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Simple Summary: The sun is a deadly laser, and its damaging rays harm exposed tissues such as
our skin and eyes. The skin’s protection and repair mechanisms are well understood and utilized in
therapeutic approaches while the eye lacks such complete understanding of its defenses and therefore
often lacks therapeutic support in most cases. The aim here was to document the similarities and
differences between the two tissues as well as understand where current research stands on ocular,
particularly corneal, ultraviolet protection. The objective is to identify what mechanisms may be best
suited for future investigation and valuable therapeutic approaches.

Abstract: Ultraviolet (UV) irradiation induces DNA lesions in all directly exposed tissues. In the
human body, two tissues are chronically exposed to UV: the skin and the cornea. The most frequent
UV-induced DNA lesions are cyclobutane pyrimidine dimers (CPDs) that can lead to apoptosis or
induce tumorigenesis. Lacking the protective pigmentation of the skin, the transparent cornea is
particularly dependent on nucleotide excision repair (NER) to remove UV-induced DNA lesions.
The DNA damage response also triggers intracellular autophagy mechanisms to remove damaged
material in the cornea; these mechanisms are poorly understood despite their noted involvement in
UV-related diseases. Therapeutic solutions involving xenogenic DNA-repair enzymes such as T4
endonuclease V or photolyases exist and are widely distributed for dermatological use. The corneal
field lacks a similar set of tools to address DNA-lesions in photovulnerable patients, such as those
with genetic disorders or recently transplanted tissue.

Keywords: cornea; UV; autophagy; nucleotide excision repair

1. Introduction
The Cornea

The cornea is the superficial shield at the front of the eye. Its transparency is essential
for the transmission of light into the eye and through to the retina, enabling visual per-
ception. The cornea functions as a physical barrier, protecting the inner contents of the
eye, while also providing a significant portion of the refraction needed for proper vision.
The human cornea consists of five distinct layers. The anterior layer is the epithelium, and
its underlying fibrous mesh is called the Bowman layer [1]. Posterior to the Bowman’s
layer is the collagen-rich stroma, contributing to approximately 90% of the total corneal
thickness. Beneath the stroma is Descemet’s membrane, which separates stroma from the
most posterior corneal layer, the single cell layer endothelium (see Figure 1) [2,3]. The
corneal structure does vary between species, particularly in terms of Bowman’s layer and
Descemet’s membranes, to accommodate different needs and adaptations, although all
fulfil the basic roles of protection and refraction [4].
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The average radius of the anterior corneal surface is 15 mm and the average diameter 
of the posterior corneal surface is 13 mm. The shape of a healthy human cornea will 
change with age, typically thinning at the periphery [5]. 

 
Figure 1. Schematic cross-section of the tissue layers within the central cornea and the approximate 
shape of cell within the layers. The top cyan layer is the epithelium,;below it is the acellular Bowman 
layer. Below that in violet are the fibroblasts within the stroma. Below the stroma is the acellular 
Descemet’s membrane to which the monolayer of pink endothelial cells adhere. Epithelial (ED), 
Bowman layer (BL), Stroma (ST), Descemet’s membrane (DM), and Endothelial layer (EL). 

The corneal epithelium covers the anterior portion of the cornea; it is composed of 
five to six layers of stratified, noncornified, squamous cells. The epithelium’s basal layer 
of cuboidal cells adheres to the Bowman layer via a basement membrane [6]. The main 
purpose of the corneal epithelium is to form a high turnover barrier to the outside. Along 
with this protective role, the epithelium also produces cytokines that influence the behav-
iour of neighbouring cell types, such as keratocytes [7]. The smaller basal cells are progen-
itor cells that replenish the continuously depleted upper layers. The basal progenitors 
themselves are a population maintained by, and descended from, limbal epithelial stem 
cells [1]. Inside the limbus are radially oriented fibrous folds called the palisades of Vogt; 
the limbal stem cells reside within these ridges [8]. As the limbus acts as the interface 
between the vascularized conjunctiva and avascular cornea, the palisades themselves are 
partially vascularized. The vasculature is responsible for providing nutrition and oxygen 
to the limbal area [9]. It is currently thought that the limbus and its inhabiting cells main-
tain the border between the two different tissues, and that any damage to the limbus may 
enable an invasion of conjunctival cells into the cornea. This typically leads to vasculari-
zation and a loss in vision quality [10–12]. These disturbances may occur following UV 
damage where the limbal stem cells no longer maintain the border [13–16]. Although the 
role of epithelial factors in the maintenance of angiogenic and lymphangiogenic privilege 
seems evident, the role of the limbus as a physical barrier to vascular invasion seems 
poorly supported [17,18]. 

Damage to the epithelium must be repaired rapidly to restore barrier function and 
protect the cornea from bacteria or further trauma [19]. As the epithelial cell population is 
maintained by limbal stem cells (see Figure 2), the closure of wounds is severely impeded 

Figure 1. Schematic cross-section of the tissue layers within the central cornea and the approximate
shape of cell within the layers. The top cyan layer is the epithelium,;below it is the acellular Bowman
layer. Below that in violet are the fibroblasts within the stroma. Below the stroma is the acellular
Descemet’s membrane to which the monolayer of pink endothelial cells adhere. Epithelial (ED),
Bowman layer (BL), Stroma (ST), Descemet’s membrane (DM), and Endothelial layer (EL).

The average radius of the anterior corneal surface is 15 mm and the average diameter
of the posterior corneal surface is 13 mm. The shape of a healthy human cornea will change
with age, typically thinning at the periphery [5].

The corneal epithelium covers the anterior portion of the cornea; it is composed
of five to six layers of stratified, noncornified, squamous cells. The epithelium’s basal
layer of cuboidal cells adheres to the Bowman layer via a basement membrane [6]. The
main purpose of the corneal epithelium is to form a high turnover barrier to the outside.
Along with this protective role, the epithelium also produces cytokines that influence
the behaviour of neighbouring cell types, such as keratocytes [7]. The smaller basal cells
are progenitor cells that replenish the continuously depleted upper layers. The basal
progenitors themselves are a population maintained by, and descended from, limbal
epithelial stem cells [1]. Inside the limbus are radially oriented fibrous folds called the
palisades of Vogt; the limbal stem cells reside within these ridges [8]. As the limbus acts
as the interface between the vascularized conjunctiva and avascular cornea, the palisades
themselves are partially vascularized. The vasculature is responsible for providing nutrition
and oxygen to the limbal area [9]. It is currently thought that the limbus and its inhabiting
cells maintain the border between the two different tissues, and that any damage to the
limbus may enable an invasion of conjunctival cells into the cornea. This typically leads to
vascularization and a loss in vision quality [10–12]. These disturbances may occur following
UV damage where the limbal stem cells no longer maintain the border [13–16]. Although the
role of epithelial factors in the maintenance of angiogenic and lymphangiogenic privilege
seems evident, the role of the limbus as a physical barrier to vascular invasion seems poorly
supported [17,18].

Damage to the epithelium must be repaired rapidly to restore barrier function and
protect the cornea from bacteria or further trauma [19]. As the epithelial cell population is
maintained by limbal stem cells (see Figure 2), the closure of wounds is severely impeded
by any damage to their niche, the limbus [20]. The limbus can be considered a particularly
critical component of the cornea as this perimeter of crypts is essential in maintaining a
clear cornea fully covered in epithelium. While the limbus is vulnerable to threats ranging
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from viral and bacterial to chemical and traumatic, one particular source of stress is almost
always present: UV radiation.
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Figure 2. Limbal stem cells differentiating into migratory transient amplifying cells that migrate
along the Bowman layer into the avascular central cornea to proliferate and terminally differentiate
into functional epithelial cells. The limbal niche is maintained by proximity to blood vessels and
secreted factors from stromal cells.

2. UV Effects on the Cornea
2.1. UV Damage and Repair Mechanisms

There are only two surfaces of the human body that are chronically exposed to UV:
the skin and the eye [21]. The effects of both acute and chronic UV exposure on the skin
are well documented [22–25], with several investigations into each of the cell types, tissues,
and layers of the skin. In the case of the cornea, acute UV exposure is known to cause
photokeratitis, a painful inflammation where the epithelium, stroma, and endothelium may
be affected and which leads to clouding [26–29]. Chronic UV exposure usually leads to
long term conditions such as tumours (squamous cell carcinomas, malignant melanomas,
lymphoma of the conjunctiva [30–32]) or keratopathy (see Table 1) [33–35].

UV radiation entering the temporal limbus has been shown to focus at the nasal limbus,
damaging limbal cells to a greater degree. This occurs specifically with UV entering at the
temporal limbus that is then concentrated to the nasal limbus (see Figure 3) [36]. These
damaged limbal cells and their descendants may then migrate from the limbus towards the
center of the cornea [37].
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at the nasal side of the cornea. The increase in UV exposure at the nasal side is estimated to be of up
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Table 1. UV damage and repair mechanisms in both skin and eyes.

Damage Skin Cornea Repair and Prevention

Erythema/Sunburn 3 [38,39] Wound Healing, Autophagy [40,41]

DNA lesion 3 [42–44] 3 [45–47] NER, Apoptosis, Antioxidants [48,49]

Immunodeficiency 3 [49,50] None

Premature aging 3 [51,52] NER, Apoptosis, Antioxidants [53,54]

Cataracts 3 [55,56] Wound Healing, Autophagy [57–60]

Uveitis 3 [61,62] Wound Healing, Autophagy [57,63]

Keratitis 3 [64–66] Wound Healing, Autophagy [57,67]

2.2. Pterygium Aetiology and Pathogenesis

One of the first clear definitions of pterygium describes a pterygos, a wing-shaped
degenerative and hyperplastic process where the bulbar conjunctiva invades onto the
cornea [66]. These vascularized, fibrotic degenerations continuously advance across the
cornea over time [67]. It is well documented across several ethnicities, locations, and
age-groups that the primary risk factor of pterygia is UV [68–73]. The incidence is generally
higher for men than for women (14.5% vs. 13.6%), and unilateral cases were more prevalent
than bilateral cases [74]. The prevalence of pterygium increases with age, with the age
group 55–59 showing the greatest vulnerability [75]. Pterygia are typically found at the
interpalpebral zone of the cornea. Due to the peripheral light focusing effect, they will
develop more often at nasal side and less often on the temporal side of the cornea [76].

2.3. UV-Induced DNA Lesion Formation

UV irradiation damages cellular DNA by causing the formation of cyclobutane
pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) (see
Figure 4) [77]. CPD and 6-4PP lesions are both results of neighbouring pyrimidine cova-
lently binding to each other [78–80]. CPDs are the most frequent UV lesions and—when
cells fail to induce cell death through the activation of the DNA damage response—lead
to mutations that in turn promote malignancy [81–83]. Mutations amid CPDs are respon-
sible for transition mutations via Cytosine and Thymine nucleotide dimerization [84,85].
Importantly, CPD lesions are estimated to occur three times as frequently as 6-4PP lesions,
and, due to their greater steric aberration in the DNA, 6-4PPs, they are more effectively
recognized and thus repaired by NER than CPD lesions [86]. The first DNA repair enzymes
that were discovered were CPD- and 6-4PP-photolyases, which specifically bind to either
a CPD or a 6-4PP, respectively. These cryptochrome enzymes absorb visible (blue) light
as energy source for electron transfer to mend the lesions [87–89]. In the Sphingomonas
Antarctic bacterium a photolyase capable of binding to both CPD and 6-4PP called UV9
was identified [90,91].

Photolyases exist in organisms ranging from bacteria to plants and marsupials but
are absent in placental mammals. Humans in fact lack CPD and 6-4PP photolyases and
instead rely on nuclear excision repair (NER) pathway [92,93]. NER is far more versatile in
removing a range of helix distorting lesions; however, they are far less effective to recognize
CPD and 6-4PP lesions than the photolyases that have been selected to bind to only those
lesions with high specificity. In contrast to the single enzyme photolyases, NER is executed
by a highly complex mechanism involving dozens of proteins. While these proteins will
not necessarily target UV damage specifically like the aforementioned photolyases, they
are capable of repairing CPD and 6-4PP [94,95]. NER is initiated by lesion recognition by
either the Xeroderma pigmentosum complementation group C (XPC) acting in concert with
the RAD23 homolog B (RAD23B) as part of global genome (GG-) NER or by the Cockayne
syndrome B (CSB) protein encoded by the excision repair cross complementation group 6
(ERCC6) gene as part of transcription-coupled (TC-) NER, dependent on the location of the
damage. TC-NER and GG-NER differ in the way they recognise DNA damage. GG-NER



Biology 2022, 11, 278 5 of 19

relies on the XPC complex constantly probing the DNA for lesions while TC-NER relies on
RNA polymerase stalling at lesion sites to recognize damaged DNA [96].
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Both GG- and TC-NER recruit the NER core machinery including XPA and the TFIIH
complex that unwind the double helix, verify the lesion, and subsequently recruit the
ERCC1-XPF and the XPG endonucleases to excise a stretch containing the lesion [97].
Mutations in NER genes typically result in UV hypersensitivity of the skin and particularly
when GG-NER is affected in a several thousand fold higher incidence of skin cancer in
Xeroderma pigmentosum (XP) patients. In contrast, mutations affecting TC-NER result
in Cockayne syndrome (CS) that is characterized by growth retardation and premature
aging but not skin cancer. Distinct mutations in the TFIIH components XPD can lead to
XP, rare combinations of XP and CS as well as trichothiodystrophy (TTD) that shares many
features with CS but in addition leads to transcription elongation defects that cause brittle
hair and nails [98,99]. These three diseases can also present eye-related anomalies such as
conjunctivitis, photophobia, keratitis, pterygium, and corneal opacity [100], although these
symptoms do not manifest in all patients.

One of the ways in which skin epithelia and corneal epithelia differ is in their incidence
of UV-caused pathologies. Ocular surface pathologies such as pterygium, intraepithelial
neoplasia, or carcinoma, have a lower rate of incidence than their equivalent in the skin
(including melanomas) [101,102]. It should be noted that these mutation-driven pathologies
are not always driven by UV but can also be due to viral factors. Human papillomavirus
in particular is a source of mutations [103]. However, it is well known that there is a clear
correlation between UV exposure and the occurrence of ocular surface pathologies, with
particularly high incidences occurring in populations that live within 30 degrees latitude of
the equator where UV radiation is high [104,105]. Furthermore, lesions occur more often in
the sun-exposed interpalpebral fissure, specifically in the nasal or temporal regions within
the limbus [106]. The eyes are certainly one of the areas most vulnerable to UV light, with
an estimated 5 to 10% of all skin cancers occurring in the eyelids [45]. Even so, with all
this evidence that UV does drive mutation and cancerous lesions in the cornea, the corneal
epithelia is orders of magnitude less prone to UV-induced cancer than skin [107].
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2.4. The Role of Genotoxic Stress

The reason for the cornea’s greater resistance to UV lies in its ability to deal with geno-
toxic stress. Specifically, components of the genotoxic stress detection and response cascade
such as DNA damage-binding protein 2 (DDB2), XPC, and tumour suppressor p53 are
present in greater amounts in corneal epithelial cells than in epidermal keratinocyte [108].
The quantity of a protein within a cell is a result of the balance between production and
degradation. In the corneal epithelial cells, the degradation of XPC, DDB2, and p53 is
slowed such that the active forms of these proteins are more common [108]. While it seems
like the cornea is better equipped than the skin to deal with UV damage, this could be in-
terpreted as a compensation measure because the skin has corneocytes that form a physical
barrier and prevent some genotoxic stress from occurring in the first place. The cornea
instead relies on the tear film, which does not present as effective a barrier to UV [109,110].
Additionally, the entire skin contains melanocytes that distribute melanin to adjacent cells
via melanosomes; this protects nuclear DNA from UV [111,112]. In the corneal limbus, den-
dritic melanocytes reach out to surrounding cells and provide a similar protection [113,114].
When epithelial cells from skin and cornea are cultured without cornified layers, tear film,
or melanin to protect them, the corneal cells seem to survive UV exposure for longer due
to their more efficient photolesion repair. UV-induced apoptosis is typically triggered via
detection of a critical quantity of DNA damage [108,115]. While both corneal and dermal
epithelial cells are equally prone to UV-induced CPD formation, corneal cells survive best
in vitro owing to their greater efficiency in repairing mutagenic DNA damage while dermal
cells perish faster due to their slower rate of DNA damage repair [116,117].

2.5. Reactive Oxygen Species

UV may also damage epithelium by causing the formation of reactive oxygen species
(ROS), free radicals that may oxidise cellular material such as proteins, organelles, or
DNA [118]. When the amount of ROS in a cell exceeds the cellular antioxidant levels,
damage will occur more readily and the cells may undergo apoptosis [119]. Endogenous
antioxidants such as catalase, glutathione peroxidase (GPx), superoxide dismutase (SOD),
glutathione (GSH), and scavengers, like uric acid, coenzyme Q, and lipoic acid are the
principal defence against ROS [120]. When oxidative damage occur in a cell, the damaged
element is then repaired or marked for elimination by the appropriate enzyme. In the case
of nucleic acid damage, there are specialised enzymes, damaged proteins are removed from
circulation by proteolytic systems, and damaged lipids are repaired by phospholipases,
peroxidases, and acyl transferases [121,122]. ROS may damage any of the four bases of
DNA and transform the functional base into any one of several potential lesions [123].
One of these lesions, 8-Oxoguanine (8-OxoG) in particular is linked to greater cancer cell
survival [124]. The base excision repair (BER) process that repairs such damage begins with
detecting the lesion via DNA glycosylases, in the case of 8-OxoG, Oxoguanine glycosylase
1 (OGG1) binds to the lesion [125]. The DNA glycosylase then cleave the oxidised base out
of the DNA, causing a single-strand break. These breaks are detected by PARP proteins
that act as the sensor molecules for these single-strand breaks in order to guide gap-filling
complexes to repair the break and prevent cell death [126,127].

There are specific cellular repair mechanisms such as CPD being repaired by NER and
ROS damage being repaired by base excision repair (BER). There are also cell functions that
reduce the effect of UV damage that are not expressly there to mitigate such damage. In the
case of cell proliferation, cell division allows for “dilution” of the damage to descendent
cells [128]. The high turnover of epithelial tissue is a protective feature shared by both
the skin and the cornea. The obvious point of failure in that system is the progenitor
population; in the case of the cornea, that would be the basal limbal epithelial cells [129].

Thus, there exist multiple ways by which the corneal epithelial cells may protect
themselves from UV, repair UV-caused damage, and remove damaged cells. However, each
of these mechanisms can fail and when they do, UV becomes more reliably pathogenic.
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2.6. Disruption of Autophagy Mechanisms

Autophagy is a degradation mechanism that utilises the lysosome to remove proteins
from the cell. This is done either as part of the natural turnover of proteins or as part of a
stress response. The process is mediated by several regulators that transport the targeted
proteins and control the rate at which the proteins are removed. This rate can be adjusted
by several stimuli to remove damaged proteins. One of these stimuli is UV irradiation.
Ataxia-telangiectasia mutated (ATM) and Rad3-related (ATR) are both damage sensors that
can mediate the activation of p53 via checkpoint kinase 1 (CHK1) and checkpoint kinase 2
(CHK2). ATR may also activate the STK11/AMPK metabolic pathway to stimulate the
tuberous sclerosis 2 (TSC2) tumor suppressor and regulate autophagy via Beclin 1 [130,131].
TSC1 and TSC2 may also downregulate mTOR activity [132]. The difference between ATM
and ATR is that the former is an ATM-Chk2 pathway mostly activated by double-strand
breaks, while the latter ATR/Chk1 is activated by single-strand breaks [133,134]. Both ATR
and ATM inactivate mTORC1, enabling autophagy as a result [135].

UV has also been found to stabilize p53, enabling it to be one of the starting points
of the cellular response to UV stress by greatly increasing the amount of p53 within the
cell [136]. In enucleated cells, the inhibition of p53 leads to increased autophagy, indicating
that the cytoplasmic p53 regulates autophagy [137]. Despite evidence that p53 activation
upregulates autophagy [132,138–140], it has also been observed that deletion of p53 may
induce autophagy, and this was rescued with cytoplasmic, not nuclear, p53 [141]. Normally,
p53 is localized in the cytoplasm of corneal epithelial cell. Following UV exposure, p53
expression increases and the cytoplasmic p53 migrates to the mitochondria [142]. There
is a complexity to the way that p53 regulates autophagy, as it may be an inhibitor or an
activator depending on the stimuli [143].

Another member of the p53 family, p73, is also linked to the regulation of autophagy.
It has been documented that p73 represses the expression of autophagy-associated UV
irradiation resistance-associated gene (UVRAG) [144]. UVRAG is a positive regulator of
the Beclin1–PI(3)KC3 complex which itself induces autophagy [145].

Autophagy is a continuous process with several regulating factors. Following the
initial formation of the early phagosome, The LC3 will begin separately to finalize the
phagosome formation and allow it to be trafficked to initiate the process of lysosomal
breakdown. This process involves the Atg10/Atg7-mediated process of Atg5-Atg12-Atg16
conjugation [146]. The sirtuin family has been documented as regulator of autophagy
via this LC3 cascade [147]. It should be noted that the seven members of the sirtuin
family respond to different stimuli and may even inhibit autophagy given the right circum-
stances [148].

Sirtuin activation has been investigated for clinical application with particular at-
tention to Sirt1 activator resveratrol [149–151]. However, resveratrol has several targets,
including AMPK, another member of the autophagy induction [152,153]. Some of the
other targets of resveratrol may even inhibit autophagy; this has made the adoption of
resveratrol as an autophagy inducer difficult [153]. Finally, the sirtuin-enabled LC3 cascade
is not strictly necessary for the finalisation of the lysosome. There are documented instance
of Atg5–Atg7 independent autophagy that do not involve LC3 [154,155]. Investigations
into the effect of UV on Sirt1 found that in cultured cells, a decrease in expression of Sirt1
could be observed alongside a Sirt1-mediated activation of AMPK [155]. Further work
in sirtuin-deficient mice found that homozygous knockout animals were sensitized to
UVB-induced apoptosis [156]. The roles of sirtuin in controlling autophagy are multiple,
but it is certain that sirtuin is necessary in the protection of cells from UV damage.

While these autophagy mechanisms (see Figure 5) are thoroughly researched, their
role in corneal damage repair and particularly their activation following UV damage, is
poorly characterised. Autophagy modulating treatments such as resveratrol eye drops are
already being researched to address several eye diseases [157–160], but their exact effect on
corneal autophagy in not known. It had already been acknowledged that autophagy likely
plays an important role in some UV-induced and UV-propagated diseases such as dry-eye
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disease and pterygium [161,162]. It has also been theorized that the activation of autophagy
and autophagic flux, several pathological conditions in the corneal epithelia and stroma
may be prevented [163]. This particular line of inquiry concerns mainly inflammatory
conditions but could be applied to UV.

Biology 2022, 11, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. Simplified schematic representation of the autophagic cascade activated by UV damage of 
proteins. 

2.7. Apoptosis 
Each DNA repair mechanism listed thus far prevents the mutation of a cell into the 

beginning of cancer. In the event that the extent of the UV damage is too great to be re-
paired, a cell may undergo apoptosis to ensure the accumulated mutations are not passed 
on to descendent cells. Unlike necrosis which is characterized by cell swelling and mem-
brane disruption, apoptosis is recognizable by its cell shrinkage and pyknotic nucleus 
[164]. An apoptotic cell fragments into membrane-enclosed bodies that can be phagocy-
tosed ensures that surrounding cells are mostly unaffected [165]. Apoptosis can be trig-
gered by several factors such as cytokines, hormones, virus, or drugs. At the right concen-
trations, these stimuli lead to the activation of effector caspases that trigger the apoptotic 

Figure 5. Simplified schematic representation of the autophagic cascade activated by UV damage
of proteins.

2.7. Apoptosis

Each DNA repair mechanism listed thus far prevents the mutation of a cell into the
beginning of cancer. In the event that the extent of the UV damage is too great to be repaired,
a cell may undergo apoptosis to ensure the accumulated mutations are not passed on to
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descendent cells. Unlike necrosis which is characterized by cell swelling and membrane
disruption, apoptosis is recognizable by its cell shrinkage and pyknotic nucleus [164]. An
apoptotic cell fragments into membrane-enclosed bodies that can be phagocytosed ensures
that surrounding cells are mostly unaffected [165]. Apoptosis can be triggered by several
factors such as cytokines, hormones, virus, or drugs. At the right concentrations, these
stimuli lead to the activation of effector caspases that trigger the apoptotic program [166].
UV irradiation has been shown to cause the activation of ATP-sensitive potassium (K(ATP))
channels in affected cells causing a loss of K+ ions and a depolarization of the mitochondrial
membrane [167,168]. Intracellular K+ is importantly linked with the inhibition of caspase,
and K+ loss is linked with greater rates of apoptosis [169]. In the cornea specifically, it has
been observed that while in vivo cells did not perish following exposure to background
doses of UVB, cultured cells did perish when exposed to similar UVB doses [170]. It was
found that tear film provided a high amount of K+ ions to the corneal epithelia, ensuring a
degree of apoptosis-resistance to the chronically UV-irradiated epithelial cells [171]. This is
in contrast with the skin which lacks this excess K+ and instead regularly sees UV-triggered
apoptosis in the form of sunburn cells [165,172]. Whether this apoptotic-privilege can be
linked to an increased incidence of cancer in the cornea is currently unknown. Importantly,
this underlines the relevance of DNA repair mechanisms in the corneal epithelium because
epithelial cells are more likely to stay alive, and they need intact DNA to function properly.

3. UV Pathogenesis and Rescue

The failure of DNA repair pathways, particularly NER, typically results in develop-
mental disorders, neurological symptoms, and skin cancers. These conditions arise due
to the inability of cells to repair DNA in populations of progenitor cells, noncycling cells,
and UV-exposed cells [173]. While the severity of NER mutations may vary from solar
sensitivity to recurring severe cancers, conditions such as XP, CS and TTD commonly arise
from deficiencies in NER. XP can present in multiple ways. It may be accompanied by
neurological symptoms as De Sanctis–Cacchione syndrome, it may XP-V be a common
variant where only post-replication repair is defective (while this is not a NER defect,
because a polymerase is involved, it still results in photosensitivity [174]), or it could
present alongside other NER deficiencies such as in the case of XP/CS [175,176]. While the
disease itself is variable, one common trait unifies all of them: DNA photolesions are not
being repaired.

Among the three main diseases XP, CS, and TTD, while skin-based symptoms are
more commonly observed, ocular abnormalities also occur, such as the hallmark retinal
degeneration seen in CS [177,178]. Corneal epithelial degeneration and opacities are also
observed in CS, with some cases exhibiting rarer symptoms such as accumulation of pig-
mented macrophages or corneal ulcers [177,179,180]. Chronically UVB exposed CS mouse
models developed opaque corneas and bulging eyes. Histology of eyes harvested from
these models revealed carcinomas and neovascularization [181]. However, in human CS
patients, there are no reports of corneal neoplasm; skin neoplasms are more common [182].
This has been attributed to the greater prevalence of the p48 subunit of the XP-E p48–p125
DNA-binding heterodimer, which is required for enhanced CPD recognition [169,183,184].
XP has been documented as causing neoplastic changes and premalignant melanosis in
corneal tissue [185]. The simplest method to prevent DNA photolesions is the avoidance of
UV light, be it sunlight or artificial.

Early work on the failure of UV defense system performed in plants found that a loss
of CPD photolyase activity resulted in hypersensitivity to UVB [186]. CPD photolyase
does not exist in placental mammals, [187]. There exist animal models with DNA repair
mutations that involve the other NER proteins that target CPD and 6-4PP. A model of
systemic ERCC1 deficiency showed polyploidy in the liver and kidney [188]. Polyploidy
has been positively correlated to cell stress and senescence [189]. A mouse model of
ERCC1-knockdown in the corneal endothelium of saw decreased cell density in the corneal
endothelium [190]. Unfortunately, there are no reports of loss-of-function NER mutants
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specific to the corneal epithelia. Studies in humans looking at the NER expression profiles
in Fuch’s endothelial corneal dystrophy (FECD) found that XPC was downregulated in
patients that had FECD [191,192]. Although this does not make the cells more vulnerable
to UV specifically, it does allow for faster accumulation of DNA lesions, which then lead
to pathogenesis.

Because placental mammals lack CPD photolyase due to an evolutionary split, there
has been some interest expressing CPD photolyase to potentially provide a much more
competent repair enzyme. The photolyase in question is still expressed in marsupials
and has been introduced into human cells harvested from an XP patient in an attempt to
improve the rate of DNA repair. The marsupial photolyase functioned properly in the
host cells and did improve survival of human cells following UV irradiation [193]. Similar
experiments that used microinjections of purified photolyases from yeast also found that
UV-mediated cell death was reduced, but to a lesser degree compared to the marsupial
photolyase [194]. It was hypothesized that the yeast photolyase is not trafficked into
the nucleus to the same degree as the marsupial photolyase. With such evidence, work
continued with CPD photolyase introduction into placental mammals and a mouse line
was generated that ubiquitously expressed either Potorous tridactylus CPD photolyase,
Arabidopsis thaliana 6-4PP photolyase, or both [195,196]. The photoreactivation of CPD
photolyase resulted in a markedly improved survival of UV-exposed cells in the mice, while
photoreactivation of 6-4PPs did not noticeably affect UV-resistance. It should be noted
that rodent cells have been documented multiple times as having CPD repair systems
less effective than human CPD repair equivalents [197–200]. This lead to research on the
introduction of CPD photolyase into mouse models and showed great improvement in
recovery from UV damage [195,196].

Further work on repair of CPDs in human cells used an mRNA transfection system
to express the marsupial Potorous tridactylus CPD photolyase in UVB-irradiated human
epidermal keratinocytes. Results showed greatly reduced CPD amount and reduced
activation of UV-induced cytokine such as IL-6 [201]. Use of this system also lead to
the identification of which genes where more highly expressed in the presence of CPDs,
and thus could be targeted by therapeutic approaches [87]. Cell cycle controllers like
cyclin E1 and p15INK4b were expressed in greater quantities following JNK activation by
UVB exposure. Several other genes were also identified with UV-dependent expression,
although it is uncertain how beneficial the expression of each gene is [202]. Work on the
UV-induced CPD-dependent and CPD-independent cellular mechanisms continues, with
CPD photolyase as a major tool. The obvious potential of CPD photolyase as a therapeutic
agent in humans has been applied, usually with skin in mind [203]. The potential of CPD
photolyase in corneal healing comparatively sees less investigation, possibly due to the
corneas greater success in dealing with CPDs with existing repair mechanisms or by simply
changing the lifestyle of affected patients to better avoid UV exposure.

4. Perspective: Therapeutic Opportunities for UV-Induced Conditions including Pterygium
4.1. T4 Endonuclease V and Photolyases as Photolesion-Repairing Treatment Strategies

DNA photolesions play an important role in tumorigenesis and any repair mechanism
that repairs these lesions is of great interest in cancer prevention. T4 endonuclease V (T4N5),
encoded by the bacteriophage T4 endo V, is an enzyme capable of initiating repair of CPD
lesions [204]. If the enzyme can be transported in the nucleus, CPD photolesions could
be greatly decreased. A liposome-based delivery system for T4N5 was first developed
for delivery into cells and was later applied to skin [205,206]. T4N5 alone can fulfill
the role of the multi-complex NER mechanisms in human cells and, in high risk cases
where DNA repair mechanisms are faulty like in XP, T4N5 can prevent the development
of carcinomas [207]. Certainly, with regards to skin, liposomal T4N5 delivery has had
beneficial effects on CPD repair [208]. This has led to the design and distribution of T4N5-
containing pharmaceutical products as a protective option for particularly photo-vulnerable
patients [209]. The use of photolyase in such products presents a possible continuation of
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the effort to include not just protective measures but also repairing elements in UV screens.
This has been the opinion of previous research groups, and there have already been
several medical and cosmetic products developed that incorporate proprietary photolyase
blends [210–214]. CPD photolyase derived from blue-green algae was incorporated to
protective treatments for human skin [215,216]. Importantly, none of these treatments have
been applied to the same extent in cornea; there are no commercially available products and
no currently published research that addresses the need for photolesion repair in the cornea.
T4N5 and photolyase eye drops could be applied to the cornea for the same purposes
of repairing photolesions or protecting particularly vulnerable tissue in NER-deficient or
recent transplanted patient.

As with any treatment, and particularly with treatments that affect DNA, there are
concerns about toxicity and side-effects. In the case of T4N5, preclinical toxicological
tests with single oral doses showed no negative effects [217,218]. Testing on human cells
reported that T4N5 had a half-life of 3 h [219]. Further testing on animal eyes with repeated
topical application to the cornea found that T4N5 was not an ocular irritant to rabbits or
mice and caused no observable histopathological changes [195].

4.2. Autophagy-Induction as a Treatment Strategy

There is potential for therapeutic applications of autophagy in treating certain con-
ditions in the eye. Defective autophagy is well documented in corneal diseases such as
keratoconus or Fuch’s endothelial corneal dystrophy [220,221]. Rapamycin, a specific
inhibitor of mTOR, has the potential to boost autophagy through disinhibition [222]. Initial
work with rapamycin showed promise with regards to improvements in corneal epithelial
cell survival [223]. Similar work with autophagy inducer trehalose also showed desir-
able changes in corneal epithelial cells following UV exposure [224] and even accelerated
healing in UV-irradiated rabbit corneas [224]. However, boosting autophagy has complex
ramifications, and it is possible for treatments such as rapamycin to aggravate stem cell
deficiencies [225].

5. Conclusions

Among all sources of damage to the cornea, UV radiation remains one of the most
relevant, with several diseases linked to acute and chronic UV exposure. However, there is
no complete understanding of the mechanisms via which damage is repaired and the ways
these repair functions can fail. While corneal diseases are rarely deadly and are relatively
simple to heal given access to donor material or lifestyle changes, better understanding of
the cornea’s UV defenses could be applied to predictive models or even applied to skin
and the other UV vulnerable organs. Finally, with a more complete knowledge of how
UV damage mitigation might fail, it is possible to conceptualize therapeutic approaches
more effectively.
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