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Abstract
Until recently, a one-drug-fits-all model was applied to every patient diagnosed with
the same condition. But not every condition is the same, and this has led to many
cases of ineffective treatment. Pharmacogenetics is increasingly used to stratify
patients for precision medicine treatments, for instance, the UGT1A1*28 polymor-
phism as a dosage indicator for the use of irinotecan as well as epidermal growth fac-
tor receptor (EGFR) immunohistochemistry and KRAS Proto-Oncogene (KRAS) exon
2 mutation tests for determining the likelihood of treatment response to cetuximab or
panitumumab treatment in metastatic colorectal cancer (CRC). The other molecular
subtypes, such as KRAS exon 3/4, B-Raf Proto-Oncogene, NRAF, PIK3CA, and
PETN, were also reported as potential new pharmacogenetic targets for the current
and the newly discovered anticancer drugs. In addition to next-generation sequencing
(NGS), primary tumor cells for in vivo and in vitro drug screening, imaging biomarker
30-Deoxy-30-18F-fluorothymidine positron emission tomography, and circulating
tumor DNA (ctDNA) detection methods are being developed and may represent the
future direction of precision medicine. This review will discuss the current environ-
ment of precision medicine, including clinically approved targeted therapies, the latest
potential therapeutic agents, and the ongoing pharmacogenetic trials for CRC patients.

INTRODUCTION
Colorectal cancer (CRC) is the second most common cancer and
cause of death across European countries. In 2012, approxi-
mately 447 000 Europeans were diagnosed, and 215 000 died
from the disease.1 Over the past few decades, patients with CRC
were treated homogenously and provided with the same “stan-
dard” care. In addition to the standard colorectal surgery, the rec-
ommendation of standard drug treatment based on the tumor
staging has successfully improved the treatment efficacy for
CRC patients in both overall survival (OS) and disease-free sur-
vival (DFS).2 However, not every patient’s condition is the same,
and decisions on treatment options made by relying solely on
CRC staging is simplistic. This has likely led to many cases of
ineffective treatment, adverse drug reactions, and multiple side
effects.

Precision cancer treatment could be one of the possible
ways to tackle this problem. Precision medicine, also known as
personalized medicine, goes beyond a conventional one-drug-
fits-all model to match therapy by using particular environmental,
lifestyle, cancer staging, and biological characteristics to identify
which approach will be most effective for a particular individual.
This thereby increases his or her likelihood of response to treat-
ment and reduces the number of adverse drug effects.3

Currently, there are several drugs that have been approved
for CRC treatment, and a variety of pharmacogenetic tests
involving biomarkers have been accepted to aid the patient

selection process (Table 1). The aim of this review is to discuss
the current state of precision drug treatments, including clinically
approved chemotherapy drugs, molecularly targeted therapies
such as anti-VEGF (vascular endothelial growth factor) and anti-
EGFR (epidermal growth factor receptor) treatments, and the lat-
est ongoing clinical trials for CRC patients.

Precision treatment and implications for
early-stage CRC
There are several methods for staging CRC, including the
tumour, node, and metastases (TNM) system, Dukes classifica-
tion, and Astler-Coller classification. Using the most common
TNM staging system, CRC can be broadly subdivided into five
phases (Table 2).4 This staging system is important because it
forms the basis for decisions regarding treatment options for
CRC. For example, patients with stage I CRC normally receive
colonoscopic polypectomy, endoscopic mucosal resection, or
endoscopic submucosal dissection as their main form of treat-
ment, whereas those with more advanced stages require surgical
resection with or without (neo)adjuvant chemotherapy.5

More recent research has, however, suggested that a subset
of patients with stage I CRC have lymph node metastasis (LNM)
and requires additional surgery.6 Unfortunately, current best
practice lacks relevant risk assessment tools, and there is no clear
definition of LNM for patients classified with T1 histopathology.
This results in several patients being under- or overtreated,
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causing unnecessary treatment side effects and excess morbidity.7

The use of biomarkers may aid in the further subclassification of
this set of patients. One study has shown that EZR is a potential
biomarker for LNM and that this may guide decisions about the
need for further surgery.8 A panel of five biomarkers—BMI,
ETV6, H3F3B, RPS10, and VEGFA—was also shown to outper-
form clinicopathological prognostic factors for node-negative
CRC.9

Current best practice recommends adjuvant chemotherapy
for patients with stage II CRC and high-risk clinicopathological
features, but there is also no consensus on how to define the
high-risk characteristics.10 Several molecular assays, such as
ColoPrint and Oncotype DX, offer additional means for analyz-
ing patients’ risk of recurrence. In the Prospective Analysis of
Risk Stratification by ColoPrint (PARSC) study
(NCT00903565), relapse rates in stage II CRC were evaluated,
and it was demonstrated that ColoPrint may improve the prog-
nostic accuracy beyond the clinical variables and microsatellite
instability (MSI) status.11 The Oncotype DX Colon Cancer assay,
which utilizes quantitative polymerase chain reaction (qPCR) to
measure 12 biomarkers (seven cancer-related—BGN, C-MYC,
FAP, GADD45B, INHBA, Ki-67, MYBL2; 5 reference genes—
ATP5E, GPX1, PGK1, UBB, VDAC2), produces a score from
0 to 100, which represents the predicted recurrence risk to
inform decisions regarding adjuvant chemotherapy for CRC
patients.12,13 It has been shown to predict recurrence risk more
accurately than when using T-stage and mismatch repair status
alone (NCT01479894).13 Studies have also shown that other bio-
markers, such as a lack of CDX2 expression, may offer further
insight into the subgroup of patients with high-risk stage II CRC
who benefit from receiving adjuvant chemotherapy (5-year DFS:
91% vs 56%; P = 0.006).14

Chemotherapy drugs for precision
treatment
Cytotoxic agents such as 5-fluorouracil (5-FU), irinotecan, and
oxaliplatin are commonly used as chemotherapy agents for CRC
treatment. However, a proportion of CRC patients does not
respond to this chemotherapy regimen and/or suffer from severe
drug toxicities. 5-FU is a widely used thymidylate synthase
(TS) inhibitor that acts as an antimetabolite to block the pyrimi-
dine thymidine synthesis required for DNA replication.15 In the
early years, studies demonstrated that high-frequency microsatel-
lite instability (MSI-H), due to loss of DNA mismatch repair
function, is correlated with poor response to 5-FU-based treat-
ment compared to CRC patients with stable microsatellites.16,17

Controversially, negative results were also reported by the other
researchers.18 The latest systematic review with meta-analysis
summarized fourteen 5-FU-based trials and concluded that MSI
status has a limited effect on both DFS and OS and is therefore
not valuable in guiding 5-FU-based treatment selection.19 Dihy-
dropyrimidine dehydrogenase ([NADP+], DYPD)—a pyrimidine
catabolic enzyme that metabolizes thymine (T) and uracil
(U) nucleotides—was later discovered and enables the identifica-
tion of the 3% of CRC patients who cannot sufficiently metabo-
lize 5-FU. Patients with DYPD deficiency could experience
severe 5-FU-related toxicities.20 Further research found that the
DPYD variants DPYD*2A (relative risk: 2.9, P < 0.0001),
c.1679 T > G (relative risk: 4.4, P < 0.0001), c.1236G >
A/HapB3 (relative risk: 1.6, P < 0.0001), and c.2846A > T (rel-
ative risk: 3.0, P < 0.0001) are clinically relevant as predictors of
fluoropyrimidine-associated intolerance.21 A prospective trail
proved that DPYD*2A-guided 5-FU dosing has significantly
reduced the incidence of severe toxicity in DPYD*2A carriers,

Table 1 Clinically approved drugs and its approved pharmacogenetic targets in colorectal cancer patients

Class of agent Name Biological target Detection target†
U.S. FDA-approved testing kit for CRC (detection

method)

Cytotoxic
chemotherapy

5-FU TS DYPD —

Irinotecan TOP1 UGT1A1*28 —

Oxaliplatin — — —

Raltitrexed‡ TS — —

Lonsurf
(trifluridine/tipiracil)

TS — —

VEGF Bevacizumab VEGF-A — —

Ziv-aflibercept VEGF-A — —

Ramucirumab VEGFR-2 — —

Regorafenib Series of protein
kinases§

— —

EGFR Cetuximab EGFR 1. EGFR 1. DAKO EGFR PharmDx Kit (IHC)

Panitumumab EGFR 2. KRAS exon
2 3 & 4

2. cobas® KRAS Test (qPCR)

3. therascreen KRAS Test (qPCR)

†U.S. FDA-approved pharmacogenomic biomarkers on drug labeling.
‡NICE UK-approved drug.
§Regorafenib targeted proteins are VEGF receptors 1–3, TIE2, KIT, RET, RAF1, BRAF V600E, PDGFR, and FGFR.
DYPD, Dihydropyrimidine Dehydrogenase [NADP(+)]; EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; qPCR, quantitative
reverse transcription polymerase chain reaction; TOP1, Topoisomerase 1; TS, thymidylate synthase; VEGF, vascular endothelial growth factor.
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from 73 to 28% (P < 0.001).22 Although DPYD pretreatment
screening has been proven to improve drug safety for DPYD*2A
carriers by the Food and Drug Administration (FDA) in the
United States, the current European Society for Medical Oncol-
ogy (ESMO) guidelines do not “routinely recommend” upfront
genotyping of DPYD*2A before the administration of 5-FU in
metastatic CRC (mCRC) patients.23 This recommendation is now
being reviewed.24

Irinotecan is a topoisomerase 1 (TOP1) inhibitor that has a
specific pharmacodiagnostic test.25 Clinical studies demonstrated
that the inhibition of TOP1 by irinotecan blocks the DNA liga-
tion process during the cell cycle. However, CRC patients with
uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1)
deficiency cannot sufficiently excrete the active metabolite SN-
38, which primarily undergoes glucuronidation in their livers.26

As a result, a high dose of irinotecan in UGT1A1-deficient CRC
patients is associated with severe adverse drug responses such as
neutropenia and diarrhea.27 This has been confirmed by other
studies and verified by a meta-analysis.28 Therefore, the
U.S. FDA has recommended a dose reduction of irinotecan for
patients with homozygous UGT1A1*28 based on A(TA-6)TAA

and A(TA-7)TAA genotyping.29 Clinical trials focusing on the
other UGT1A1 gene polymorphisms, such as UGT1A1*1
(ClinicalTrials.gov Identifier: NCT01639326 and NCT02138617)
and UGT1A1*6 (NCT02497157), are still ongoing.

Similar to 5-FU and irinotecan, oxaliplatin is another com-
mon antineoplastic agent to which there are varying levels of
chemo resistance in CRC patients.30 The treatment efficacy of
this platinum-based regimen can be modulated by excision repair
cross-complementing group 1 (ERCC1)—one of the
ERCC1-XPF enzyme complexes that play a crucial role in the
nucleotide excision and repair (NER) pathway for DNA recombi-
nation and DNA repair.31 In particular, ERCC1-C118T (T/T or
T/C) polymorphism32 or a lower expression of ERCC133 has
been reported as being associated with unfavorable prognosis in
patients undergoing treatment with oxaliplatin. It has therefore
been proposed as a surrogate biomarker for oxaliplatin resistance.
However, clinical trials have not demonstrated the predictive
ability of ERCC1 in oxaliplatin-based treatment.34 Thus, EMSO
has not recommended ERCC1 testing prior to the use of oxalipla-
tin in routine practice.23

More recently, a new cytotoxic drug, lonsurf, was
approved by the U.S. FDA, National Institute of Health and Care
Excellence (NICE) in England, and the European Medicines
Agency (EMA) for refractory mCRC patients. Lonsurf is a com-
bination of trifluridine (thymidine-based nucleoside analogue)
and tipiracil (a potent thymidine phosphorylase inhibitor) that
suppresses cancer cell proliferation by interfering with DNA syn-
thesis.35 Based on the RECOURSE group’s phase III randomized
trial, which included nearly 800 participants from three different
geographical areas, lonsurf results in a 1.8-month improvement
in median OS compared with the placebo group.36 Methods for
optimizing lonsurf treatment are currently under investigation,
including the development of a CRC xenograft experimental
model that predicts treatment outcome;37 the use of 30-Deoxy-30-
18F-fluorothymidine positron emission tomography ([18F]FLT-
PET) as a noninvasive radio-traceable substitute for thymidine;
and using the MSI status as an indicator for the use of lonsurf in
combination with nivolumab, a PD-1 inhibitor, in refractory
mCRC patients (NCT02860546).

EGFR therapies
EGFR is a transmembrane tyrosine kinase receptor that regulates
the serine/threonine-specific protein kinase (AKT), JNK, and
mitogen-activated protein kinase (MAPK)/ERK signaling path-
ways responsible for DNA synthesis, cell proliferation, apoptosis,
and motility (Fig. 1). Overexpression of EGFR is associated with
tumor progression in various cancer types, including CRC.38

Blocking the EGFR by using monoclonal antibodies such as
cetuximab or panitumumab39,40 with a chemotherapy formula
combination with 5-FU, leucovorin plus oxaliplatin (FOLFOX)
or a chemotherapy formula combination with 5-FU, leucovorin
plus irinotecan (FOLFIRI) results in a better treatment response
in mCRC patients.41,42 Those treatments can be tailored using
one of the FDA-approved pharmacogenetic tools that measure a
patient’s EGFR expression level43 or detect KRAS Proto-
Oncogene (KRAS) exon 2 (codon 12/13) mutations44 (Table 1).
However, the effectiveness of these pharmacogenetic tests in
detecting and improving treatment response is uncertain. For

Table 2 TNM staging system of colorectal cancer (AJCC 8th edition)

Stage
T (primary
tumour)

N (regional lymph
nodes)

M (distant
metastasis)

0 Tis N0 M0
I T1–T2 N0 M0
IIA T3 N0 M0
IIB T4a N0 M0
IIC T4b N0 M0
IIIA T1–T2 N1 or N1c M0

T1 N2a M0
IIIB T3–T4a N1 or N1c M0

T2–T3 N2a M0
T1–T2 N2b M0

IIIC T4a N2a M0
T3–T4a N2b M0
T4b N1–N2 M0

IVA Any T Any N M1a
IVB Any T Any N M1b
IVC Any T Any N M1c

Primary tumour (T): Tx, primary tumour of unknown; T0, no evidence of
primary tumour; Tis, carcinoma in situ; T1, tumour invades submucosa;
T2, tumour invades muscularis propria; T3, tumour invades through the
muscularis propria into the peri colorectal tissues; T4a, tumour invades
through the visceral peritoneum; T4b: tumour directly invades or
adheres to other adjacent organs or structures.
Regional lymph nodes (N): Nx, lymph nodes cannot be assessed; N0,
no lymph node metastases; N1, 1–3 lymph node involvement; N1a,
1 lymph node; N1b, 2–3 lymph nodes; N1c, non-nodal tumour deposits
without identified lymph node metastases; N2, 4 or more lymph node
involvement; N2a: 4–6 lymph nodes; N2b: 7 or more lymph nodes.
Distant metastasis (M): Mx, distant metastasis cannot be assessed; M0,
no distant metastasis by imaging; M1, distant metastasis; M1a, metas-
tasis to one organ or site without peritoneal metastasis; M1b, metasta-
sis to two or more organs or sites without peritoneal metastasis; M1c,
peritoneal involvement regardless of other organ involvement.
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example, many pathologists have expressed concern about the
EGFR detection criteria in the PharmDx™ immunohistochemis-
try (IHC) test.45,46 Many clinicians also doubt the benefits of
anti-EGFR treatment in EGFR-positive CRC patients.45,47 The
alternative option of KRAS exon 2 mutation screening is also
problematic because testing is limited to one KRAS exon region,
and studies have shown that CRC patients with other KRAS
mutations will still benefit from anti-EGFR treatment.48 In fact,
up to 35% of KRAS exon 2 wild-type49 and approximately 25%
of EGFR-negative patients responded to EGFR inhibitor treat-
ments.50 Therefore, other RAS signaling biomarkers, such as
KRAS exon 3 (codons 59/61) and 4 (codons 117/146), as well as
NRAS proto-oncogene (NRAS) exon 2 (codon 12/13), 3 (codons
59/61) and 4 (codons 117/146) mutations, are being investigated
for further pharmacodiagnostic development.51–53

In a retrospective analysis of the CRYSTAL study,
authors assessed the status of other RAS mutations (KRAS exons
3 and 4; NRAS exons 2, 3 and 4). Of the 367 RAS wild-type
CRC patients, treatment with FOLFIRI plus cetuximab was bet-
ter than FOLFIRI alone in both PFS (11.4 vs 8.4 months, HR:
0.56 P < 0.001) and OS (28.4 vs 20.2 months, HR: 0.69
P = 0.0024). There was no difference in the other RAS mutant
populations (n = 63).54 Similar results were also reported in
another phase III trial for a second-line therapy based on RAS
mutation status (KRAS exons 3, 4; NRAS exons 2, 3, 4; and

BRAF exon 15). The use of FOLFIRI with or without panitumu-
mab in the wild-type RAS population improved survival in
mCRC patients (PFS: 6.4 vs 4.6 months, HR: 0.70, P = 0.007)
compared with the KRAS exon 2 wild-type individuals (PFS: 5.9
vs 3.9 months, HR: 0.73, P = 0.004).55 Based on the published
results of the RAS mutation combination analysis, the ESMO,56

European Society of Pathology (ESP), and Association of Clini-
cal Pathologists Molecular Pathology and Diagnostics Group in
the United Kingdom recommended the KRAS/NRAS mutation
test for mCRC patients.57

In addition to the RAS mutation, other potential bio-
markers have been uncovered and may help in the selection of
CRC patients suitable for anti-EGFR treatment. These bio-
markers include PIK3CA, PTEN, Human Epidermal Growth Fac-
tor Receptor 2 (HER2), HER3, and the EGFR ligands EREG and
AREG.53,58–61 Although these biomarkers are not yet available
for clinical use, the combination of multiple biomarkers may
have a stronger predictive power than using one alone.58 Further
prospective studies are needed to substantiate predictive bio-
marker combinations for EGFR-targeted treatment (Table 3).

VEGF receptor therapies
The VEGF receptor is a transmembrane protein containing a split
tyrosine–kinase domain at the intracellular level and seven
immunoglobulin-like domains at extracellular levels for angio-
genesis and vasculogenesis.62 Overexpression of VEGF results in
tumor progression and metastasis as well as lower patient sur-
vival rates.63,64 Today, three approved biological agents targeting
VEGF are available for CRC patients. Ramucirumab targets the
VEGF-A receptor activation by modulating VEGFR-2; ziv-
aflibercept inhibits placental growth factor (PIGF), VEGF-A, and
VEGF-B by using its IgG1 Fc-VEGFR; and bevacizumab blocks
VEGF-A to cause ligand sequestering (Fig. 1).65 Interestingly,
the use of FOLFIRI in combination with ziv-aflibercept
(VELOUR trial),66 bevacizumab (ML18147 trial),67 or ramuciru-
mab (PRAISE trial)68 in mCRC patients presented similar treat-
ment benefits in median OS (1.4, 1.4, and 1.6 months) and PFS
(2.2, 1.6 and 1.2 months). All three antiangiogenic regimens also
present with similar types of adverse drug events
(e.g. proteinuria, hemorrhage, and hypertension).69 However, the
differences in tolerability and the study design in those clinical
trials vary.70

Although no obvious difference was found between the
approved VEGF-targeted treatments, they also do not directly
replace each other due to the different VEGF subtype targets
(Fig. 1) and the treatment effectiveness in patient-derived xeno-
graft mouse models.71 Hence, an ongoing PERMAD phase II
trial (NCT02331927) is investigating potential cytokine and/or
angiogenic factor(s) as biomarker(s) for a treatment shift from
bevacizumab to ziv-aflibercept to increase the treatment effec-
tiveness and limit drug resistance. Furthermore, studies also
found that the continuous administration of bevacizumab leads to
better OS67,72 as planned treatment breaks or discontinuation in
antiangiogenic therapy could lead to rapid tumor regrowth.73,74

To monitor the tumor growth and treatment response, the CIR-
CUS research team is prospectively evaluating circulating
VEGFR-2 levels as a predictor of the continuation of bevacizu-
mab treatment in mCRC patients (NCT02623621). Several

Figure 1 The approved EGFR and VEGF targeted drugs and its recep-
tors in colorectal cancer. AKT, protein kinase B; EGFR, epidermal
growth factor receptor; ERK, extracellular-regulated kinase; MEK,
mitogen-activated protein/extracellular signal-regulated kinase; PI3K,
phosphatadylinositol 3-kinase; PIGF, placental growth factor; RAF, rap-
idly accelerated fibrosarcoma; RAS, retrovirus-associated DNA
sequences; VEGFR, vascular endothelial growth factor receptor
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potential new biomarkers have also been reported for VEGF
inhibitors, including KRAS (codons 12 and 13),75 VEGF(165)b:
VEGF(total) expression ratio,76 VEGF-D,77 miR-126,78

EGFL7,79 Ang-2,80 NRP-1,81 IL-8,82 and G12 V and G12A
KRAS mutations.83 However, prospective studies are necessary to
verify the results.

In addition to the VEGF single-targeting agents, regorafe-
nib is a dual-targeted VEGFR2-TIE2 tyrosine kinase inhibitor that
suppresses a set of protein kinases involved in oncogenesis (B-Raf
Proto-Oncogene [BRAF], RAF1, RET and KIT) and angiogenesis
(tyrosine receptor kinase-2 [TIE2], VEGFR 1–3, fibroblast growth
factor receptor [FGFR] and platelet-derived growth factor receptor
[PDGFR]).84 mCRC patients who received regorafenib treatment
demonstrated a statistically significant improvement in survival
rate when compared with placebo in the CORRECT (OS: 6.4 vs
5.0 months, HR = 0.77, P = 0.0052; PFS: 1.9 vs 1.7 months,
HR = 0.49, P < 0.0001)85 and CONCUR (OS: 8.8 vs 6.3 months,
HR = 0.55, P = 0.0016) trials.86 Several clinical studies on
regorafenib are ongoing to find suitable biomarkers to stratify
CRC patients.85,87 This includes identifying RAS subtypes
(NCT02619435), as well as using imaging biomarkers such as
[18F] FLT-PET (NCT02175095) (Table 3). Several clinical trials
investigating biomarkers for regorafenib in mCRC patients who
failed one prior anticancer treatment are ongoing (NCT01949194,
NCT01996969, and NCT02402036).

The development of new molecular
targeted therapy in CRC
The development of new molecular targeted therapy in CRC and
investigations into their use in combination are ongoing. For
instance, selumetinib, a MEK1 and MEK2 inhibitor,88 in combi-
nation with afatinib, an approved EGFR inhibitor for non-small
cell lung carcinoma,88 is currently being tested in an early-stage
randomized clinical trial for KRAS mutant and PIK3CA wild-type
CRC patients (NCT02450656) (Table 4). Dual anti-EGFR and
anti-VEGF treatments for CRC are also being studied. For exam-
ple, the use of cetuximab plus regorafenib inhibited AKT and
MAPK signaling pathways in BRAF-mutated, KRAS-mutated,
and cetuximab-resistant CRC cell lines and presented a synergis-
tic apoptotic as well as antiproliferative effect in an in vivo
model.89 This combination was proven and well tolerated in the
phase I clinical trial, and the antitumor effect may greatly benefit
MSI-H CRC patients.90 The next phase of the trial may be con-
ducted in the near future.

More recently, monoclonal antibodies against programed
cell death-1 (PD-1) receptor or its ligand PD-L1 have shown
promising results in several types of cancers. PD-1 is an immune
checkpoint protein expressed on the surface of T-cells and plays
a key role in promoting self-tolerance by suppressing T-cell cyto-
kine production. PD-L1 is frequently upregulated in tumor cells

Table 3 Ongoing clinical trials for molecular biomarkers in approved CRC drugs

Drug Biomarker ClinicalTrials.gov identifier:

Bevacizumab + chemotherapy VEGFR-2 NCT02623621
Bevacizumab/cetuximab + FOLFIRI BRAF & PIK3K in RAS wild-type mCRC NCT01640444
Bevacizumab, cetuximab + irinotecan KRAS wild-type, Irinotecan refractory NCT02292758
Cetuximab + FOLFIRI/mFOLFOX6 ERCC1 NCT01703390
Cetuximab or panitumumab EGFR domain III region NCT01726309
Panitumumab + FOLFIRI RAS & BRAF wild-type mCRC NCT02508077
Regorafenib [18F] FLT-PET NCT02175095
Regorafenib RAS-mutant advanced CRC NCT02619435
Ziv-aflibercept Cytokines & angiogenic factors NCT02331927

[18F] FLT-PET, 30-deoxy-30-18F-fluorothymidine positron emission tomography; mCRC, metastatic colorectal cancer.

Table 4 Ongoing clinical trials for new CRC drugs and their respective biomarkers

Target molecule Drug name Biomarker Trial phase ClinicalTrials.gov identifier

AKT Trametinib BRAF mutant I/II NCT01902173
GSK2141795 BRAF mutant I/II NCT01902173

BRAF Dabrafenib BRAF mutant I/II NCT01902173
cMET Tivantinib KRAS wild-type II NCT01892527

PF-02341066 RAS mutant & over-active MET I/II NCT02510001
Glutaminase CB-839 Fluoropyrimidine Resistant & PIK3CA mutant I/II NCT02861300
HER2 Ado-Trastuzumab Emtansine HER2 I/II NCT02465060
PD-1 Pembrolizumab KRAS, BRAF & NRAS wild-type II NCT02318901

MSI status III NCT01876511, NCT02563002
Nivolumab MSI status II NCT02860546, NCT03104439

MEK Selumetinib KRAS mutant & PIK3CA wild-type II NCT02450656, NCT02586987
PD-0325901 RAS mutant & over-active MET I/II NCT02510001

Tyrosine Kinase Entrectinib NTRK1/2/3, ROS1, & ALK gene fusion II NCT02568267
PI3K BKM120 RAS wild-type I/II NCT01304602, NCT01591421

BRAF, B-Raf proto-oncogene; HER2, human epidermal growth factor receptor 2; NRAS, NRAS proto-oncogene.
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and deactivates antitumor activity in cytotoxic T-cells.91,92

Research has shown that CRC with MSI highly expresses
immune checkpoint molecules, including PD-L1.93 Thus, in a
phase II clinical trial, pembrolizumab, a U.S. FDA-approved PD-
1 targeted therapy, was utilized to treat both MSI-H and
microsatellite-stable (MSS) CRC patients. The response rate and
the 12-week PFS to pembrolizumab in MSI-H mCRC patients
(n = 10) were 40 and 78% compared to 0 and 11% in MSS
mCRC patients (n = 18), respectively.94 Combination treatment
with pembrolizumab and itacitinib, a JAK1 inhibitor, is also
under investigation for use in any patient with MSI instability
(NCT02646748). In addition to the clinical trials stratifying treat-
ment based on MSI status (NCT01876511 and NCT02563002),
treatment for different molecular subtypes such as pembrolizu-
mab plus trastuzumab treatment for mCRC patients with KRAS,
BRAF, and NRAS wild-types (NCT02318901) are under investi-
gation (Table 3).

Future directions and conclusions
Patients with the “same” cancer often respond differently to
treatment—this challenge has baffled medical oncologists for
decades. Pharmacodiagnostic testing is now becoming an essen-
tial tool for selecting the right medication for the right patient.
Since the U.S. FDA approved next-generation sequencing (NGS)
devices for clinical diagnosis in November 2013,95 the use of
NGS has become a popular tool for the investigation of diseases.
For example, NGS was used by Hagemann et al. in patients with
non-small cell lung cancer to match 11% of their patients with a
targeted therapy.96 NGS can also be applied to noninvasively
detect circulating tumor DNA (ctDNA) in CRC patients for real-
time monitoring of the disease, facilitating early identification of
disease progression.97 For instance, KRAS mutant alleles can be
detected in blood plasma from the acquired tumor-resistant
patients 10 months before cancer progression is otherwise
detected.98 This is because genetic aberrations coding treatment
resistance accumulate during tumor progression and are released
from tumor cells into the blood circulation.99 Another effective
method to improve treatment selection was demonstrated by
Pauli et al.,100 where tumor tissue collected from a patient was
subjected to four separate experiments: (i) NGS for molecular
subtype analysis, (ii) primary cell culture, (iii) patient-derived
xenograft (PDX) models, and (iv) patient-derived tumor orga-
noids. This cutting-edge screening strategy facilitated precision
treatment, but the process itself is costly and therefore may not
currently be affordable to the wider public.

In conclusion, the aim of precision medicine is to develop
a tailored treatment for each individual and his or her unique
condition to maximize potential treatment response and minimize
adverse drug reactions. The stratification of patients through the
use of biomarkers is thus key. As the use of newer therapeutic
agents connected with specific genetic sup-type(s) will increase,
ultimately increasing patients’ quality of life and life expectancy.
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