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Influence of the microbiome, diet and 
genetics on inter-individual variation in the 
human plasma metabolome
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The levels of the thousands of metabolites in the human plasma metabolome 
are strongly influenced by an individual’s genetics and the composition of 
their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 
1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome 
of the Netherlands cohorts, we quantified the proportion of inter-individual  
variation in the plasma metabolome explained by different factors, 
characterizing 610, 85 and 38 metabolites as dominantly associated with diet,  
the gut microbiome and genetics, respectively. Moreover, a diet quality score  
derived from metabolite levels was significantly associated with diet quality,  
as assessed by a detailed food frequency questionnaire. Through Mendelian 
randomization and mediation analyses, we revealed putative causal relation-
ships between diet, the gut microbiome and metabolites. For example, 
Mendelian randomization analyses support a potential causal effect of 
Eubacterium rectale in decreasing plasma levels of hydrogen sulfite—a toxin 
that affects cardiovascular function. Lastly, based on analysis of the plasma 
metabolome of 311 individuals at two time points separated by 4 years, we 
observed a positive correlation between the stability of metabolite levels and  
the amount of variance in the levels of that metabolite that could be explained  
in our analysis. Altogether, characterization of factors that explain inter- 
individual variation in the plasma metabolome can help design approaches for 
modulating diet or the gut microbiome to shape a healthy metabolome.

The plasma metabolome represents a functional readout of meta-
bolic activities within different organs and tissues of the body. Levels 
of specific plasma metabolites may therefore reflect the presence of 
specific diseases or an individual’s susceptibility to developing com-
plex metabolic diseases such as cardiovascular and kidney disorders, 
diabetes, cancers and Crohn’s disease1. Elucidating the genetic, dietary 
and microbial factors that shape human metabolism is crucial for 

understanding the origin and determinants of plasma metabolites, 
and hence for the eventual design of intervention strategies aimed at 
a healthy metabolome.

Inter-individual variations in the human plasma metabolome have 
already been linked to genetics, diet and the gut microbiome in several 
cohort-based studies1–4. For instance, a reference map of potential 
determinants of the human serum metabolome was established in 
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could explain 9.3, 3.3 and 12.8%, respectively, of inter-individual 
variations in the whole plasma metabolome, without adjusting for 
covariates (see the Methods section ‘Distance matrix-based variance 
estimation’; false discovery rate (FDR) < 0.05; Fig. 1a and Supple-
mentary Table 4), whereas intrinsic factors (age, sex and body mass 
index (BMI)) and smoking collectively explained 4.9% of the variance. 
Together, these factors explain 25.1% of the variance in the plasma  
metabolome (Fig. 1a).

Next, we tested for pairwise associations between each metabo-
lite and the dietary variables, genetic variants and microbial taxa. We 
observed 2,854 associations with dietary habits (Supplementary Table 
5), 48 associations with 40 unique genetic variants (metabolite quan-
titative trait loci (mQTLs); Supplementary Table 6), 1,373 associations 
with gut bacterial species (Supplementary Table 7) and 2,839 associa-
tions with bacterial MetaCyc pathways (Supplementary Table 8) (see 
the Methods sections ‘Associations with dietary habits’, ‘QTL mapping’ 
and ‘Microbiome-wide associations’). In total, 769 metabolites were sig-
nificantly associated with at least one factor (Fig. 1b and Supplementary 
Tables 5–8). We then performed interaction analysis to assess the role 
of diet‒microbiome, genetics‒microbiome and diet‒genetics interac-
tions in regulating the human metabolome using an interaction term 
in the linear model (see the Methods section ‘Interaction analysis’). 
Among these, 185 metabolites were associated with multiple factors 
and seven were affected by either genetics–microbiome, genetics–diet 
or diet–microbiome interactions (Supplementary Table 9).

As interactions were limited, we further assessed the proportion 
of variance of each metabolite that was explained by these factors 
using an additive model with the least absolute shrinkage and selec-
tion operator (lasso) method (see the Methods section ‘Estimating the 
variance of individual metabolites’). In general, the inter-individual 
variations in 733 metabolites could be explained by at least one of 
the three factors (FDRF-test < 0.05; Supplementary Table 10). In detail, 
dietary habits contributed 0.4‒35% of the variance in 684 metabolites; 
microbial abundances contributed 0.7‒25% of the variance in 193 
metabolites; and genetic variants contributed 3‒28% of the variance in 
44 metabolites (adjusted r2; FDRF-test < 0.05; Supplementary Table 10). 
We also estimated the explained variance of metabolites using Elastic 
Net14, which is designed for highly correlated features, and found that 
the estimated explained variances were comparable between linear 
regression and the Elastic Net regression (Supplementary Fig. 1).

We further compared the variance explained by each type of factor 
(diet, genetics or the microbiome) and assigned the dominant factor 
for each metabolite if one factor explained more variance than the 
other two. Inter-individual variations in 610 metabolites were mostly 
explained by diet, 85 were explained by the gut microbiome and 38 were 
explained by genetics (Supplementary Table 10). Hereafter, we refer to 
these as diet-dominant, microbiome-dominant and genetics-dominant 
metabolites, respectively. The dominant factors of metabolites high-
light their origin. For instance, ten out of the 21 diet-dominant metabo-
lites for which diet explained >20% of the variance (FDRF-test < 0.05; 
Supplementary Table 10) were food components based on their anno-
tation in the Human Metabolome Database (HMDB)15. Similarly, of 
the 85 microbiome-dominant metabolites, 23 were annotated in the 
HMDB as microbiome-related metabolites (including 15 uremic tox-
ins). Furthermore, out of the 38 genetics-dominant metabolites, ten 
were lipid species and eight were amino acids. Taken together, our 
analysis highlights that one factor—either dietary, genetic or micro-
bial—can have a dominant effect over the other two in explaining the 
variances of plasma metabolites, with diet or the microbiome being 
particularly dominant. However, we also found that the variances in 
185 metabolites were significantly attributable to more than one fac-
tor (Supplementary Table 10), including six metabolites associated 
with both genetics and the microbiome and 153 metabolites associ-
ated with both diet and the microbiome. For example, genetics and 
the microbiome explained 4 and 5%, respectively, of the variance in 

491 individuals from an Israeli cohort, and the authors reported 335 
metabolites that were significantly explained by diet and 182 that were 
explained by the gut microbiome3. More recently, the Personalized 
Responses to Dietary Composition Trial assessed the impact of diet 
and the microbiome on host metabolism in 1,098 individuals from the 
United Kingdom and United States and observed that the microbial 
species associated with healthy dietary habits overlapped with those 
associated with favorable cardiometabolic and postprandial markers4.

As diet, genetics and the gut microbiome are highly heterogeneous 
between different countries, we aimed to: (1) systematically identify 
dietary, genetic and microbial factors that are associated with plasma 
metabolites; (2) identify which of the three factors (diet, genetics 
or the microbiome) explains the most inter-individual variability in 
metabolites compared with the other two (the dominant factor); and 
(3) assess their causal relationships using in silico approaches. To do so, 
we quantified the plasma levels of 1,183 metabolites in 1,368 individuals 
from the population-based Lifelines DEEP (LLD)5 and Genome of the 
Netherlands (GoNL)6 cohorts, including LLD1 (n = 1,054), LLD2 (n = 237) 
and GoNL (n = 77). In addition, 311 LLD1 individuals were followed up 
after 4 years7. For each participant, we had information on the gut 
microbiome, genetic background and dietary habits. In addition, we 
assessed whether diet-associated metabolites can be used to predict an 
individual’s dietary quality score reflecting diet‒disease relationships8 
and examined whether genetics-associated metabolites can pinpoint 
dysregulated molecular pathways in complex diseases. Importantly, 
as potential causal relationships among metabolites, diet and the 
microbiome remain largely unexplored, metabolites associated with 
multiple factors offered us an opportunity to infer their underlying cau-
sality using Mendelian randomization (MR) and mediation analyses9.

Results
Untargeted plasma metabolites in Dutch cohorts
In this study, we examined plasma metabolomes in 1,679 fasting plasma 
samples from 1,368 individuals from two LLD5 sub-cohorts (LLD1 and 
LLD2) and the GoNL6 cohort (Extended Data Fig. 1 and Supplemen-
tary Table 1). The LLD1 cohort was the discovery cohort, with informa-
tion about genetics, diet and the gut microbiome available for 1,054 
participants. Moreover, 311 LLD1 subjects were followed up 4 years 
later (LLD1 follow-up). We also included two independent replication 
cohorts: 237 LLD2 participants for whom we had genetic and dietary 
data and 77 GoNL participants for whom only genetic data were avail-
able (Extended Data Fig. 1 and Supplementary Table 1). Untargeted 
metabolomics profiling was done using flow-injection time-of-flight 
mass spectrometry (FI-MS)10,11, which yielded plasma levels of 1,183 
metabolites (Supplementary Table 2). These metabolites covered a 
wide range of lipids, organic acids, phenylpropanoids, benzenoids and 
other metabolites (Extended Data Fig. 2a). As we observed weak (abso-
lute rSpearman < 0.2) correlations among the 1,183 metabolites (Extended 
Data Fig. 2b), data reduction was not required and, consequently, all 
metabolites were subjected to subsequent analyses. We validated the 
identification and quantification of some metabolites (for example, bile 
acids, creatinine, lactate, phenylalanine and isoleucine) by comparing 
their abundance levels from FI-MS with those previously determined 
by liquid chromatography with tandem mass spectrometry (LC-MS/
MS)12 or NMR13 (rSpearman > 0.62; Extended Data Fig. 2c,d).

Factors explaining inter-individual metabolome variations
To compare the relative importance of diet, genetics and the gut micro-
biome in explaining inter-individual plasma metabolome variability, 
we calculated the proportion of variance explained by these three fac-
tors for the whole plasma metabolome profile and for the individual 
metabolites separately. We have detailed information on 78 dietary 
habits (Supplementary Table 3), 5.3 million human genetic variants 
and the abundances of 156 species and 343 MetaCyc pathways for each 
individual of the LLD1 cohort. Diet, genetics and the gut microbiome 
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plasma 5′-carboxy-γ-chromanol (Fig. 1c)—a dehydrogenated carboxy-
late product of 5′-hydroxy-γ-tocopherol16 that may reduce cancer and 
cardiovascular risk17. Another example is hippuric acid—a uremic toxin 
that can be produced by bacterial conversion of dietary proteins18, 
with 13% of its variance explained by diet and 13% explained by the 
microbiome (Fig. 1c).

Temporal variability of the metabolites over time
Temporal changes in plasma metabolites can reflect changes in an 
individual’s diet, gut microbiome and health status. When assessing 
the plasma metabolome in the 311 LLD1 follow-up samples, we indeed 
observed a significant shift in the plasma metabolome, with a signifi-
cant difference in the second principal component (PPC1 paired Wilcoxon = 0.1 
and PPC2 paired Wilcoxon = 1.3 × 10−5; Fig. 2a). Baseline genetics, diet and 
microbiome, together with age, sex and BMI, could explain 59.4% of 
the variance in the follow-up plasma metabolome (PPERMANOVA = 0.004) 
(Supplementary Fig. 2). We also observed that temporal stability can 
vary substantially between different metabolites (see the Methods 
section ‘Temporal consistency of individual metabolites’; Supple-
mentary Table 11). Previously, we had assessed the changes in the gut 
microbiome in the LLD1 follow-up cohort and linked these to changes 
in the plasma metabolome7. Here, we further checked the temporal 
variability of the plasma metabolome and assessed the stability of 
diet-, microbiome- and genetics-dominant metabolites over time. 
Interestingly, the temporal correlation of the microbiome-dominant 
metabolites was similar to that of the genetics-dominant metabolites 
(PWilcoxon = 0.51; Fig. 2b), whereas the temporal correlation between 
diet-dominant metabolites was significantly lower than between 
microbiome- and genetics-dominant metabolites (PWilcoxon < 3.4 × 10−5; 
Fig. 2b). However, the dominant dietary, microbial and genetic factors 
identified at baseline also explained similar variance in metabolic levels 

in the follow-up samples (Extended Data Fig. 3 and Supplementary 
Table 10). Our data also revealed a positive correlation between stability 
and the amount of variance that could be explained: the more variance 
explained, the more stable a metabolite is over time (Fig. 2c). For a few 
metabolites, we could not replicate the variance explained at baseline 
at the second time point, and these metabolites also showed weak 
or no correlation in their abundances between the two time points. 
For example, N-acetylgalactosamine showed very weak correlation 
between the two time points (r = 0.13; P = 0.02), and its genetic associa-
tion was not replicated at the second time point.

Having established the variances in metabolites explained by 
diet, genetics and the gut microbiome and the dominant factors that 
explained most of this variance, we focused on detailing specific asso-
ciations and on the potential implications of our findings for assess-
ing diet quality and improving our understanding of the genetic risk 
of complex diseases and the interaction and causality relationships 
among diet, the microbiome, genetics and metabolism.

The metabolome reflects the diet quality score
We observed 2,854 significant associations (FDRSpearman < 0.05) between 
74 dietary factors and 726 metabolites (Fig. 3a and Supplementary 
Table 5; see the Methods section ‘Lifelines diet quality score predic-
tion’). Associations with food-specific metabolites can, in theory, be 
used to verify food questionnaire data. For instance, the strongest 
association we observed was between quinic acid levels and coffee 
intake (rSpearman = 0.54; P = 1.6 × 10−80; Fig. 3b). Quinic acid is found in a 
wide variety of different plants but has a particularly high concentration 
in coffee. Another example is 2,6-dimethoxy-4-propylphenol, which 
was strongly associated with fish intake (rSpearman = 0.53; P = 1.5 × 10−76; 
Fig. 3c). This association is expected as this compound is particularly 
present in smoked fish according to HMDB annotation15. In addition, 
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we also detected associations between dietary factors and metabolic 
biomarkers of some diseases. For example, 1-methylhistidine is a bio-
marker for cardiometabolic diseases including heart failure19 that is 
enriched in meat, and we observed significant associations between 
1-methylhistidine and meat (rSpearman = 0.12; P = 7.2 × 10−5) and fish intake 
(rSpearman = 0.11; P = 3.1 × 10−4) as well as a lower level of 1-methylhistidine 
in vegetarians (rSpearman = −0.15; P = 9.7 × 10−7; Fig. 3d).

Given the relationship between diet, metabolism and human 
health, we wondered whether the plasma metabolome could predict 
diet quality. For each of the Lifelines participants, we constructed a 
Lifelines Diet Score based on food frequency questionnaire (FFQ) data 
that reflected the relative diet quality based on diet‒disease relation-
ships8. To build a metabolic model to predict an individual’s diet qual-
ity, we used LLD1 as the training set and LLD2 as the validation set. The 
resulting metabolic model included 76 metabolites, 51 of which were 

dominantly associated with diet. The diet score predicted by metabo-
lites showed a significant association with the real diet score assessed 
by the FFQ in the validation set (r2

adjusted = 0.27; PF-test = 3.5 × 10−5; Fig. 3e). 
We also tested four other dietary scores (the Alternate Mediterranean 
Diet Score20, Healthy Eating Index (HEI)21, Protein Score22 and Modified 
Mediterranean Diet Score23) and found that the HEI predicted by plasma 
metabolites was also significantly associated with the FFQ-based HEI 
(r2

adjusted = 0.23; PF-test = 6.5 × 10−5; Supplementary Table 12).

Genetic associations of plasma metabolites
Genetic associations of plasma metabolites may provide functional 
insights into the etiologies of complex diseases. After correcting for 
the first two genetic principal components, age, sex, BMI, smoking, 78 
dietary habits, 40 diseases and 44 medications, QTL mapping in LLD1 
identified 48 study-wide, independent genetic associations between 
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Fig. 2 | Temporal stability of plasma metabolites. a, Principal component 
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b, Temporal stability of metabolites stratified by the dominantly associated 
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differences between groups. Each dot represents one metabolite. The y axis 
indicates the Spearman correlation coefficient of abundances of each metabolite 
between two time points (n = 311 biologically independent samples). In a and 
b, the box plots show the median and first and third quartiles (25th and 75th 

percentiles) of the first and second principal components (a) or correlation 
coefficients (b); the upper and lower whiskers extend to the largest and smallest 
value no further than 1.5× the interquartile range (IQR), respectively; and 
outliers are plotted individually. c, Correlation between metabolite stability 
and the metabolite variance explained by diet (left), genetics (middle) and the 
microbiome (right). The x axis indicates the inter-individual variation explained 
by each factor and the y axis indicates the Spearman correlation coefficient 
(two sided) of abundances of each metabolite between the two time points. The 
dashed white lines show the best fit and the gray shading represents the 95% 
confidence interval (CI) (n = 311 biologically independent samples).
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44 metabolites and 40 single-nucleotide polymorphisms (SNPs)  
(PSpearman < 4.2 × 10−11; clumping r2 = 0.05; clumping window = 500 kilo-
bases (kb); Fig. 4a and Supplementary Table 6). All 48 genetic associa-
tions were replicated in either LLD1 follow-up or the two independent 
replication datasets (LLD2 and GoNL; Supplementary Fig. 3 and Sup-
plementary Table 6). We also assessed the impact of physical activity, 
as assessed by questionnaires24, on the genetics association of metabo-
lism, but found its influence to be negligible (Supplementary Fig. 4). 
Functional mapping and annotation (FUMA) of genome-wide associa-
tion studies (GWAS)25 analysis revealed that the identified mQTLs were 
enriched in genes expressed in the liver and kidney (Extended Data 
Fig. 4) and related to metabolic phenotypes (Supplementary Table 6).

The strongest association we found was between the caffeine 
metabolite 5-acetylamino-6-formylamino-3-methyluracil (AFMU) 
and SNP rs1495741 near the N-acetyltransferase 2 (NAT2) gene  
(rSpearman = −0.52; P = 1.7 × 10−66; Fig. 4b), which showed strong linkage 
disequilibrium (r2 = 0.98) with a SNP, rs35246381, that was recently 

reported to be associated with urinary AFMU26. AFMU is a direct prod-
uct of NAT2 activity and has been associated with bladder cancer risk27. 
Interestingly, the plasma level of AFMU was associated not only with 
coffee intake (rSpearman = 0.29; P = 9.2 × 10−22; Supplementary Table 5) 
and the genotype of rs1495741, but also with their interactions (Sup-
plementary Table 9). Individuals with a homologous AA genotype had 
a similar level of coffee intake, but their correlation between coffee 
intake and plasma AFMU level was significantly lower compared with 
individuals with GG and GA genotypes (Fig. 4e,f).

Pleotropic mQTL effects were also observed at several loci, includ-
ing SLCO1B1, FADS2, KLKB1 and PYROXD2 (Supplementary Table 6). 
For example, three associations (related to three metabolites, two of 
them lipids) were observed for two SNPs (rs67981690 and rs4149067; 
linkage disequilibrium r2 = 0.72 in Northern Europeans from Utah) 
in SLCO1B1, which encodes the solute carrier organic anion trans-
porter family member 1B1. Expression of the SLCO1B1 protein is spe-
cific to the liver, where this transporter is involved in the transport 
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2,6-dimethoxy-4-propylphenol levels and fish intake frequency (n = 1,054 
biologically independent samples). The x and y axes refer to residuals of fish 
intake and metabolic abundance after correcting for covariates, respectively.  
d, Differential plasma levels of 1-methylhistidine between vegetarians and  

non-vegetarians (n = 1,054 biologically independent samples). The y axis 
indicates normalized residuals of metabolic abundance. The P value from the 
Wilcoxon test (two sided) is shown. The box plots show the median and first and 
third quartiles (25th and 75th percentiles) of the metabolite levels. The upper 
and lower whiskers extend to the largest and smallest value no further than 1.5× 
the IQR, respectively. Outliers are plotted individually. e, Association between 
the diet quality score predicted by the plasma metabolome (y axis) and the diet 
quality score assessed by the FFQ (x axis) (n = 237 biologically independent 
samples). In b, c and e, each gray dot represents one sample, the dark gray dashed 
line shows the linear regression line and the gray shading represents the 95% CI. 
In b and c, the association strength was assessed using Spearman correlation 
(two sided; the correlation coefficient and P value are reported) and in e, the 
prediction performance was assessed with linear regression (F-test; two sided; 
the adjusted r2 value and P value are reported).
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of various endogenous compounds and drugs, including statins28, 
from blood into the liver. The SLCO1B1 locus has also been linked 
to plasma levels of fatty acids and to statin-induced myopathy29. 

Furthermore, we detected a genetics–microbiome interaction between 
rs67981690 and microbial fatty acid oxidation pathways in regulating 
plasma levels of 5′-carboxy-γ-chromanol (P = 1.5 × 10−3), where the 
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in bacterial fatty acid β-oxidation pathway abundance in participants with 
different genotypes at rs67981690. h, Correlations between bacterial fatty acid 
β-oxidation pathway abundance and 5′-carboxy-γ-chromanol in participants 
with different genotypes at rs67981690. In b–e and g, the x axis indicates the 
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of the corresponding metabolic abundance (n = 927 biologically independent 
samples). Each dot represents one sample. The box plots show the median and 
first and third quartiles (25th and 75th percentiles) of the metabolite levels. The 
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association of the bacterial fatty acid oxidation pathway with plasma 
levels of 5′-carboxy-γ-chromanol was dependent on the genotype of  
rs67981690 (Fig. 4g,h).

To identify novel mQTLs, we performed a systematic search of all 
published mQTL studies from 2008 onwards (Supplementary Table 
13). This approach identified three novel mQTLs in our datasets (Sup-
plementary Table 13) that were either not located close to previously 
reported mQTLs (distance > 1,000 kb) or not in linkage disequilibrium 
(r2 < 0.05). The first two novel SNPs—rs13100173 at HYAL3 and rs11741352 
at ARSB—were associated with N-acetylgalactosamine-4-sulfate  
(Fig. 4c,d), which is associated with mucopolysaccharidosis30. Inter-
estingly, N-acetylgalactosamine-4-sulfate can bind to HYAL proteins 
(HYAL1, HYAL2, HYAL3 and HYAL4), suggesting that mQTLs can also 
pinpoint potential metabolite–protein interactions. The third novel 
mQTL was rs17789626 at SCLT1, which was associated with mizoribine—
a compound used to treat nephrotic syndrome31.

A causal role for the microbiome in determining metabolites
We established 4,212 associations between 208 metabolites and 
314 microbial factors (114 species and 200 MetaCyc pathways)  
(FDRLLD1 < 0.05; PLLD1 follow-up < 0.05; Supplementary Tables 7 and 8). Inter-
estingly, many of the metabolites that were associated with microbial 
species and MetaCyc pathways are also known to be gut microbiome 
related based on their HMDB annotations15. For instance, we observed 
919 associations with 25 uremic toxins, 142 associations with thiamine 
(vitamin B1) and 117 associations with five phytoestrogens (FDR < 0.05; 
Supplementary Tables 7 and 8). Uremic toxins and thiamine have been 
shown to be related to various diseases, including chronic kidney dis-
ease and cardiovascular diseases32,33. Phytoestrogens are a class of 
plant-derived polyphenolic compounds that can be transformed by 
gut microbiota into metabolites that promote the host’s metabolism 
and immune system33,34.

To assess whether gut microbiome composition causally con-
tributes to plasma metabolite levels, we carried out bi-directional MR 
analyses (see the Methods section ‘Bi-directional MR analysis’). Here, we 

focused on the 37 microbial features that were associated with at least 
three independent genetic variants at P < 1 × 10−5 and with 45 metabolites 
(Supplementary Table 14). At FDR < 0.05 (corresponding to P = 2 × 10−3 
obtained from the inverse variance weighted (IVW) test)35, we observed 
four potential causal relationships at baseline that could also be found 
in the follow-up in the microbiomes to metabolites direction (Fig. 5a–d 
and Supplementary Tables 15 and 16) but not in the opposite direction 
(Supplementary Table 17), and these outcomes were maintained follow-
ing weighted median testing (P < 0.03; Supplementary Fig. 5). To ensure 
that the data followed MR assumptions, we performed several sensitivity 
analyses, including checking for horizontal pleiotropy (MR-Egger36 inter-
cept P > 0.05; Supplementary Table 15) and heterogeneity (Cochran’s 
Q test P > 0.05; Supplementary Table 15) and leave-one-out analysis 
(Extended Data Fig. 5). We did not use causal estimates derived using 
the MR-Egger method to filter the results, as its power to detect causal-
ity is known to be low36. These sensitivity checks further confirmed the 
reliability of these four MR causal estimates.

We further found that increased abundance of microbial adenosyl-
cobalamin biosynthesis (coenzyme B12) was associated with reduced 
plasma levels of 5-hydroxytryptophol (Fig. 5a)—a uremic toxin related 
to Parkinson’s disease37. We also found that plasma hydrogen sulfite 
levels were related to Eubacterium rectale (Fig. 5c)—a core gut com-
mensal species38 that is highly prevalent (presence rate = 97%) and 
abundant (mean abundance = 8.5%) in both our cohorts and in other 
populations39–41. As a strict anaerobe, E. rectale promotes the host’s 
intestinal health by producing butyrate and other short-chain fatty 
acids from non-digestible fibers42, and a reduced abundance of this 
species has been observed in subjects with inflammatory bowel dis-
ease39,43 and colorectal cancer44 compared with healthy controls. As 
a toxin, hydrogen sulfite interferes with the nervous system, cardio-
vascular functions, inflammatory processes and the gastrointestinal 
and renal system45. Our results thus reveal a potential new beneficial 
effect of E. rectale.

To further investigate the metabolic potential of individual 
bacterial species, we applied newly developed pipelines to identify 
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Fig. 5 | Causal relationships between microbiomes and plasma metabolites 
as assessed by MR analysis. a, Analysis of the association between 
adenosylcobalamin biosynthesis pathway abundance and 5-hydroxytryptophol 
levels. b, Glycogen biosynthesis pathway abundance versus 5-sulfo-1,3-
benzenedicarboxylic acid levels. c, E. rectale abundance versus hydrogen sulfite 
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s.e. of each effect size. The bottom panels of a–d, show the MR effect size (center 
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microbial primary metabolic gene clusters (gutSMASH pathways)46 
and microbial genomic structural variants (SVs)47. These two tools 
profile microbial genomic entities that are implicated in metabolic 
functions. By associating 1,183 metabolites with 3,075 gutSMASH 
pathways and 6,044 SVs (1,782 variable SVs (vSVs) and 4,262 deletion 
SVs (dSVs); see Methods), we observed 23,662 associations with gutS-
MASH pathways and 790 associations with bacterial SVs (FDRLLD1 < 0.05;  
PLLD1 follow-up < 0.05; Supplementary Tables 18–20). These associations 
connect the genetically encoded functions of microbes with metabo-
lites, thereby providing putative mechanistic information underly-
ing the functional output of the gut microbiome. In one example, 
we observed that the microbial uremic toxin biosynthesis pathways, 
including the glycine cleavage pathway (in Olsenella and Clostridium 
species) and the hydroxybenzoate-to-phenol pathway (in Clostridium 
species) responsible for hippuric acid and phenol sulfate biosynthesis, 
were associated with the hippuric acid (Olsenella species: rSpearman = 0.15; 
P = 9.3 × 10−7; Clostridium species: rSpearman = 0.18; P = 5.9 × 10−9) and phe-
nol sulfate (rSpearman = 0.17; P = 4.2 × 10−8; Extended Data Fig. 6a) levels 
measured in plasma, respectively (FDRLLD1 < 0.05 and PLLD1 follow-up < 0.05; 
Extended Data Fig. 6b).

Diet‒microbiome mediation effects in the control of 
metabolites
Next, we carried out a mediation analysis to investigate the links 
between diet, the microbiome and metabolites. For 675 microbial fea-
tures that were associated with both dietary habits and metabolites 
(FDR < 0.05), we applied bi-directional mediation analysis to evaluate 
the effects of microbiome and metabolites for diet (see the Methods 
section ‘Bi-directional mediation analysis’). This approach established 
146 mediation linkages: 133 for the dietary impact on the microbiome 
through metabolites and 13 for the dietary impact on metabolites 
through the microbiome (FDRmediation < 0.05 and Pinverse-mediation > 0.05; 
Fig. 6a,b and Supplementary Table 21). Most of these linkages were 
related to the impact of coffee and alcohol on microbial metabolic 
functionalities (Fig. 6a).

Coffee contains various phenolic compounds that can be con-
verted to hippuric acid by colonic microflora48. Hippuric acid is an 
acyl glycine that is associated with phenylketonuria, propionic aci-
demia and tyrosinemia49. We observed that hippuric acid can mediate 
the impact of drinking coffee on Methanobrevibacter smithii abun-
dance (Pmediation = 2.2 × 10−16; Fig. 6c). We also observed that hulupinic 
acid, which is commonly detected in alcoholic drinks, can mediate 
the impact of beer consumption on the Clostridium methylpentosum 
ferredoxin:NAD+ oxidoreductase (Rnf) complex (Pmediation = 2.2 × 10−16; 
Fig. 6d)—an important membrane protein in driving the ATP synthesis 
essential for all bacterial metabolic activities50.

Of the dietary impacts on metabolites through the microbiome 
(Fig. 6b and Supplementary Table 21), one interesting example is 
a Ruminococcus species vSV (300‒305 kb) that encodes an ATPase 
responsible for transmembrane transport of various substrates51. This 
Ruminococcus species vSV mediated the effect of fruit consumption on 
plasma levels of urolithin B (Pmediation = 2.2 × 10−16; Fig. 6e). Urolithin B is a 
gut microbiota metabolite that protects against myocardial ischemia/
reperfusion injury via the p62/Keap1/Nrf2 signaling pathway52. Taken 
together, our data provide potential mechanistic underpinnings for 
diet‒metabolite and diet‒microbiome relationships.

Discussion
By generating fasting plasma profiles of 1,183 metabolites in 1,679 
samples from 1,368 individuals (311 with 4-year follow-up data) 
for whom we also have extensive dietary records, genetics and gut 
microbiome data, we carried out systematic diet, genetics and micro-
biome association analyses. Our results show that diet and the gut 
microbiome play a more dominant role than genetics in explaining 
inter-individual variability in metabolism, and the more variance  

that was explained in a metabolite, the more stable that metabolite  
was over time.

Dietary components are fundamental resources for the plasma 
metabolome, and a recent study illustrated that an individual’s dietary 
habits can predict the levels of specific metabolites present in plasma3, 
highlighting that the plasma metabolome mirrors personal dietary 
habits. Nevertheless, it remained to be established whether it was pos-
sible to assess an individual’s diet quality score based on their plasma 
metabolome. Using a machine learning-based prediction model, we 
showed that diet quality estimated by an individual’s plasma metabo-
lome showed a significant correlation with diet quality estimated 
by the FFQ, suggesting that the plasma metabolome to some extent 
reflects diet quality.

Dietary components serve as substrates in gut microbial meta-
bolic pathways, leading to the formation of a series of metabolites 
that can be absorbed from the intestine into the host’s circulation. 
Although earlier studies had linked gut microbial taxonomic abun-
dances to plasma metabolites3,4,13,41,53, these investigations did not 
capture the specific microbial enzymes responsible for metabolite 
generation, even though this information is required to connect asso-
ciated links to underlying molecular mechanisms54. Using gutSMASH 
and microbial SVs, we identified putative metabolic functionalities 
for previously unannotated microbial genetic sequences. In addition, 
through bi-directional mediation analysis, we identified hundreds of 
mediation linkages that provide insight into diet‒microbiome inter-
actions in human metabolic health, as illustrated by several metabo-
lites (for example, phenol and pipecolic acid) that have previously 
been related to cardiometabolic and kidney diseases32. Notably, these 
mediation linkages mainly show that the impact of diet composition 
on the microbiome can be mediated by metabolites, highlighting 
the pronounced selective power of dietary habits in shaping the gut 
microbiome. Nevertheless, as these results are mainly based on obser-
vational data, interpretation of such associations should be made with 
caution, and future intervention and experimental studies that focus 
on specific diet and microbial genomic capacities are essential to  
confirm causality.

Apart from diet and the gut microbiome, human genetics also 
acts as a potential determinant of the plasma metabolome. With this 
metabolome dataset, we not only replicated previously reported 
mQTLs, but we also identified three mQTLs involving three loci not 
previously known to be associated with any metabolites. The mQTLs 
we characterized could be linked to cardiometabolic and chronic 
kidney diseases, as illustrated by the tissue-specific gene expression 
analysis and pleotropic mQTL effects. We also used genetic variants 
as instruments in MR to infer causal relationships between the gut 
microbiome and metabolites. This analysis showed that the micro-
biome may causally contribute to the levels of toxins (hydrogen 
sulfite and 5-hydroxytryptophol) related to chronic kidney disease 
and cardiometabolic diseases32. The causal relationships between 
microbiomes and metabolites that we have established thus reveal 
potential metabolic functionalities of gut microbes that impact on  
human health.

We acknowledge several limitations in our study. Untargeted 
plasma metabolome was profiled using FI-MS without compound 
separation using liquid chromatography columns, and no genuine 
standards were used. Although the abundances of a few metabolites 
were well validated using the LC-MS/MS or NMR platforms, identifica-
tion and quantification of mass peaks using the FI-MS approach is still 
generally less accurate than in the classical LC-MS/MS platform. We 
systematically investigated the contributions of genetics, diet and 
the microbiome to inter-individual metabolome variations and rep-
licated the explained variance in two independent metabolic profile 
assessments of the same cohort performed 4 years apart. However, 
overfitting may still have been an issue and could potentially have 
biased the conclusions. Our findings should be further replicated 
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coefficients and P values (two sided). Direct mediation is shown by a red arrow 
and reverse mediation is shown by a blue arrow. Corresponding P values from 
mediation analysis (two sided) are shown. inv., inverse; mdei., mediation.
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using an independent cohort for which similarly extensive datasets 
on the metabolome, genetics, the microbiome, diet, disease and 
medication are also available. However, it is challenging to obtain 
such cohorts. We included as many participants as possible for the 
replication, including two independent sets of individuals from the 
LLD2 and GoNL cohorts. Nonetheless, our study was still underpow-
ered. At the observed effect size in the discovery set and at the P < 0.05 
level, we have 80% power to replicate the findings for 100% of the 
genetic associations, but only 60% power for the microbial associa-
tions. In addition, causal relationships between the microbiome and 
metabolites were based on one-sample MR; replication in independ-
ent cohorts with larger sample sizes and two-sample MR analysis may 
further strengthen those observations and better establish possible 
biological significance. Finally, the LLD cohort was comprised of Dutch 
participants of Caucasian ethnicity from the northern region of the 
Netherlands. It is thus possible that the LLD results are biased towards 
a region-specific microbial background constrained by host genetics 
and local environmental exposures. We primarily focused on bio-
logically plausible mechanisms by integrating different layers of omics 
to provide mechanistic hypotheses, and experimental validation is  
thus warranted.

Taken together, the dietary, genetic and microbial associations 
with plasma metabolites and the causal and mediation linkages that we 
report here provide a comprehensive resource that can guide follow-up 
studies aimed at designing preventive and therapeutic strategies for 
human metabolic health.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
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Methods
Study cohorts
The LLD cohort (n = 1,500) is a sub-cohort of the large prospective Life-
lines cohort study from the north of the Netherlands5,55. The cohort is 
58% female and 42% male, with a mean age of 45.04 years (s.d. = 13.60). 
The mean BMI is 25.26 (s.d. = 4.18) and 12% of participants are obese 
(BMI > 30)5. All Lifelines participants signed an informed consent form 
before sample collection. The ethics review board of the University 
Medical Center Groningen has approved the study with reference 
number M12.113965. For this study, we involved 1,054 out of 1,500 LLD 
participants (LLD1) for whom detailed dietary habit, stool microbiome 
and plasma untargeted metabolomics information is available. After 
removing relatives and genetic outliers, 927 individuals were subjected 
to genetics analysis, and for 311 of them we also have 4-year follow-up 
metabolome data (Supplementary Table 1). We further included several 
replication cohorts: the GoNL cohort (n = 77)56 and the remaining set of 
LLD participants for whom we have genetics and plasma metabolome 
data but not microbiome data (n = 237; LLD2) (Fig. 1a and Supplemen-
tary Table 1).

Data generation and preprocessing
Plasma metabolome. Plasma samples of study participants were 
collected and frozen at −80 °C with ethylenediaminetetraacetic acid. 
During extraction, plasma samples were thawed on ice, vortexed and 
spun down. Then, 20 µl plasma was combined with 180 µl 80% metha-
nol and vortexed for 15 s. The samples were then incubated at 4 °C for 
1 h to precipitate the proteins and then spun for 30 min at 3,200 RCF.

Untargeted metabolic profiling of fasting plasma samples was 
conducted at General Metabolics using FI-MS on an Agilent 6550 
Q-TOF system10,11. In brief, the instrument was set to scan in full mass 
spectrometry at 1.4 Hz in negative ionization, 4 GHz High Res Mode 
and from 50–1,000 m/z. The solvent was 60:40 isopropanol:water 
supplemented with 1 mM NH4F at pH 9.0, as well as 10 nM hexakis(1H,
1H,3H-tetrafluoropropoxy)phosphazene and 80 nM taurocholic acid 
for online mass calibration. Then, 100 µl of samples were injected into 
the ionization source in a random order. Data were acquired in profile 
mode, centroided and analyzed using MATLAB (MathWorks). Missing 
values were filled by recursion in the raw data. Upon identification of 
consensus centroids across all samples, ions were putatively annotated 
by accurate mass and isotopic patterns. Based on the HMDB (version 
4.0)15, a list of the expected ions found under these conditions was gen-
erated, including deprotonated, fluorinated and all major adducts. As 
this method does not employ chromatographic separation or in-depth 
MS2 characterization, it is not possible to distinguish between com-
pounds with identical molecular formulas. The confidence of annota-
tion reflects level 4 but is higher in practice in the case of intermediates 
of primary metabolism because they are the most abundant metabo-
lites in cells10,11. Ion intensities were normalized by quantile normaliza-
tion to compensate for slight variations in the sample amount. In this 
way, 1,183 peaks were annotated based on accurate mass using a 1-mDa 
tolerance (Supplementary Table 2). The annotated metabolites cover 
18 chemical categories based on the HMDB15, including 341 lipids and 
lipid-like molecules, 218 organic acids and derivatives, 196 organo-
heterocyclic compounds, 118 phenylpropanoids and polyketides, 
109 benzenoids, 104 organic oxygen compounds and 97 additional 
metabolites belonging to another 12 categories (Supplementary Table 
2). Finally, we estimated the effect of sample plate batch on metabolite 
level and detected no batch effects.

To investigate potential factors that may influence the human 
plasma metabolome, we correlated the first 100 principal components 
of the 1,183 metabolites (accounting for 73% of the total metabolome 
variance) with age, sex, BMI, smoking, 78 dietary habits, 39 diseases and 
the use of 44 medications (Supplementary Table 22). As we were inter-
ested in the impact of diet, genetics and the gut microbiome on metabo-
lites, we decided to correct for age, sex, smoking and oral contraceptive 

use, based on the correlation results. To adjust for confounding factors, 
we first log-transformed the metabolite abundances, then applied a 
linear regression model that included all of the confounding factors as 
covariates, taking the residuals for the subsequent analysis.

Stool microbiome. Fecal samples were collected by participants at 
home and placed in the freezer (−20 °C) within 15 min of production. 
Subsequently, a nurse visited the participant to pick up the fecal sam-
ples on dry ice and transfer them to the laboratory. Aliquots were then 
made and stored at −80 °C until further processing (fecal samples 
of the GoNL cohort were stored in RNAlater). The same protocol for 
fecal DNA isolation and metagenomics sequencing was used in all four 
cohorts. Fecal DNA isolation was performed using the AllPrep DNA/
RNA Mini Kit (80204; Qiagen). After DNA extraction, fecal DNA was 
sent to the Broad Institute of MIT and Harvard, where library prepara-
tion and whole-genome shotgun sequencing were performed on an 
Illumina HiSeq platform. From the raw metagenomics sequencing data, 
low-quality reads were discarded by the sequencing facility and reads 
belonging to the human genome were removed by mapping the data 
to the human reference genome (version NCBI37) using KneadData 
(version 0.4.6.1) and Bowtie 2 (version 2.1.0)57,58.

Microbial taxonomic profiles were generated using MetaPhlAn2 
(version 2.7.2)59. Microbial general pathways were determined using 
HUMAnN2 (ref. 60), which maps DNA/RNA reads to a customized data-
base of functionally annotated pan-genomes. HUMAnN2 reported the 
abundances of gene families from the UniProt Reference Clusters61 
(UniRef90), which were further mapped to microbial pathways from 
the MetaCyc metabolic pathway database62,63. In total, we detected 
156 species and 343 pathways that were present in at least 10% of 
samples, retaining 98% of the original species composition and 100% 
of the original functional composition. The relative abundances of 
both species and pathway datasets were centered-log-ratio trans-
formed, followed by inverse-rank transformation, before subsequent  
analysis64.

We applied the SGV-Finder pipeline47 to classify SVs that were 
either completely absent from the microbial genome of some samples 
(dSVs) or whose coverage was highly variable across samples (vSVs). 
Before SV classification, we applied an iterative coverage-based read 
assignment algorithm that resolves ambiguous read assignments to 
regions that are similar between different bacteria, using information 
on bacterial relative abundances in the microbiome, their genomic 
sequencing coverage and sequencing and alignment qualities47. In total, 
we classified 4,262 dSVs and 1,782 vSVs from 41 microbial species that 
were present in at least 10% of samples. The vSV data were inverse-rank 
transformed for subsequent analysis.

Metabolite-specific pathways were generated using the gutS-
MASH algorithm46. In total, we generated 3,075 microbial strain-level 
metabolite-specific pathways that were present in at least 10% of sam-
ples. The abundance of these pathways was recorded as reads per 
kilobase of transcript per million reads mapped, and inverse-rank 
transformation was applied before subsequent analysis.

Genotype data. Microarray genotype data for the LLD cohort were 
generated using the CytoSNP-12 Beadchip and Immunochip assays, 
as previously described65. Quality control checks on the LLD cohort 
were performed using the Haplotype Reference Consortium (version 
1.0) preparation checking tool (version 4.2.3). We then uploaded the 
resulting VCF files to the Michigan Imputation Server66. Phasing and 
imputation were performed using the option SHAPEIT for phasing, 
population EUR and the mode Quality Control and Imputation. For all 
steps, we used version R1 as a reference67. We further excluded SNPs 
that had an imputation quality r2 < 0.5, failed the Hardy–Weinberg 
equilibrium test (P < 1 × 10−6), had a call rate of <95% or had a minor allele 
frequency of <5%. In total, we obtained genotype data for 5.3 million 
SNPs (genome build hg19) for 927 individuals after removing relatives 
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and outliers. The genotypes of the GoNL samples were obtained by 
whole-genome sequencing.

Statistical analysis
Distance matrix-based variance estimation. We applied feature 
selection based on the permutational multivariate analysis of vari-
ance using distance matrices (PERMANOVA) procedure to estimate 
the contributions of different factors to inter-individual variations 
of the whole plasma metabolome. Phenotypic, genetic and microbial 
contributions were estimated based on the 927 participants for whom 
plasma metabolites, a stool microbiome, phenotypic data and geno-
type were available. First, we used each raw phenotypic and microbial 
feature to estimate inter-individual metabolic variations using the 
adonis function from vegan (version 2.5.5) with 1,000 times permu-
tation. Only phenotypic and microbial features that could estimate 
inter-individual metabolic variations at a permutational FDR of <0.05 
were kept. For genetic variants, we used SNPs with significant mQTLs. 
To deal with the colinearity of selected features, we applied hierarchi-
cal clustering analysis based on a feature inter-correlation distance 
matrix (1 − r2). Features were assigned to different clusters based on 
70% dissimilarity and the central feature in each cluster was selected 
as representative. All representative features were further included in 
PERMANOVA to estimate the combined contribution to inter-individual 
metabolome variation.

Associations with dietary habits. To assess associations between 
diet and metabolites, continuous dietary habits were inverse-rank 
transformed and corrected for age, sex and smoking. Spearman cor-
relation was applied to assess the correlation between 78 dietary habits 
and 1,183 metabolites (residuals after regressing out age, sex, smoking 
and oral contraceptive use; Supplementary Table 2). The FDR was 
calculated using the Benjamini–Hochberg procedure68.

QTL mapping. This analysis involved the 927 participants for whom 
there were genotype, plasma metabolome and phenotypic data. After 
adjusting for the first two genetic principal components, age, sex, 
BMI, smoking, 78 dietary habits, 40 diseases and 44 medications, as 
described above, a Java-based pipeline (version 1.4nZ)69 was applied 
for QTL mapping by calculating the Spearman correlation between 
SNP dosage and metabolite residuals after regressing out the above 
covariates. We considered metabolite associations with P < 4.2 × 10−11 as 
significant—a threshold corresponding to a genome-wide significance 
cut-off of 5.0 × 10−8 divided by 1,183 tests. All independent mQTLs 
(clumping variants with linkage disequilibrium r2 < 0.05 and a 500-kb 
window25) above this threshold were reported. We also tested the 
impact of physical activities on QTL effect by re-running the QTL analy-
sis in 855 Lifelines participants for whom we had SQUASH (the short 
questionnaire to assess health-enhancing physical activity) physical 
activity scores24.

Microbiome-wide associations. We previously reported that several 
medications can alter the gut microbiome significantly, including 
proton pump inhibitors, antibiotics and laxatives70,71. We therefore 
adjusted all microbial datasets for these confounding factors, together 
with age, sex and smoking. For microbial changes 4 years apart, we 
regressed out age and sex. Next, Spearman correlation was applied 
to check the associations between metabolites and microbial fea-
tures, and P values were adjusted using the Benjamini–Hochberg  
procedure.

Interaction analysis. For metabolites associated with at least two 
types of factor (from genetics, the microbiome and diet), we further 
performed interaction analysis by assessing pairwise interactions 
between the two factors using a linear model (y = a + b + a × b). P values 
were adjusted using the Benjamini–Hochberg method.

Estimating the variance of individual metabolites. To estimate the 
variance of each metabolite that was contributed by dietary, genetic 
and microbial features, we applied machine learning-based lasso 
regression from the glmnet package (version 2.0.16). While ensemble 
machine learning methods have previously been shown to outperform 
the predictive capabilities of linear methods such as lasso3, lasso’s 
interpretability and capacity to integrate highly correlated data lay-
ers (microbiome taxa and dietary habits) made it an attractive meth-
odology for our analysis. We believe that, while the overall variance 
explained might be an underestimation of the predictive power of the 
available data layers, the relative variability explained by each data 
layer should be representative of the dominant factor that explains 
most variance in each metabolite.

All of the dietary, microbial (general species and pathway relative 
abundance) and genetic features that were significantly associated 
with a specific metabolite at FDR < 0.05 were involved in the model. 
These features were further selected using lasso with a lambda that 
gave a minimum mean error from a tenfold cross-validation in order 
to control for overfitting and to provide a conservative estimate of 
model performance. Finally, features selected by lasso were included 
in the linear model to estimate the variance contributed by different 
factors, and the adjusted r2 and F-test P value were recorded. The FDR 
was calculated based on the Benjamini–Hochberg procedure. We also 
applied Elastic Net from the glmnet package (version 2.0.16) to estimate 
the variance of each metabolite contributed by different factors and 
compared the results with the above method.

Principal component analysis. The levels of all plasma metabolites 
were included in the principal component analysis. We applied the 
vegdist() function from the R package (version 2.5.5) vegan to calcu-
late the Euclidean dissimilarity matrix based on the metabolite levels. 
Subsequently, classical metric multidimensional scaling was carried 
out based on the Euclidean distance matrix to obtain different principal 
coordinates.

Temporal consistency of individual metabolites. We used the Spear-
man correlation to check how consistent the levels of individual metab-
olites were between the baseline and 4-year follow-up. Metabolites 
with larger correlation coefficients were assumed to be more stable.

Lifelines diet quality score prediction. We first checked the Lifelines 
Diet Score8 associations with each metabolite in 1,054 LLD samples and 
selected the significant metabolite features (P < 0.05) for lasso regres-
sion, as described above. Metabolites selected by lasso were used to 
build the linear model, and 230 LLD2 samples with both diet score and 
plasma metabolome information available were used as validation. 
Adjusted r2 and the P value from the F-test were reported to reflect 
the performance of the prediction model. We also carried out these 
analyses for four other dietary scores: the alternate Mediterranean Diet 
Score20, HEI21, Protein Score22 and Modified Mediterranean Diet Score23.

Tissue-specific gene expression analysis. Summary statistics of 
independent mQTLs were used for tissue-specific gene expression 
analysis with FUMA25.

Bi-directional MR analysis. To evaluate whether the microbiome can 
causally contribute to plasma metabolites, we applied bi-directional 
MR analyses. A microbiome GWAS was performed using the same 
approach we applied for the metabolite GWAS, after correcting for age, 
sex, smoking and the use of proton pump inhibitors, antibiotics and lax-
atives. We focused on the 37 microbial features associated with at least 
three independent genetic variants at P < 1 × 10−5 in the baseline that 
could also be found in the follow-up samples with the same direction of 
association (P < 0.05) and on the 45 metabolites with significant asso-
ciations with the microbiome (FDRLLD1 < 0.05 and PLLD1 follow-up < 0.05). The 
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relaxed significance threshold for choosing microbiome-associated 
SNPs as genetic instruments was used to increase the number of SNPs 
available for analyses, as described previously9.

MR analysis was done using the TwoSampleMR (version 0.5.5) R 
package. While this package was developed for two-sample MR analy-
sis, a recent paper showed that it is possible to use most two-sample 
MR methods in the one-sample setting, including IVW35 and weighted 
median72. Therefore, MR estimates were calculated using Wald ratios 
and these Wald ratios were meta-analyzed using the IVW method35. In 
addition, we report MR estimates calculated using the weighted median 
test. We kept only the results based on three or more SNPs. To ensure 
the validity of the results, several sensitivity analyses were performed. 
We excluded MR estimates potentially driven by horizontal pleiotropy 
(removing results with MR-Egger36 intercept P < 0.05) and heterogene-
ity (removing results with Cohran’s Q test35 P < 0.05). In addition, we 
carried out leave-one-out analysis73 to check whether the MR estimates 
were possibly driven by a single SNP (removing the estimates where all 
but one leave-one-out configuration had P < 0.05). Multiple testing 
correction was performed using the Benjamini–Hochberg approach 
based on IVW P values. To avoid complex causality relationships, we 
excluded the results that showed a nominally significant MR estimate in 
the other direction (P < 0.05). For this analysis, metabolite-associated 
SNPs at a P value cut-off of 1 × 10−5 in the baseline group and P < 0.1 in the 
follow-up group were used as genetic instruments in IVW-based MR.

Bi-directional mediation analysis. For microbial features associ-
ated with both metabolites (FDRLLD1 < 0.05 and PLLD1 follow-up < 0.05) and 
dietary habits (FDR < 0.05), we first checked whether the dietary hab-
its were associated with the metabolite using Spearman correlation 
(FDR < 0.05). Next, we carried out bi-directional mediation analysis 
with interactions (y = x + m + x × m, where y is the outcome, x is the vari-
able and m represents the mediator) between mediator and outcome 
taken into account using the mediate function from mediation (version 
4.5.0) to infer the mediation effect of metabolites and microbiome for 
dietary impacts74. The FDR was calculated based on the Benjamini–
Hochberg procedure.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All processed microbiome abundance data and full summary statistics 
of mQTLs are freely available via the MOLGENIS cloud (https://genetic-
sresearch.molgeniscloud.org/menu/main/home), with an interactive 
browser of the top 100,000 mQTLs. The annotation of metabolites is 
based on the HMDB (https://hmdb.ca; version 5). The raw metagen-
omics sequence, metabolomics and basic phenotype data (age, sex 
and BMI) are deposited in the European Genome-phenome Archive 
(EGA) database with the study ID EGAS00001001704, which includes 
dataset IDs EGAD00001001991 (raw metagenomics sequencing) and 
EGAD00001006953 (raw metabolomics data). However, the use of 
Lifelines data and materials must comply with the informed consent 
signed by Lifelines participants specifying that their collected data 
will not be used for commercial purposes. There is a minimal access 
procedure for access to the EGA dataset that includes the provision 
of a contact address and completion of an online data access form 
(https://goo.gl/forms/TWHlrmbXaXNqWnnl2), which is very simple 
and is only intended to ensure that the data are being requested for 
research/scientific purposes only. Submitted data access forms will 
be evaluated by the data manager and Lifelines. For requests from 
verified academic parties, access will be granted within 2 weeks. There 
are no restrictions on downstream data re-use or authorship require-
ments. For requests from commercial parties, Lifelines will perform a 
pre-data protection impact assessment (pre-DIPA) to assess the risks 

of the proposed processing of personal data (for example, purpose, 
storage, access, archiving and so on) with respect to the General Data 
Protection Regulation (GDPR) subject rights. Based on the outcome 
of the pre-DPIA, Lifelines will decide whether sharing data with the 
commercial entity is allowed and/or whether additional measures 
have to be taken. Genotype and metadata, including disease, medica-
tion and other clinical and lifestyle information, are however privacy 
sensitive. To ensure adherence to participant’s privacy and informed 
consent, the rights of participants as described in the GDPR (EU pri-
vacy laws) and Lifelines biobank regulations, the complete genotype 
and phenotype data cannot be provided as open access and are only 
available from Lifelines under controlled access in a secure Lifelines 
Workspace or High-Performance Cluster (HPC) environment. As 
Lifelines is a non-profit organization dependent on (governmental) 
subsidies, a fee is required to cover the costs of controlled data access 
and supporting infrastructure. In brief, the step-by-step data access 
procedure is as follows: (1) data are requested by filling in the applica-
tion form to request ‘Available Lifelines-data’ at https://www.lifelines.
nl/researcher/how-to-apply/apply-here; (2) Lifelines will evaluate 
project proposals to ensure compliance with the Lifelines data access 
policy, the informed consent of Lifelines participants and the GDPR, 
and that the data are being requested for non-commercial research; 
(3) upon approval, Lifelines will send Data and Material Transfer Agree-
ment contracts to the applicants; and (4) after the required contracts 
are signed, Lifelines will provide access to data via the Workspace 
or HPC and link the raw and processed Lifelines sequencing data to 
the Lifelines phenotypes. Lifelines strives to accomplish steps 2–4 at 
2 weeks per step, assuming that no extra actions by the applicant or 
Lifelines are required. The fee for data access on the HPC is €3,500 for 
1 year and the fee for the Lifelines Workspace environment is €4,500 
for 1 year, or less for shorter periods of time. There are no restrictions 
on the downstream re-use of aggregated, non-identifiable results (as 
approved by Lifelines), nor are there authorship requirements, but 
Lifelines does request that it is acknowledged in publications using 
these data. The data access policy, data access fees and an example 
Data and Material Transfer Agreement (which includes details on how 
to acknowledge the use of Lifelines data in publications) are described 
in detail at https://www.lifelines.nl/researcher/how-to-apply. Note that 
data access for replication can be arranged via Lifelines. Lifelines will 
not charge an access fee for controlled access to the full dataset used 
in the manuscript (including phenotype and sequencing data) for a 
period of 3 months for the specific purpose of replication of the results 
presented in the current manuscript. Researchers interested in such a 
replication study can contact Lifelines at research@lifelines.nl. Further 
information can be obtained from Lifelines at https://www.lifelines.
nl/researcher/how-to-apply/information-request or by contacting 
Lifelines at research@lifelines.nl.

Code availability
A n a l y s i s  c o d e s  a re  ava i l a b l e  v i a  h t t p s : //g i t h u b. c o m /
GRONINGEN-MICROBIOME-CENTRE/Groningen-Microbiome/tree/
master/Projects/LLDeep_plasma_GeneralMeta.
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Extended Data Fig. 2 | Summary of plasma metabolites. a. Number of 
metabolites per metabolic categories based on annotation in the HMDB 
database. The x-axis indicates number of metabolites per category. The number 
of metabolites is also shown. The y-axis indicates metabolic categories. b. Inter-
correlation between metabolites in the LLD baseline samples. Rows and columns 
represent metabolites. Color scheme represents the Spearman correlation 
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FI-MS and LC-MS/MS platforms. The x-axis indicates metabolic abundance 
determined by LC-MS/MS. The y-axis indicates metabolic abundance determined 

by FI-MS. Each gray dot represents one sample. The red dashed line is the best fit 
line of linear regression with 95% confidence interval (CI). Spearman correlation 
coefficient between two measurements and the corresponding P value (two-
sided) are shown. d. Comparison of metabolite concentrations between un-
targeted FI-MS and NMR platforms. The x-axis indicates metabolic abundance 
determined by NMR and the y-axis indicates metabolic abundance determined 
by FI-MS. Each gray dot represents one sample. The red dashed line is the best fit 
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indicates the significance of the differential abundance of the gene in one tissue 
compared to other tissue types in terms of -log10 transformed P value (Fisher’s 
exact test, two-sided).
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Extended Data Fig. 5 | Leave-one-out sensitivity analysis for significant MR 
linkages. Forest plots of MR leave-one-out sensitivity results (IVW method) 
for four significant bi-directional MR linkages in LLD1 and LLD1-follow-up. Dots 

represent the estimated effect size. Bars represent 95% confidence intervals. The 
x-axis indicates effect size of MR.
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Extended Data Fig. 6 | Metabolites associated with gutSMASH pathways. 
a. Correlation between the microbial glycine cleavage pathway and plasma 
hippuric acid levels. b. Correlation between the microbial hydroxybenzoate to 
phenol pathway and plasma phenol sulfate levels. The upper part of each panel 
indicates the chemical transformation of the gutSMASH pathways. The lower 

part indicates the correlation between the pathway abundance (x-axis) and the 
plasma level of the corresponding metabolite (y-axis). Each dot represents one 
sample. The dark dashed line is the best fitted line of linear regression with 95% 
CI. Spearman correlation coefficient and the corresponding P value (two-sided) 
are also shown.
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