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Abstract: Acute lymphocytic leukemia (ALL) is an aggressive hematological malignancy of highly 
proliferative lymphoblasts. ALL is the most common cancer in children, and is typically treated with 
combination chemotherapy. The 5-year survival of ALL improved significantly in recent decades with this 
treatment approach. However, certain age groups (below 2 and over 10 years of age) have much worse 
prognosis, and over 50% of patients with ALL experience long-term side effects proportional to the dosage 
of anticancer drugs. Therefore, different treatment strategies are required to improve survival in ALL and 
to reduce side effects of chemotherapy. Since epigenetic modifications are dominantly reversible, “epidrugs” 
(drugs targeting epigenetic markers) are considered for feasibility in the treatment of ALL as epigenetic 
modifications, and acetylation of histones was demonstrated to play a critical role in the pathogenesis of 
ALL. Histone deacetylases (HDACs) have been shown to be differentially expressed in several hematological 
malignancies, including ALL. HDAC inhibitors (HDACis) have been shown to express selective toxicity for 
ALL cells, but they showed limited efficacy and higher than expected toxicity in mouse models or clinical 
trials in ALL. The aim of this review is to examine the role of the microbiota and microbial metabolites in 
the mechanisms of HDAC functions, and explore the utilization of the microbiota and microbial metabolites 
in improving the efficacy of HDACi in ALL. HDAC regulators and natural HDACi are depleted in ALL due 
to microbiota change leading to a decrease in butyrate and propionate, and HDACi treatment is not effective 
in ALL due to their short half-life. We propose that HDACi released by the microbiota may be necessary in 
HDAC regulation and this process is impaired in ALL. Furthermore, the review will also consider the role 
of restoration of the microbiota or supplementation of natural HDACi in potentially restoring HDAC and 
HDACi functions.
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Introduction

Acute lymphocytic leukemia (ALL) is a progressive 
hematological malignancy characterized by the proliferation 
of immature lymphocytes. ALL is the most common 
cancer in children, accounting for approximately 27% of all 
pediatric cancers, and is typically treated with combination 
chemotherapy (1). Each year, approximately 7,000 new 
cases and 1,500 deaths are reported in the US (2). Five-year  
survival of ALL improved significantly in recent decades, 
and is currently at around 71%. However, certain age 
groups (below 2 and over 10 years of age) have much 
worse prognosis, and over 50% of patients with ALL 
experience long-term side effects proportional to the 
dosage of chemotherapeutic drugs. Long-term side effects 
include early mortality, cardiac failure, infertility, cognitive 
impairment, obesity, fatigue, muscle weakness, decreased 
bone density, and increased risk of infection (3-7).

Therefore, alternative treatment approaches are urgently 
needed to improve survival of patients with ALL and to 
reduce side effects of chemotherapy. Multiple studies show 
that epigenetic modifications, and histone acetylation in 
particular, play a key role in the pathogenesis of ALL (8-10). 
Since epigenetic modifications are dominantly reversible, 
drugs targeting enzymes involved in histone acetylation 
became an attractive strategy for ALL treatment (8).

Histone deacetylases (HDACs) remove acetyl groups from 
lysines in histones, and as our group and others found, they 
are consistently overexpressed in ALL (8-10). Overexpression 
of HDACs have been associated with poor prognosis in 
ALL (8,11), as it leads to impaired cell development and 
uncontrolled growth via cyclin-dependent kinase inhibitor 
protein inhibition (12). HDAC inhibitors (HDACis) 
are chelating agents blocking HDAC function and have 
been observed to be efficient against ALL cells, while not 
damaging healthy lymphocytes. However, while HDACis 
have been shown to be efficient in cell culture, clinical trials 
and mouse studies have not been successful as HDACi 
showed higher than expected toxicity and reduced efficacy 
in ALL (8). A naturally occurring HDACi are short-chain 
fatty acids (SCFAs), such as butyrate and propionate (13). 
SCFAs are a by-product of the microbial metabolism of 
complex carbohydrates by the gut microbiota. We and other 
groups have shown that ALL is characterized by an altered 
gut microbiota and low SCFA levels, including butyrate, 
propionate, and acetate (9,10,14). SCFAs exert their 
effect through three mechanisms of action: (I) by HDAC 
inhibition via HDACs 1-11 and sirtuins; (II) via GPR41/43 

G-protein coupled receptors; and (III) via GPR109A 
receptors impacting lymphocyte chemotaxis (Figure 1). 
This review will focus on HDAC functions, although 
GPR41/43 and GPR109A receptors may also play a role 
in the pathogenesis of bloodstream infections, a common 
complication in ALL (9).

Current HDACi approved for the treatment of 
hematological malignancies include Vorinostat (Zolinza)-
approved in 2006 for the treatment of cutaneous T-cell 
lymphoma; Romidepsin (Istodax)-approved in 2009 for 
the treatment of cutaneous T-cell lymphoma; Belinostat 
(Beleodaq)-approved in 2014 for the treatment of peripheral 
T-cell lymphoma; and Panobinostat (Farydak)-approved in 
2015 for the treatment of multiple myeloma (8,15).

All the above-mentioned drugs are pan-HDACis, as 
they target all HDACs. In the treatment of ALL they show 
significant anti-cancer effect, but in mouse models and 
clinical trials indicated higher than expected toxicity and 
low efficacy (15).

Pan-HDAC have not been successful in ALL, likely 
because different HDACs have different oncogenic and 
oncosuppressor roles. For example, HDAC1–2 can play 
an oncosuppressive role in leukemia initiation, while 
HDAC3 has pro-oncogenic functions in multiple phases of 
leukemogenesis (16). While HDACs have been reported to 
be consistently overexpressed in ALL, it only involves the 
minority of all HDACs. HDAC1–4 and HDAC6–9 have 
been verified as overexpressed in ALL either in cell culture, 
or animal models or clinical samples (17). Therefore, 
these reports suggest that while HDAC inhibition offers a 
promising molecular pathway, a selective HDACi would be 
of primary importance for the successful management of 
ALL (8,11). The U.S. Food and Drug Administration (FDA) 
approved HDACi (Vorinostat, Panbinostat, Romidepsin, 
Belinostat) are pan-HDACis, and that may be the reason 
of their lack of success in clinical trials in ALL as they 
inhibit oncosuppressor and pro-oncogenic HDAC alike. 
Butyrate and propionate are selective inhibitors primarily of 
HDAC3, and HDAC8, while acetate inhibits HDAC5 and 
HDAC9 (15). A comprehensive review of HDACi receptor 
specificity can be found in Ceccacci et al. (15).

The microbiota in ALL

There are approximately 40 trillion microbes, dominantly 
bacteria, inhabiting the human body, and they are 
commonly referred to as the human microbiota. The 
microbiota performs several important physiological 
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functions from training the immune system to colonization 
resistance, among others (14,18). Over 95% of the microbiota 
is located in the intestinal tract, composed of around 200 
species per person, and >90% of the gut microbiota belongs 
to three phyla: Firmicutes, Bacteriodetes, and Actinobacteria (18). 
Apart from taxonomical compositions, microbial diversity is 
an important metric when evaluating microbiota changes, as 
decrease in diversity limits the breadth of microbial functions.

It is well established that the taxonomic composition of 
the microbiota changes in ALL (14). However, it has to be 
considered in human studies that the human microbiota 
is very versatile, and displays broad differences depending 
on diet, health status, age, geography, drug use, among 
other factors. Even more importantly, most patients with 

ALL undergo prophylactic antibiotic therapy that severely 
change microbiota compositions, and selecting appropriate 
control population may be challenging. Variability and 
antibiotic prophylaxis are likely the key reasons why there 
has been little consistency in microbiota changes in patients 
with ALL [reviewed in (14)].

Therefore, microbiota studies in animal model systems 
under more controlled environmental conditions may shed 
light on changes in the microbiota and its function in ALL (9).  
Nevertheless, increase in opportunistic pathogens such as 
Staphylococcaceae, Streptococcaceae, and Enterococcus have been 
consistently reported (19-23) along with decreased microbial 
diversity in ALL both in clinical settings (20,23-25) and in 
mouse models (9,26).
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Figure 1 Schematic representation of how SCFAs exert their effect on the host. SCFAs are microbial metabolites derived from the 
microbiota by degrading dietary fibers in the intestinal tract. SCFAs can bind to GPR41/43 receptors to provide nutrient source to intestinal 
epithelial cells, which affect intestinal barrier function. SCFAs can also bind to GPR109A receptors to influence lymphocyte migration and 
the integrity of the lamina propria. Lastly, SCFAs are natural inhibitors of HDAC, which regulate the transcriptional activity of the cell in 
tandem with HAT by adding/removing acetyl groups on histone terminals. The image was created with Biorender.com. HDAC, histone 
deacetylase; HAT, histone acetyltransferase; Ac, acetyl; CoA, coenzyme A; RNAPII, RNA polymerase II; JAM, junctional adhesion molecule; 
SCFA, short-chain fatty acid.
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HDACi in cancer therapy

Histones

Epigenetic alterations play an important role in the 
pathogenesis of ALL (27). Amongst those, histone 
modif icat ions ,  especia l ly  acetylat ion of  his tones 
demonstrated direct clinical significance (8,27,28). Histones 
are a class of highly conserved proteins rich in lysine and 
arginine residues, whose primary role is to organize and 
tightly package genomic DNA into chromatin structure. 
Histones protect genomic DNA from becoming tangled 
and undergoing DNA damage. In relation to that, histones 
also play major roles in regulating gene expression and 
DNA replication via directing DNA packaging. There are 
five main types of histones: H1, H2A, H2B, H3, and H4, 
and these proteins assemble together to form a nucleosome. 
Due to their arginine and lysine-rich structure, histones 
possess a positive charge which makes it possible to interact 
with negatively charged DNA molecules. This interaction 
leads to the formation of the histone-DNA complex, which 
forms the fundamental building blocks of chromatin (15).

This tight packaging of genomic DNA by histones 
restrict access for transcription factors and other regulatory 
elements, creating a repressive state called heterochromatin 
characterized by limited gene expression. However, 
epigenetic modifications of histones, such as acetylation, 
can alter chromatin structure and allow increased access 
to genes leading to a more open state with increased 
transcription called euchromatin.

HDACs

HDACs are enzymes that regulate gene expression and 
chromatin structure by removing acetyl groups from 
histone terminals. Acetylation and deacetylation of histones 
are a dynamic process leading to alterations in chromatin 
structure and gene expression, and are completed by histone 
acetyltransferases and HDACs, respectively. Acetylation 
of histones, an addition of acetyl groups to lysine residues 
by histone acetyltransferases neutralize the positive charge 
of histones, allowing a more open chromatin structure and 
increased gene expression. On the other hand, HDACs 
remove acetyl groups from lysine residues, restoring 
positive charge to histone, that leads to a more compact 
chromatin structure and repressed gene expression. HDACs 
are categorized based on their structure and enzymatic 
activity. Class I, II, and IV HDACs are zinc-dependent 
enzymes, while class III HDACs, also known as sirtuins, 

require nicotinamide adenine dinucleotide (NAD+) as a 
cofactor (15). HDACs have been found overexpressed in 
several cancer types, including leukemias (8,29), which 
led to the theory that HDAC inhibition may play a role in 
cancer treatment.

HDACis and their use in cancer therapy

HDACs are differentially expressed in several solid tumors 
(30-34), and HDACi were shown a strong anticancer 
activity in vitro (35-38). However, expression differences of 
HDAC genes can be bidirectional which may be due to the 
involvement of HDACs in a multitude of cell functions (28). 
For example, in breast cancer only HDAC2 and 3 were 
associated with clinicopathological signs while HDAC1 
was not (31), or as it was shown in promyelocytic leukemia 
mouse model, HDAC1 can act as an oncosuppressor 
in tumorigenesis, while also facilitate the disease as an 
oncogene in tumor maintenance (28). These data suggest 
that broad range HDACi may inhibit innate antitumor 
mechanisms, and a more tailored inhibition of HDACs are 
necessary for targeted therapies.

HDAC studies in ALL

While the methodological aspects of gene expression 
studies are beyond the scope of this review, it has to be 
noted that while only the differential expression results will 
be reported here, these results were obtained from different 
patient populations, different locations and different cell 
lines. Since leukemias are genetically very heterogenous and 
can affect multiple age groups, this aspect has to be taken 
into account when interpreting the results. In addition, the 
works reported here include a wide variety of experimental 
protocols, calculations, analytical methods, thresholds, and 
(positive and negative) controls (if any), which could all 
influence the final results (39-43).

With that  in  mind,  several  HDACs have been 
consistently reported to display an altered gene expression 
pattern in ALL. Moreno et al. reported HDAC differential 
expression from bone marrow samples of 94 pediatric ALL 
patients using Taqman real-time quantitative polymerase 
chain reaction (RT-qPCR) for HDACs 1–7 and 9–11 (44). 
The authors found HDACs 2–3 and 6–8 significantly 
overexpressed in ALL bone marrow, HDAC2 and HDAC8 
providing the largest differential expression when compared 
to normal bone marrow samples. Higher expression of 
HDACs 1 and 4 and lower expression of HDAC5 were 
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shown in T-cell ALL when compared to B-cell ALL 
samples. Higher expression of HDAC3 has been associated 
with low-risk classification, and higher 5-year event-free 
survival. Lower HDAC3 expression implied an increase in 
unfavorable outcomes, while overexpression of the HDAC7 
and HDAC9 genes indicated lower 5-year event-free 
survival and high levels of minimal residual disease.

In 93 pediatric and adolescent ALL patients aged 
between 2 and 20 years, Gruhn et al. (12) isolated leukemia 
cells and mononuclear cells from the bone marrow, 
and measured expression levels of HDACs 1–11. Using 
RT-qPCR, their group found HDAC1, HDAC2, and 
HDAC8 were significantly overexpressed when compared 
to donor samples, while none of the HDACs showed 
underexpression. HDAC1 and HDAC4 overexpression 
was associated with higher (>50,000/μL) initial white 
blood cell (WBC) count, and HDAC4 was also correlated 
with poor response to prednisone (12). The authors also 
showed that reduction of HDAC4 in cell culture improved 
chemotherapy response, implying a potential role for 
specific inhibition of HDAC in the treatment of ALL.

While most HDAC are overexpressed in ALL, HDAC7 
is frequently underexpressed in ALL, particularly in B-cell 
ALL (45). HDAC7 is a class IIa HDAC, with a primary 
role in lineage commitment of B-cells as it interacts 
with transcription factor MEF2C in B-cell progenitors, 
which in turn leads to silencing of lineage-inappropriate 
genes and appropriate differentiation of B-cells (46). 
Ectopic expression of HDAC7 leads to apoptosis and 
downregulation of the c-Myc, a transcription factor with a 
wide range of functions including apoptosis, hematopoiesis, 
and DNA damage response. It has been demonstrated 
that low expression of HDAC7 in B-cell ALL samples 
is correlated with increased levels of c-Myc to promote 
apoptosis, based on a dataset of 191 samples from patients 
with B-cell ALL (45). The study used an expression 
profiling microarray targeting two HDAC7A transcript 
variants.

SCFAs as HDACi in ALL

As mentioned earlier, SCFAs are microbial metabolites 
with several physiological functions, including regulation 
of cell cycle and inhibition of HDACs. Microbiota-
derived HDACi include SCFAs propionate, butyrate (both 
selectively inhibiting HDAC3 and 8), and acetate (selective 
inhibitor of HDACs 5 and 9) (15). However, there have 
been limited studies concerning their activities in ALL.

Pivaloyloxymethyl butyrate (AN-9)

AN-9 is a butyric acid prodrug that is metabolized by 
intracellular esterases to release butyrate. AN-9 displays 
improved pharmacokinetics to butyrate due to its increased 
permeability across cell membranes (47) and exhibits anti-
tumor activity in vitro and in vivo (48). AN-9 has been 
shown to possess an effective antiproliferative and cytotoxic 
activity against multiple ALL cell types, including cells 
resistant to doxorubicin and refractory ALL (49), and only 
has been tested in preclinical studies.

Valproic acid

Valproic acid is an SCFA with HDACi activity (a pan-
HDACi), which has been used as an anti-epileptic 
medication and treatment for bipolar disorder and post-
traumatic stress disorder (PTSD) for decades. Valproic acid 
in vitro inhibits proliferation and induces apoptosis and 
hyperacetylates histone H4 proteins in ALL cell line (50). 
In the same study, valproic acid was also demonstrated to 
reduce the spread of the tumor in a B-cell ALL xenograft 
mouse model and inhibited leukemia-induced splenomegaly 
without significant toxicity detected in the animals (50).

Potential role of changes in the microbiota in ALL

It has been repeatedly demonstrated in clinical samples 
from patients with ALL and in ALL mouse models that 
the microbiota undergoes drastic changes in ALL, and the 
changes in the microbiota are consistently characterized 
by a decrease in microbial α-, and β-diversities [reviewed 
in (14)]. Since not every member of the microbiota can 
produce SCFAs, changes in the microbiota lead to changes 
in SCFA levels as well. It has been shown that levels of 
butyrate, propionate, and acetate significantly decrease 
in ALL, and replenishing these SCFAs ameliorate the 
consequences of the disease (9).

As discussed above, SCFAs are natural HDACis, which 
can enter the circulation and cross the blood-brain barrier, 
and apart from their nutritional value, they also participate 
in a broad range of cellular functions (8). We and other 
groups have shown that microbiota changes in ALL lead 
to a decrease of natural HDACis butyrate, propionate, and 
acetate (9,14). An intriguing hypothesis would be to assert 
that the depletion of natural HDACi may participate in 
the pathophysiological development of lymphocytes and 
in the pathogenesis of ALL. Firstly, as natural HDACi 
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with limited or no toxicity, a decrease of SCFAs can result 
in irregularities in cell cycle development. Secondarily, 
SCFAs have very selective inhibitory capacity for HDACs, 
which could circumvent the limited efficacy of pan-
HDACs, such as Givinostat, seen in the treatment of ALL. 
Thirdly, natural HDACs such as butyrate are provided in 
a continuous low dose (compared to treatment dosage) by 
the microbiota, which could lead to improved treatment 
efficacy; while HDACi drugs typically are administered in 
higher dose but have short half-life. Lastly, a combinative 
effect of SCFAs along with traditional chemotherapy should 
be more extensively explored in ALL (51).

Conclusions

As of the writing of this review (October 2023), there 
is no active clinical trial directed at ALL using SCFAs. 
Valproic acid has been involved in a phase 2 trial in acute 
myeloid leukemia (AML) and myelodysplastic syndrome 
with decitabine therapy (NCT00414310). Preliminary data 
indicate higher remission and slightly higher adverse effects 
for the valproate (VPA)-treated group, but no peer-reviewed 
paper has been published. Phase 2 studies have been 
conducted in AML with phenylbutyrate acid, but no results 
have been published (NCT00006240, NCT00004871). 
Further studies in cell and animal models of hematological 
malignancies will be required to fully utilize the potential 
of SCFAs either as a monotherapy or in combination with 
chemotherapy for improved treatment of ALL.
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