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Abstract

Policy synergy is necessary to promote technological innovation and sustainable industrial

development. A radial basis function (RBF) neural network model with an automatic coding

machine and fractional momentum was proposed for the prediction of technological innova-

tion. Policy keywords for China’s new energy vehicle policies issued over the years were

quantified by the use of an Latent Dirichlet Allocation (LDA) model. The training of the neural

network model was completed by using policy keywords, synergy was measured as the

input layer, and the number of synchronous patent applications was measured as the output

layer. The predictive efficacies of the traditional neural network model and the improved

neural network model were compared again to verify the applicability and accuracy of the

improved neural network. Finally, the influence of the degree of synergy on technological

innovation was revealed by changing the intensity of policy measures. This study provides a

basis for the relevant departments to formulate industrial policies and improve innovation

performance by enterprises.

Introduction

There is a close relationship between innovation by enterprises and the environment [1]. Inno-

vation is influenced by national policies and support systems [2]. Policy synergy refers to the

mutual coordination and cooperation of different policy measures by relevant government

departments to generate policy synergy that promotes the realization of policy objectives [3].

Relying on the optimization of the policy structure, certain system functions can be achieved

by coupling the policy functions [4]. As a strategic emerging industry, the capability for NEV

technological innovation is influenced by guidance and support from industrial policies. In

quite a long period of time, the development of the NEV industry has been affected by various

policies and its policy-driven characteristics have been obvious. Policy has become the key to

technological innovation by NEV enterprises. A high complex policy space is formed by each

policies [5]. For example, the improvement of technical standards driven by subsidy policy can
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more effectively promote enterprise technological innovation, and the infrastructure construc-

tion guided by policy can reduce the market risk of enterprise technological innovation. The

environment of technological innovation of new energy vehicle enterprises is constituted by

the synergy promotion of various policy measures [6]. The synergy of different policy mea-

sures has different impacts on the technological innovation of new energy vehicles [7]. The

government should actively adjust the policy structure [8] and implement different policy syn-

ergy models [9, 10] to effectively stimulate technological innovation and promote sustainable

industrial development [11] for further integration of industry and policy.

Accurate prediction of technological innovation can provide scientific guidance for enter-

prises to make development decisions [12] and improve comprehensive competitiveness [13].

Patents contain the details of technological innovation, and the development trend of techno-

logical innovation can be grasped through scientific analysis of patent information, which is

an effective tool for innovation technology prediction [14]. Traditional innovation predictions

have usually applied regression analysis [15], time series analysis [16, 17], Markov chains [18],

DEA efficiency models [19], and comprehensive control methods [20]. As a typical representa-

tive of an intelligent prediction model, neural network can mine complex nonlinear features

behind data without assuming the relationships between variables and has a strong generaliza-

tion ability [21, 22]. Radical Basic Function (RBF) neural network is a three-layer feedforward

analysis network, which has strong robustness, self-learning ability and nonlinear mapping

ability. The structure parameters can achieve separation of learning and the training speed is

fast because of the compact topology. The radial basis function is used to control the hidden

layer nodes and carry out high-dimensional nonlinear transformation, which can approximate

any nonlinear function. It is a relatively ideal nonlinear calculation model and has been widely

used in technological innovation research [23]. With the deepening of research, cloud model

[23], gray GM(1,1) model [24] and intelligent algorithm [25] are also used for the improve-

ment of RBF neural network model.

RBF neural network model is introduced to predict the technological innovation of new

energy vehicle enterprises in this paper. An improved RBF neural network model based on

automatic coding machine is proposed, and a fractional momentum algorithm is designed. On

the basis of ensuring the prediction accuracy and stability of the model, the prediction of the

technological innovation of new energy vehicle enterprises for policy synergy is realized. Based

on the simulation results of the proposed model, the applicable conditions of policy synergy

under different situations were analyzed to assist relevant government departments to formu-

late effective industrial policies and stimulate innovation. At the same time, it provides refer-

ence for enterprises to make accurate innovation decisions.

Research design

Research process

Policy synergy is the core influencing factor of technological innovation of new energy vehicle

enterprises. In order to analyze the relationship between the two, the RBF neural network

model is improved to adapt to the high coupling of multiple inputs. The model is trained with

the degree of policy synergy as input and the number of valid patents applied by enterprises as

output. Finally, by changing the policy intensity to adjust the degree of synergy, the model is

used to predict the number of patents. The specific process is shown in Fig 1.

Construction of the model. The degrees of the synergy of different policy measures of

NEVs have different effects, mechanisms, and directions. with a complex nonlinear relation-

ship among them for technological innovation. The synergy between different policy measures

affects each other and there is a complex coupling relationship. The nonlinear mapping
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between the degree of policy synergy and technological innovation was taken as the training

samples used in this study. To establish a high-precision and high-stability predictive model, a

neural network with strong adaptability was required. We made adaptive improvements to the

RBF neural network in accordance with the descriptions of the characteristics of the training

samples. Table 1 shows the specific problem descriptions and their corresponding solutions.

The main innovations of the model are as follows.

•An interpretable automatic coding machine that quantifies the importance of input data,

extracts features, and suppresses interference features.

•A fractional momentum RBF neural network that improves the memory capacity of the

model to realize the effective learning of important features and make accurate predictions of

patent information.

Structure of proposed model. The structure of the model proposed in this study is shown

in Fig 2. The model consists of an automatic coding machine and an RBF neural network. The

input layer of the automatic coder receives policy information, which contains six variables.

The hidden layer contains 10 neurons for unsupervised training and the output layer contains

6 neurons, representing the importance of the six input variables. The variables in the input

layer are weighted and multiplied by their corresponding importance, then the results are

passed to the RBF neural network as input data. The network adopts a double hidden layer

structure, with each hidden layer containing 10 neurons for feature learning and 1 output

Fig 1. Research process.

https://doi.org/10.1371/journal.pone.0271316.g001

Table 1. Problem descriptions and solutions.

Problem description Solution

1 There is a highly coupled relationship between degree

of policy synergy in the sample input data. It is

necessary to extract the main features of the sample data

keenly.

An automatic coding machine is a type of

unsupervised neural network model, which not only

can achieve feature dimension reduction but also has

the function of feature extraction. Therefore, a hybrid

RBF neural network model with an automatic coding

machine was designed. The automatic coding machine

was adjusted for targeted feature extraction.

2 The traditional gradient algorithm cannot guarantee

accurate predictions of technological innovation

because it is easy to fall into the local optimal value. The

direction of decision-making is determined by accurate

predictions of technological innovation and needs the

guarantee of a high-precision, high-stability, and

comprehensive calculation method.

Since fractional order can improve the momentum

memorability of network weights in the optimization

process, a fractional momentum RBF neural network

model was designed.

https://doi.org/10.1371/journal.pone.0271316.t001
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layer neuron representing the predicted value of the number of patent applications under this

policy.

Feature importance analysis algorithm for automatic coding machine. An automatic

coding machine is composed of an input layer and a hidden layer. A two-way full connection

is used between the input layer and hidden layer; however, there is no connection within the

same layer. Eq (1) denotes the value of the hidden layer node obtained from the known input

layer node:

p hj ¼ 1
� �

¼
1

1þ expð� bj �
P

iviwijÞ
ð1Þ

Because the automatic encoder is a symmetric network, the value of the input layer node

can be calculated from the hidden layer node in the backpropagation, as shown in Eq (2):

p vi ¼ 1ð Þ ¼
1

1þ expð� ci �
P

jhjwjiÞ
ð2Þ

where νi is the value of the node i in the input layer; hj denotes the value of node j in the hidden

layer; b and c represent the offset values of the input layer and the hidden layer respectively; wij

is the weight of the nodes in the input layer and the hidden layer.

Fig 2. Structure of proposed model.

https://doi.org/10.1371/journal.pone.0271316.g002
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An automatic encoding machine adopts unsupervised training for feature extraction. In the

process of network training, Eqs (3)–(4) are used to update the weight:

wðtþ1Þ ¼ wðtÞ þ Z
@logPðv; hÞ

@w
ð3Þ

@logPðv; hÞ
@wij

¼< h0

j v
0

i > � < h1

j v
1

i > ð4Þ

where η is the learning rate, which affects learning progress. An appropriate learning rate is

necessary to ensure the best learning status of weights. vmi represents the feature vector of neu-

ron i at instant t = m. For example, ν0 is the feature vector when t = 0; h0 denotes the feature

vector of the hidden layer in Eq (1) and ν1 is the feature vector when t = 1 in Eq (2). <h0v0>

and<h1v1> are the mean values of the product of the input feature vectors and their corre-

sponding hidden layer feature vectors.

The input data of the model is the degree of synergy between the two policy measures.

There is a competitive relationship between the degree of policy synergy and the two policy

measures, which results in complex, nonlinear and mutual coupling between the input vari-

ables; thus, each group of data does not exist independently. To predict the number of patent

applications accurately and achieve targeted training of the neural network, it is necessary to

quantify the importance of input variables and achieve targeted training of neural networks.

This paper proposes the use of the following formula to calculate the importance of the input

variables in the unsupervised training process of an automatic coding machine:

FIunsupi ¼

P
w0

i �
P

wn
i

H
ð5Þ

Ii ¼ vi � FI
unsup
i ð6Þ

where FIunsupi is the importance of variable i in unsupervised learning, and wn
i denotes the

weight of variable i in the n-iteration process. H is the number of neurons in the hidden layer

and Ii represents the integrated input value of neuron i of the RBF neural network obtained by

calculation.

The specific process of feature extraction is as follows:

Step 1: The policy synergy variables are input in the input layer.

Step 2: The importance of the policy synergy degree is calculated. And the hidden layer p(hj) is

achieved through the nonlinear function mapping of weight ωij and bias value bj in the cod-

ing layer.

Step 3: The comprehensive parameter of importance of policy synergy degree is calculated by

Formula (6). The output layer p(vi) is obtained through the weight ωij and bais value bi
back-project the hidden layer.

RBF neural network with fractional momentum. The RBF network is a typical three-

layer feed-forward neural network that consists of an input layer, hidden layer, and output

layer. The input layer receives information from the outside world and passes it to the hidden

layer, which integrates and maps the received information. The output layer is a linear layer

that responds to the activation signals acting on it. For this study, the RBF network structure

was set to 6-10-10-1 (6 input nodes, 10–10 hidden layer nodes, and 1 output node,
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respectively). The hidden layer transfer function is the radial basis function, and the standard

Gaussian function is often expressed, thus:

Fj xð Þ ¼ e
�
kx� cjk

2

2s2
j ð7Þ

where cj is the center vector of node j and σj denotes the width of node j. Then, the output

value of the network output layer is,

y ¼ w � F ð8Þ

For the reverse calculation, a fractional momentum algorithm was designed to improve the

traditional stochastic gradient descent method in order to obtain a faster and more stable con-

vergence effect for the model. The following formula is used for the iterative update of the

weight:

w kð Þ ¼ w k � 1ð Þ þ
Xk

q¼1

ð� 1Þ
qþ1

g

q

 !

v k � qð Þ � Z
@E

@wðk � 1Þ
ð9Þ

g

q

 !

¼

gðg � 1Þ � � � ðg � qþ 1Þ

q!
; q � 1

1; q ¼ 0

8
<

:

v kð Þ ¼ mv k � 1ð Þ � Z
@E

@wðk � 1Þ

g 2 ½gmin; gmax�

g ¼
k � 1

M � 1

� �

gmax � gminð Þ þ gmin

where w is the weight value, k represents the number of iterations, η is the learning rate, γ is

the fractional order,
g

q

 !

denotes the generalized binomial coefficient for fractional differ-

ence operations, E is the objective function, @E
@wðk� 1Þ

is the gradient by iteration, ν is the momen-

tum, and μ is the momentum factor.

Training steps. An RBF neural network model with an automatic coding machine and

fractional momentum was proposed. The specific calculation steps are as follows.

Step 1: the network is randomly initialized and six neurons in the input layer receive six input

variables.

Step 2: an automatic coding machine for unsupervised training executes Eqs (1)–(2) and the

weight is updated by Eqs (3)–(4).

Step 3: the characteristic importance of each input variable is calculated by Eq (5).

Step 4: Eq (6) is used to calculate the comprehensive parameters of the importance of variables,

which are the input of the RBF neural network.

Step 5: the forward operation process of the RBF neural network is calculated by Eqs (7)–(8).
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Step 6: Eq (9) is used to calculate the reverse operation process of the RBF through the frac-

tional momentum algorithm and the weight is updated.

Step 7: the training of the whole model is completed.

Selection and description of index

Source of data. Policy documents from 2012 to 2020 related to the national NEV industry

are collected from the Database of the China Automobile Industry Information Network,

Peking University Legal Information Network, websites of relevant government departments,

“Energy-saving and NEV Yearbooks”, “China Auto Market Yearbook”, etc. as the input layer

data. 145 are finally identified for the policy research database used by this study through the

verification and screening one by one.

Take the Patent Retrieval and Analysis database of the State Intellectual Property Office of

the People’s Republic of China as the source. The patent data for which the applicant is "com-

pany" or "factory" is screened.

Input layer data of improved neural network model. The degree of pairwise policy syn-

ergy is taken as the input layer data. The calculation process of synergy degree is as follows:

Step 1: The effective policies in the current quarter are encoded. LDA model is used to cluster

the keywords and determine the policy category of new energy vehicles.

Step 2: The parameter training and theme extraction of the pre-processed new energy vehicle

policy text are carried out to calculate the theme intensity; Finally, according to the content

of keywords under each theme, it can be classified into four categories: planning and guid-

ing measures, infrastructure construction measures, technical standard measures and fiscal

and tax measures.

Step 3: The average synergy degree of pairwise policies and measures of new energy vehicles in

each quarter is calculated by the formula [26].

APCts ¼

X
pej � pmx

j � pmy
j

N
x 6¼ y; t 2 ½2012; 2020� ð10Þ

where APCts is the average policy synergy in quarter s of year t. pej denotes the intensity of pol-

icy j, which is the product of policies x and y. Policy intensity refers to the relative proportion

of each topic out of all the effective policies in the corpus for each quarter:

pm ¼

Xki

m
ymp

zp
ðm ¼ 1; 2; . . . ; iÞ; t 2 ½2012; 2020�; s 2 ½1; 4� ð11Þ

where pmj
x and pmj

y represent the scores of policy measures x and y in policy j respectively,

which are calculated from the product of the intensity and frequency of the occurrence of each

subject word in each policy. x and y are the two fiscal and tax policy measures, technical stan-

dard measures, planning and guiding measures, and infrastructure construction measures.

The input layer data can be described by the calculation of the degree of synergy, as shown

in Fig 3.

Output layer data of improved neural network model. The combined retrieval of tech-

nologies distributed in different patent categories by defining keywords can overcome the

omission issues caused by disputes over the classification numbers of the IPC method and can

ensure the directivity of patent information [27–29]. “NEVs”, “electric vehicles”, “fuel cell

vehicles”, and “hybrid electric vehicles” were used as the keywords [30], a total of 59,962
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patents were retrieved by a screening of the patent data. The output layer data are presented in

Fig 4.

Empirical results and analysis

Prediction results of the improved neural network model

In the training of the proposed model, the set parameters included the structural parameters

and training parameters of the neural network. The structural parameters included the num-

ber of hidden layers while the number of neurons and training parameters included training

Fig 3. Policy synergy in each quarter from 2012 to 2020.

https://doi.org/10.1371/journal.pone.0271316.g003

Fig 4. Number of patent applications in each quarter from 2012 to 2020.

https://doi.org/10.1371/journal.pone.0271316.g004
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step size, number of iterations, number of important data for the automatic coding machine,

and the fractional momentum value of the RBF network. In this experiment, the number of

hidden layers of the automatic coding machine was 1, the number of hidden layers was 20, the

number of the hidden layers of the RBF network was 2, and the number of neurons in each

layer was 10. The training step was set to 0.01, the number of iterations for the automatic

coder was set to 20, and the number of iterations for the RBF network was set to 100 (or

reached the training condition to stop in case of an error). It showed that all the features played

a role in model prediction from the experimental analysis. The importance of the input data

from the six features was significantly greater than 0. Therefore, all the six neurons in the input

layer were retained and the follow-up experiment was completed.

Next, the degree of the policy synergy between two policies was treated as the input data

and the number of synchronous patent applications was treated as the output data. There was

a total of 36 groups of experimental data corresponding to each quarter from 2012 to 2020.

The first 32 groups were used to complete the training of the improved RBF neural network

model and the last 4 groups of data were used as the test data. Fig 5 is the iterative diagram of

the model training.

To further verify the advantages of the model proposed in this paper, especially the

designed interpretable automatic coder and fractional momentum RBF neural network model,

the training speed and training accuracy were compared with those of the BP model. Table 2

shows a comparison of the errors produced by both models.

Table 2 shows that: (1) The number of iterations of our model are significantly less than

those of other neural network models and indicates that the interpretable automatic coder

Fig 5. Model training iteration diagram.

https://doi.org/10.1371/journal.pone.0271316.g005
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could realize the analysis of the importance of the data, effectively remove interference fea-

tures, and improve the learning effects of the useful features. Also, the interpretable automatic

coder improved the calculation efficiency of the automatic coder, thus reducing the costs and

improving the results of the calculations. The interpretability and readability of the model

have been improved and the results of the training effect have met expectations. (2) The errors

of our model are significantly smaller than those of other neural network models, indicating

that the network weight could make use of the momentum memory in the optimization

instead of relying only on the momentum obtained in the last iteration. Hence, our model can

make the updating of the weights more stable. The results of the training have shown that our

model is more adaptive to predictions of technological innovation by NEVs.

Stability analysis of improved neural network model

To verify the stability of our model in predicting technological innovation by applying the

degree of synergy, Eq (10) is improved to measure the degree of the synergy among three poli-

cies:

APCts ¼

X
pej � pmx

j � pmy
j � pmz

j

N
x 6¼ y 6¼ z; t 2 ½2012; 2020� ð12Þ

The calculation results of the degree of synergy among the three policies are shown in Fig 6.

The experiment described in Section 3.1 was repeated. To train our model, the degree of the

Table 2. Comparison of errors between different models.

Number of training iterations Average error

Our model 54 7.65%

RBFmodel 87 9.46%

BP-ANN 122 10.57%

Automatic coding machine 95 10.23%

SVM 114 9.81%

DBN 98 8.79%

https://doi.org/10.1371/journal.pone.0271316.t002

Fig 6. Synergy among three policy measures in each quarter from 2012 to 2020.

https://doi.org/10.1371/journal.pone.0271316.g006
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synergy among the three policies was treated as the input layer data while the application tech-

nological innovation data of each quarter from 2012 to 2020 in Fig 4 was treated as the output

layer. Finally, the results of the last four groups of data show that the number of iterations is 52

and the average error is 7.82%, thus indicating that our model has high stability. Meanwhile,

the experiment has shown that our model is more accurate at predicting technological innova-

tion with the synergy between two policies as the input layer. Then, we analyzed the influence

law of the technological innovation states of NEV enterprises.

Influence law of synergy of policy measures on technological innovation by

NEVs

To further analyze the effects of the degree of the synergy among the policy measures on tech-

nological innovation by NEV enterprises, the adjustment of the intensity of the policy mea-

sures was used to explore the effects of the policies and to measure the change in the degree of

synergy. On the basis of the calculation method for two degrees of policy synergy, the change

in the intensity of single policy measures, two simultaneous policy measures, and three policy

measures were adjusted. Eq (10) was used to retrieve the input data of the model and complete

the technological innovation state prediction of NEV enterprises under corresponding condi-

tions. On this basis, different forms of effective policy synergy to stimulate innovation are put

forward.

Scenario 1: The influence rule of the technological innovation state of NEV enterprises

when the intensity of single policy measure increase 5%, 10%, 15%, and 20% respectively.

Fig 7 shows that with the increase of single policy measure intensity, the overall trend of

enterprise technological innovation is on the rise. The comparison of the effects of increases in

the intensity of single policy measures on the number of patent applications has shown that

increases in the intensity of infrastructure construction and tax policy measures have had

stronger incentive effects on the number of patent applications. The impact of intensity change

of planning guidance measures on technological innovation is relatively small. A linear

increase in the number of patent applications has not been achieved by changing the intensity

Fig 7. Relationship between intensity of individual policy measures and number of patent applications.

https://doi.org/10.1371/journal.pone.0271316.g007
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of a single policy measure. Under the coupling effects of different policy measures, technologi-

cal innovation by NEV enterprises presents an unbalanced and inconsistent phenomenon.

Even under the influence of the degree of synergy between policies, an increase in the intensity

of single policy measures will reduce the number of patent applications and restrict technologi-

cal innovation by NEV enterprises.

This scenario applies to the very early stage of the development of the new energy vehicle

industry when the policy system is not perfect. A significant increase in the intensity of single

policy measure can promote technological innovation, which can be maintained for an appro-

priate time. By increasing the intensity of infrastructure or fiscal and tax policy measure, the

incentive effect of innovation can be maximized. And then the strategic layout of driving

industrial development by innovation can be formed. However, increasing the policy intensity

of planning and guiding measures alone without the synergy of other policies will restrict the

technological innovation of enterprises.

Scenario 2:The influence rule of the technological innovation states of NEV enterprises

when the intensity of the two policy measures increase by 5%, 10%, 15%, and 20%

simultaneously.

According to Fig 8, it shows strong volatility and uncertainty when the intensity of two pol-

icy measures increase at the same time. The changing trend of enterprise technological innova-

tion becomes more complex, even in a state of contradiction. When the change of policy

intensity is less than 10%, the incentive effect of simultaneous change of planning and technol-

ogy or technology and fiscal and tax policy intensity on technological innovation is small.

When the intensity boundary is exceeded by 10%, the excitation effect increases rapidly. How-

ever, under the change of policy intensity of 5%, 10% and 15%, technological innovation of

enterprises shows a certain contradiction. With the increase of intensity variation, this contra-

diction tends to expand. It can be seen that there is a moderate range of policy synergy in the

incentive effect of technological innovation of new energy vehicle enterprises.

Scenario 2 applies to the early stage of industrial development. Various policy measures are

coordinated to maximize the incentive effect, and the policy synergy mechanism is matched

for enterprises in different links of the new energy automobile industry chain. For upstream

raw material enterprises, the demand pull of the middle and downstream links is the main

incentive, which is affected by the overall environment of industrial policy. For midstream

Fig 8. Relationship between intensity of two policy measures and number of patent applications.

https://doi.org/10.1371/journal.pone.0271316.g008
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parts enterprises, technical specifications policy should be the core, and the synergy with plan-

ning guidance and fiscal and tax policy measures should be improved. Greatly enhancing the

intensity of planning guidance and technical standard policy measures can form an effective

policy incentive system. For downstream terminal enterprises of vehicle and charging facilities,

infrastructure policies should be taken as the core, and technical specifications and fiscal and

tax policy measures should be coordinated to encourage technological innovation of

enterprises.

Scenario 3: The influence rule of the technological innovation states of NEV enterprises

when the intensity of three policy measures increase 5%, 10%, 15% and 20% simultaneously.

As shown in Fig 9, when the intensity of any three policy measures increase, the initial tech-

nological innovation is better than the other two scenarios. When the intensity of the three

policy measures increases by 5%, the incentive direction of enterprise technological innovation

is the same, but the incentive effect is different. The incentive effect is the largest when the

intensity of guidance, infrastructure and fiscal and tax policy measures increase, while the

incentive effect is the most continuous when the intensity of guidance, fiscal and tax and tech-

nology policy measures increase at the same time. However, with the increase of intensity, the

incentive effect of enterprise technological innovation is generally tightened. The incentive

effect of different policies began to show positive and negative polarization when the intensity

increases to 10%. The difference of incentive effect of technological innovation is more promi-

nent when it is increased to 15%. When the intensity increases to 20%, the technological inno-

vation development of new energy vehicle enterprises tends to be unified, and the maximum

incentive effect is weaker than the previous several stages. It can be seen that there is an opti-

mal allocation of policy structure for the effective incentive range of new energy vehicle

enterprises.

Scenario 3 applies to the middle and late period of industrial development, when the policy

system has been basically formed. The change of policy synergy is the process of policy struc-

ture optimization. A small increase in the intensity of the three policy measures at the same

time can effectively promote industrial technological innovation, and this policy system opti-

mization method can reduce government expenditure to the greatest extent. On the other

hand, we need to avoid excessive increase in the intensity of policy measures and excessive

Fig 9. Relationship between the intensity of three policy measures and number of patent applications.

https://doi.org/10.1371/journal.pone.0271316.g009
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dependence on policy so as to successfully complete the transformation from policy-driven to

market-driven of new energy vehicle industry.

Conclusion

This paper designs an interpretable automatic coding machine and fractional momentum RBF

neural network model for technology innovation prediction, and new energy vehicle policy

and technology innovation of China are taken as an example to verify the validity of the

model. Three experimental scenarios were designed to reveal the inherent nature and law of

policy synergy and technological innovation by NEV enterprises through the number of poli-

cies changing intensity and the extent of the changes in intensity. The specific conclusions and

implications are as follows.

1. The improved RBF neural network model proposed in this paper is more stable for updat-

ing weights and more flexible for adjusting parameters. Therefore, the accuracy of innova-

tion prediction is higher. According to the simulation results of the test set data, the average

relative errors of the RBF neural network model with fractional momentum, the RBF neural

network model, and the BP neural network model are 7.36%, 9.46% and 10.57% respec-

tively. The feasibility and robustness of the proposed model in this paper are verified.

2. The incentive effect on technological innovation has obvious heterogeneity under different

scenarios and shows directional difference under different intensities. Different policy coor-

dination modes should be matched in different development stages of new energy vehicle

industry. The incentive effect of technological innovation of new energy vehicle enterprises

can be maximized and sustained by adjusting the degree of coordination of policy measures

through policy intensity. The reconstruction and optimization of the policy system to form

the policy space for technological innovation is the key to achieve the high-quality develop-

ment of new energy vehicles in China.
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