
leaflet membrane, and can mediate immune suppression (see text). By contrast, iNKT cells activate B cells and thus upregulate total IgG
and IgM levels in a CD1d-dependent manner, but iNKT cells can also inhibit the activation of autoreactive B cells. CD1d expression levels
suggest that iNKT cells are capable of discriminating self- from nonself-reactive B cells.
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diversity, attention has focused on the mechanisms under-
lying the activation of iNKT cells [63]. In addition to the
microbial glycolipid antigens engaging directly with the
invariant TCR on iNKT cells [3], indirect activation of
iNKT cells by cytokines or endogenous antigen presentation
through microbial-stimulated dendritic cells (DCs) is also
possible [64–66]. This may explain the ability of various
stimuli to activate iNKT cells in the body and implies that
iNKT cells might mediate both beneficial and detrimental
outcomes depending on the milieu produced by the activated
DCs.

The beneficial roles of iNKT cells are involved in immune
tolerance and can ameliorate or prevent tissue inflammation
[67, 68]. The suppressive effect is mediated globally through
tolerogenic DCs, B cells, or regulatory T cells or directly
by skewed cytokine production and induction of apoptosis
through Fas-FasL engagement of autoreactive lymphocytes
[69]. SLE patients have reduced proportions and functions
of iNKT cells, which imply that the suppressive effect is
mediated by this population. However, a reduced population
of iNKT cells cannot be a diagnostic clinical marker of SLE
because the frequency of iNKT cells varies markedly between
healthy people. Although the suppressive effect was identified
recently in a murine lupus model, the function of iNKT cells
in humans needs to be clarified.

Long-term anergy of iNKT cells by reactivation can be
induced in mice [70]. The unresponsiveness to αGalCer
includes reduced proliferative activity and failure of IFN-γ
production. This suggests that the aberrant proportion and
function of iNKT cells in SLE patients may reflect only the
outcome after repeated exposure to cognate self-antigens. By
contrast, Green et al. did not exclude the possibility that the
reduced level of iNKT cells results from attack by upregulated
antibody in SLE patients [12]. Therefore, iNKT cells may be a
potential therapeutic target in the treatment of SLE patients,
although the complicated interactions between iNKT cells
and other immune cells and the exact function of iNKT cells
require further consideration.

5. Conclusion

In this paper, we have discussed the association between
iNKT cells and SLE in clinical and murine models. In human
SLE patients, the reduced proportion and function of iNKT
cells correlate with disease activity and iNKT cells correlate
inversely with IgG levels. Recent studies indicate that iNKT
cells can sense apoptotic cells and mediate immune tolerance
and suggest that iNKT cells can distinguish autoreactive B
cells from nonautoreactive B cells to suppress autoreactive
antibody production in a CD1d-dependent manner. How-
ever, other studies have reported that iNKT cells upregulate
total IgG and IgM levels (Figure 1). These findings suggest
that iNKT cells are involved in suppressive regulation in SLE.
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