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Abstract
Background: The gene encoding the envelope of lentiviruses exhibits a considerable plasticity,
particularly the region which encodes the surface (SU) glycoprotein. Interestingly, mutations do not
appear uniformly along the sequence of SU, but they are clustered in restricted areas, called
variable (V) regions, which are interspersed with relatively more stable regions, called constant (C)
regions. We look for specific signatures of C/V regions, using hidden Markov models constructed
with SU sequences of the equine, human, small ruminant and simian lentiviruses.

Results: Our models yield clear and accurate delimitations of the C/V regions, when the test set
and the training set were made up of sequences of the same lentivirus, but also when they were
made up of sequences of different lentiviruses. Interestingly, the models predicted the different
regions of lentiviruses such as the bovine and feline lentiviruses, not used in the training set. Models
based on composite training sets produce accurate segmentations of sequences of all these
lentiviruses.

Conclusion: Our results suggest that each C/V region has a specific statistical oligonucleotide
composition, and that the C (respectively V) regions of one of these lentiviruses are statistically
more similar to the C (respectively V) regions of the other lentiviruses, than to the V (respectively
C) regions of the same lentivirus.

Background
Retroviruses are RNA viruses infecting vertebrates and
many non vertebrates. Virus particles are spherical and
surrounded by an envelope. Their viral replication is
dependent of the RT (Reverse Transcriptase), a viral RNA-
dependent DNA-polymerase. The lentivirus genus is part
of the retrovirus family. Lentiviruses infect animals and
humans and cause slowly progressing diseases. Among
the lentivirus genus, HIV-1 and HIV-2 (Human Immuno-
deficiency Virus type 1 and 2) infect humans, EIAV
(Equine Infectious Anemia Virus) infects equids, SRLV

(Small Ruminant LentiVirus) infects goats and sheep, SIV
(Simian Immunodeficiency Virus) infects non primate
monkeys, BIV (Bovine Immunodeficiency Virus) infects
bovines and FIV (Feline Immunodeficiency Virus) infects
felines.

The considerable plasticity of the genome of lentiviruses is
quite obvious in the env gene, encoding the envelope, par-
ticularly in the region encoding the surface (SU) glycopro-
tein forming spikes. Causes of this plasticity are, among
other factors, the low fidelity of the viral reverse tran-
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scriptase (RT) during the retrotranscription of the viral
RNA genome into DNA, the lack of proofreading activity
of the RT, the high level of virus replication, and some
recombination events in co-infected cells [1-4].

Interestingly, SU mutations do not appear uniformly
along the env gene, but are clustered in restricted and spe-
cific areas defined as variable (V) regions flanked by con-
stant (C) regions. On average, and depending on the
lentivirus considered, from 10 % to 35 % of the amino-
acids in SU vary between isolates, and more than 70 % of
these variable amino-acids are located in V regions. Such
C/V segmentations hold for all the lentiviruses [5-11].

It is unclear whether the accumulation of mutations in V
regions is mainly due to locally high intrinsic mutation
rates, or if mutations occur at similar rates at every SU sites
with subsequent selection mechanisms eliminating most
variants from the C regions. In any case, the plasticity of
these genomes allows them to escape immune control
very efficiently, while keeping their identity. Most of
amino acids encoded by the V regions are on the outside
of SU, while the amino acids encoded by the C regions are
in the internal part. In this respect, one should note that
the replication acts on one-dimensional molecules, at a
moment when most of the information about their three-
dimensional conformation seems unavailable. In other
words, if the intrinsic mutation rates are indeed different
in C regions and in V regions, this might be due to some
specific signals encoded by the nucleotide (linear) viral
sequence itself, possibly corresponding to interactions
with the RT. To test this hypothesis, we developed a math-
ematical model based on lentivirus sequences, as simple
and robust as possible, able to localize and to characterize
their C/V segmentation of the SU region. Our approach
was based on HMMs (hidden Markov models). These
models are tailored to describe heterogeneous sequences,
since they basically break down a given sequence into a
succession of locally homogeneous subsequences. HMMs
were initially introduced in the context of speech recogni-
tion [12] and they are now major tools of the analysis of
genomic and proteomic sequences [13-19]. In sequence
analysis, each of the subsequences called a region, is
described by the value of a Markov chain, called the hid-
den state, taken from a finite collection of values. Each
state is characterized by its own statistical composition in
nucleotides or in amino-acids. The succession of states
itself is ruled by a master Markov chain, called the hidden
chain.

Our main findings are as follows. Using SU sequences of
EIAV, HIV, SRLV or SIV to train the HMMs, we obtained
clear and accurate delimitations of the C and V regions of
these lentiviruses. This suggests that the statistical compo-
sition of the C regions is markedly different from the sta-

tistical composition of the V regions. Additionally, we
developed combined models, based on EIAV, HIV, SIV
and SRLV sequences. These were able to predict simulta-
neously the C and V regions of every lentivirus in the col-
lection above. Our combined models also predicted the
C/V segmentation of other lentiviruses which were not
used in the training sets: BIV and FIV. This indicates that
the C and V regions are statistically distinct and that the V
regions of all the lentiviruses share common statistical sig-
natures.

Results
C/V segmentations of EIAV
We first tried to differentiate the C and V regions of the
EIAV SU, using HMMs with N = 2 hidden states, for differ-
ent orders m. The parameters of the models were esti-
mated on training sets of 94 nucleotide sequences, by the
EM algorithm. We used various training sets, dividing at
random our complete set of sequences into two equal
parts (1:1), the training and the test sets. Then, none of the
various HMMs was able to identify the C and V regions of
the EIAV SU. We obtained hidden states sequences which
oscillated and repeatedly jumped from one hidden state
to the other (data not shown). Hence, this method was
not reliable to identify homogeneous regions correspond-
ing to the C and V regions of the EIAV SU.

By contrast, fixed EM, as described in section Methods,
yielded a clear delimitation of the known C and V regions
on the whole test set, for HMMs of different order. For
example, HMM of order m = 2 allowed us to predict most
of the V regions on nucleotide sequences. HMMs of higher
orders (m ≥ 3) gave even more accurate prediction. To
evaluate the fit quality and to select the best model among
the candidates, we used the Akaike information criterion
(AIC) [20]. This criterion is defined by

AIC = -2log(L) + 2n,

where L is the likelihood of the candidate model and n the
number of free parameters. AIC is based on the Kullback-
Leibler distance between different distributions of
sequences (for this notion, see our section below on Sep-
aration of the EIAV C/V regions) and is designed to
achieve a balance between fit quality and number of
parameters corresponding to the model with the lowest
AIC. The best model to predict the C and V regions on
nucleotide sequences of the EIAV SU was of order m = 6,
according to the AIC criterion (Table 1). However, for m =
5, the fit of the predicted C and V regions with the segmen-
tations deduced from alignments was almost perfect (Fig-
ure 1A) and minimized the risk of overfitting the data.

To differentiate the variable regions V1 to V8 and the C
regions, we then used HMMs with N = 9 states on nucle-
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otide sequences. Thus, we trained one hidden state with
each variable region and one hidden state with the con-
stant regions as a whole, and we estimated the parameters
of a HMM of different orders by the fixed EM algorithm.
The best model is of order m = 5 (Table 1). This yields a
precise delimitation of the C and V regions on nucleotide
sequences, each V region showing a distinct signal (Figure
1B). Estimating the parameters of the models with the
direct counting methods gave similar results.

Finally, HMMs with N = 2 or N = 9 hidden states, able to
locate the C and V regions on deduced amino-acid
sequences, were trained by the fixed EM algorithm and the

direct counting method. We obtained accurate predictions
of the C and V regions on the test sequences, with every
training method, using a HMM of order m = 1 (Figures 2A
and 2B).

The reconstructed sequences of the hidden states did not
oscillate between the different hidden states as in the
models based on the EM algorithm. The transition matrix
obtained without prior information on the length of the
regions allowed to identify long homogeneous regions
and to compare them to the C and V regions previously
defined.

At this point, we developed models with an unique C
region. This C region do not fit a real region but represent
an average of all the constant regions. There is no guaran-
tee a priori that the constant regions are grouped together
and can be modeled by an unique state. However, the C
region introduced in our models allowed to predict all the
constant regions with an amazing accuracy.

Tests of the models of EIAV C/V regions
Since our models were able to predict the C and V regions
on both deduced amino-acid and nucleotide sequences of
EIAV SU, we put them under trial in several directions.
First, we checked that the models were not overfitted,
keeping in mind that pseudo-counts were introduced to
limit the overfitting problem. We checked whether the
models were not overly specific of the training data, and
whether it was possible to make them encompass new
data tests. To perform such tests, the models were trained
using nucleotide or amino-acid sequences sharing a min-
imal amount of motifs with the test sequences. For exam-
ple, we trained the models on virus sequences, which were
present at the beginning of the disease induced in horses
by EIAV, and we tested them on virus sequences at later
stages of the disease [6]. Because of the variations due to
viral replication during the time course of the EIAV infec-
tion, the training and test sequences displayed 7.8 % (±
1.3) of divergence at the amino-acid level. In particular,
the test and training sequences displayed 43.8 % (± 20.2)
of divergence in the third V region (V3). Despite this
important level of divergence between the training and
test sequences, the models correctly predicted the C and V
regions, notably V3.

To check that the models were not simply following the
order and positions of the V regions along the sequence,
we also assembled artificial sequences with a greater
number of V regions than in the real ones. For instance,
we inserted a copy of 15 amino-acids, taken from V7, into
C2. The models which were trained with the fixed EM
algorithm on the original sequences, managed to predict
perfectly the additional V region of these modified
sequences (Figure 2C).

Regions predicted by the hidden Markov models on the nucleotide sequence of EIAV SUFigure 1
Regions predicted by the hidden Markov models on 
the nucleotide sequence of EIAV SU. The graphic dis-
plays the regions predicted by our mathematical model (—). 
The schematic organization of EIAV SU, with the position of 
the 8 variable regions V1 to V8 (hatched boxes) and of the 9 
constant regions (—), as defined by classical amino-acid mul-
tiple alignments, is represented under the graphic. (A) HMM 
of order 5 with 2 hidden states, trained on the variable (V) 
and constant (C) regions. (B) HMM of order 5 with 9 hidden 
states, trained on the 8 V regions and on the reunion of the 
C regions.
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Combined C/V models
Models based on EIAV sequences were unable to predict C
and V regions of HIV, SIV or SRLV SU sequences (Figure
3). Hence, we developed a new specific model for each
lentivirus. We trained models of order m = 1 on deduced
amino-acid sequences and models of order m = 5 on
nucleotide sequences, on 78 HIV sequences, 45 SIV
sequences and 51 SRLV sequences respectively, using
either the fixed EM algorithm or the direct counting meth-
ods. These new models, specific to each lentivirus, were
indeed able to predict the C and V regions of test
sequences of the corresponding virus, but failed to predict
the C and V regions of the other lentiviruses. On the con-
trary, a combined HMM of order m = 1 with N = 2 hidden
states, trained on a composite training set of EIAV, HIV,
SIV and SRLV deduced amino-acid sequences, was power-
ful enough to localize accurately the V regions of test
sequences of EIAV (V1 to V8), HIV (V1 to V4), and SIV or
SRLV (V1 to V5). Rather to our surprise, the model also
discriminated V1 and V2 of HIV, although these two
regions were given as a unique region V1/V2 in the train-
ing set (Figure 4). The C and V regions of EIAV, HIV, SIV
and SRLV were also predicted with great accuracy by
HMMs of order m = 5 with N = 2 hidden states, trained on
the corresponding nucleotide sequences. Finally, the com-
bined models, trained on EIAV, HIV, SIV and SRLV
sequences, were able to predict C and V regions of two len-
tiviruses which were not used to train them, namely BIV
and FIV (Figure 4).

Separation of the EIAV C/V regions
The models developed in our study allow us to differenti-
ate the C and V regions of EIAV and to distinguish each of
the 8 variable regions. This indicates that the C and V
regions have distinct statistical composition and that the
8 variable regions are statistically distinct too. A classical
method to quantify the differences between the Markov
chains which represent the C and V regions of EIAV, is to
consider the relative entropy, also named Kullback-Lei-
bler divergence, between these models, see [21-26]. The
relative entropy of two Markov chains is given by

where P and Q are the transition matrix of the two Markov
chains and π the invariant distribution associated to P. We
used a symmetrized form of the relative entropy, defined
as

δ(P,Q) = H(P|Q) + H(Q|P).

The computation of the symmetrized relative entropy
between the Markov chains modeling the 9 constant
regions and the 8 variable regions of EIAV (see Table 2)
indicates that the different C (respectively V) regions are
closer to the global C (respectively V) region than to any
of the V (respectively C) regions. Furthermore, the V
regions are closer to each other than to any of the C
regions.

To quantify this overall feeling, we first used the sym-
metrized relative entropy δ to study the distances between
the C and V regions, representing them by a dendogram.
Note that δ is not a true metric because it does not satisfy
the triangle inequality. However, one can visualize the
distances between the different regions by an unrooted
tree, computed by the program Kitch (Phylip 3.5c) using
the distance matrix previously estimated (Figure 5). The
dendogram shows a distinct separation between a first
group, made of the C regions, and a second group, made
of the V regions. This confirms the fact that the C and V
regions of EIAV differ in their statistical composition.

To further quantify this separation between the C and V
regions, we built an asymptotic statistical test for the
empirical transition matrices of two different regions,
based on the following considerations. Assuming in gen-

eral that  and  are empirical transition matrices of

the same Markov chain with theoretical transition matrix
q, based on two independent sequences of length L of the

H P Q i P i j
P i j

Q i ji j

( | ) ( ) ( , )log
( , )

( , )
,

,

= ∑π

q1 q2

Table 1: Modeling of the C and V regions of the EIAV SU.

Number of hidden states
N = 2 N = 9

Order AIC Order AIC

m = 2 250184 m = 2 240054
m = 3 233586 m = 3 215632
m = 4 189932 m = 4 180734
m = 5 138084 m = 5 169786
m = 6 130774 m = 6 300404
m = 7 262786

The best model according to AIC (Akaike Information Criterion), i.e. the one with the smallest AIC value, is shown in bold.
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Regions predicted on HIV sequences by hidden Markov mod-els trained on EIAV sequencesFigure 3
Regions predicted on HIV sequences by hidden 
Markov models trained on EIAV sequences. The 
graphic displays the regions predicted on the HIV-1 HXB2 
sequence by our mathematical models (—). The schematic 
organization of HIV SU with the position of the variable 
regions (hatched boxes) and of the constant regions (—), as 
defined by classical amino-acid alignments, is represented 
under the graphic. (A) HMM of order 5 with 2 hidden states 
trained on nucleotide sequences of EIAV SU. (B) First order 
HMM with 2 hidden states trained on deduced amino-acid 
sequences of EIAV SU.
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Regions predicted by the hidden Markov models on the deduced amino-acid sequence of EIAV SUFigure 2
Regions predicted by the hidden Markov models on 
the deduced amino-acid sequence of EIAV SU. The 
graphic displays the regions predicted by our mathematical 
model (—). The schematic organization of EIAV SU with the 
position of the 8 variable regions V1 to V8 (hatched boxes) 
and of the 9 constant regions (—), as defined by classical 
amino-acid multiple alignments, is represented under the 
graphic. (A) First order HMM with 2 hidden states, trained 
on the V and C regions. (B) First order HMM with 9 hidden 
states, trained on the 8 V regions and on the reunion of the 
C regions. (C) First order HMM with 9 hidden states tested 
on an artificial sequence, where 15 amino-acids of the V7 
sequence are inserted into the constant region C2 located 
between V1 and V2.
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Regions predicted by the combined hidden Markov model trained on EIAV, HIV, SIV, and SRLV SUFigure 4
Regions predicted by the combined hidden Markov model trained on EIAV, HIV, SIV, and SRLV SU. The graphs 
display the regions predicted by the first order combined HMM, on sequences of EIAV, HIV, SIV, SRLV, BIV and FIV SU. The 
schematic organization of SU with the position of the variable regions (hatched boxes) and of the constant regions (—), as 
defined by classical amino-acid alignments, is represented under the graphics.
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Markov chain, one can show that LH( , ) is asymp-

totically χ2-distributed with D(q) degrees of freedom,
where D(q) denotes the "dimension" of the Markov chain,
that is, D(q) is the number of nonzero coefficients in q
minus the number of states [see Additional file 1]. When
every transition has positive probability and q has size M,

D(q) = M2 - M. In particular,

E(H( , )) ~ D(q)/L.

In the still more general case when  and  are based

on independent sequences of unequal lengthes L1 and L2

respectively, a similar result holds, namely that � H( ,

) is asymptotically χ2-distributed with D(q) degrees of

freedom, where � denotes the harmonic mean of L1 and

L2, defined by the relation

Using the symmetrized entropy δ, one sees that the distri-

bution of  is asymptotically χ2 with D(q)

degrees of freedom, and in particular,

E(δ( , )) ~ 2D(q)/�.

Using this result, one can perform χ2 tests of equality
between the C and V regions of EIAV. This yields p-values
very close to zero. The biggest p-value is obtained for the
two variable regions V1 and V2 and is 4·10-17. Since the
p-values are so small, one can conclude that the Markov
chains previously defined to model the C and V regions of
EIAV do not reflect the same statistical composition in
words of amino acids. Hence, each of the 9 constant
regions and the 8 variable regions has a specific signature.

Discussion
We report that HMMs are able to predict the C/V segmen-
tations of various lentiviruses, based only on their
deduced amino-acid sequences or their nucleotide
sequences, with an amazing accuracy and a great robust-
ness.

We would like to stress the fact that our algorithms iden-
tify the V regions without any comparison by alignment
with known sequences. The models developed in this
study are not based on computations of divergences
between sequences. Furthermore, the lengths of the
regions exhibit great variability, and the numbers of
regions themselves may be, and indeed are sometimes,
different from one sequence to another. These, and the
various tests presented in section Results, prove that the
models do not rely on the relative positions of the regions,
nor on their lengths, to identify C/V segmentations of the
sequences. On the contrary, they have to rely only on
some statistical differences between the compositions in
words of nucleotides or amino-acids of length 1 + m,
where m is the order of the model.

q1 q2

q1 q2

q1 q2

q1

q2

2 1 1

1 2
= +

L L
.

1
2 1 2δ( , )q q

q1 q2

Table 2: Symmetrized relative entropy between the C/V regions of EIAV.

δ C1 C2 C3 C4 C5 C6 C7 C8 C9 C V V1 V2 V3 V4 V5 V6 V7 V8

C1 0 4.40 5.08 4.63 4.65 5.08 4.26 4.70 3.52 2.55 3.70 3.62 2.80 3.67 3.77 3.37 3.70 4.00 3.25
C2 0 6.25 5.77 5.93 6.38 5.90 4.65 5.37 2.58 4.60 4.46 3.47 4.53 4.72 4.96 4.94 4.72 3.78
C3 0 6.00 6.62 5.69 5.77 5.35 5.35 2.85 4.86 4.78 4.07 4.51 4.71 4.87 5.18 4.76 4.73
C4 0 6.36 5.71 5.22 5.06 5.09 2.65 4.95 4.70 3.48 4.85 5.14 5.04 4.13 5.26 4.28
C5 0 6.86 6.08 6.17 5.00 2.97 4.88 4.81 3.64 4.96 5.35 4.95 5.41 4.71 4.54
C6 0 6.21 4.70 5.25 3.18 4.70 4.60 3.40 4.75 4.74 4.75 4.67 5.20 3.90
C7 0 4.92 4.85 2.37 4.71 5.15 3.93 5.16 4.99 4.93 4.63 4.47 4.88
C8 0 4.34 2.66 4.68 3.77 3.20 4.25 4.11 4.80 4.04 4.50 3.36
C9 0 2.48 3.84 3.92 3.22 4.16 4.32 4.13 4.84 4.00 3.32
C 0 3.35 3.64 3.19 3.70 3.78 3.62 3.99 2.96 3.01
V 0 2.25 2.07 1.91 2.11 2.09 2.21 1.87 2.36
V1 0 2.41 3.79 3.26 3.07 3.59 3.64 3.57
V2 0 2.79 2.73 2.71 2.59 2.77 2.34
V3 0 3.63 3.77 3.60 4.54 3.41
V4 0 3.57 3.66 4.09 4.03
V5 0 4.08 3.77 3.69
V6 0 4.25 3.52
V7 0 3.83
V8 0
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More detailed consequences of the performances of the
models are as follows. First, all the C regions can be suita-
bly modeled by a unique state. This proves that they have
similar statistical properties. The V regions can be mod-
eled either by one state or by several states. This suggests
that V regions share common properties, when compared
to C regions, and, at the same time, that each V region has
its own statistical profile.

To highlight similarities and differences between data, a
classical statistical method is based on Principal Compo-
nents Analysis (PCA). Knowing that first order HMMs
were able to differentiate between the C and V regions on
deduced amino-acid sequences of EIAV SU and used only
frequencies of words of two amino-acids, we performed a
PCA of the 9 constant regions and the 8 variable regions
of EIAV, using the frequencies of 20 × 20 = 400 words of
two amino-acids as variables. Figure 6 shows a projection
of the C and V regions of EIAV onto the plane defined by
the two first principal axes. One sees that, contrary to our
method based on HMMs, PCA does not allow to separate
the EIAV regions into two groups, whether these groups
correspond to the C regions and the V regions or not. With
PCA, all the regions seem to have nearly the same statisti-
cal composition in words of two amino-acids, although it

is not the case. Thus our method, based on HMMs, is able
to reveal rather subtle differences between the group of V
regions and the group of C regions.

It may be of interest to note that a model, trained on EIAV
sequences only, failed to identify the C and V regions of
other lentiviruses, and conversely. Hence, the genetic
compositions of the env genes of these different lentivi-
ruses are distinct. However, the C and V regions of EIAV,
HIV, SIV and SRLV do share some properties which are
similar enough, so as to be recognized by a unique HMM,
trained on a combined pool of EIAV, HIV, SIV and SRLV
SU sequences. This combined model also predicts the C/
V segmentation of BIV and FIV, whose sequences were not
used to train the model. This supports the conclusion that
the statistical compositions in words of nucleotides or
amino-acids of the envelope genes of all these lentiviruses
share some common features.

Models of order m = 5 on nucleotide sequences, based on
the frequencies of words of length 6, predict with an
amazing accuracy the C/V segmentations. These words
correspond to one or two complete codons. This length is
also compatible with the number of nucleotides that are
in the neighborhood of the palm of RT during the retro-
transcription [27-29]. This suggests that some mechanism
of inaccurate nucleotide substitution, possibly due to

Principal Components Analysis of the C/V regions of EIAVFigure 6
Principal Components Analysis of the C/V regions of 
EIAV. Plot of the two first axes of the principal components 
analysis of the composition in words of two amino-acids of 
the constant C1 to C9 and variable V1 to V8 regions of EIAV.

Graphic representation of the distances between the C and V regions of EIAVFigure 5
Graphic representation of the distances between the 
C and V regions of EIAV. A distance matrix between the 
C and V regions is computed with the symmetrised form of 
the relative entropy. A dendogram was evaluated with the 
Kitsch (Phylip 3.5c) program with the default parameters and 
drawn with the "Unrooted" software [41].
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sequence-specific variations and in interaction with the
side chains of the RT protein, might modify the speed
and/or the precision of the passage along the portion of
the RNA chain which the RT copies.

Conclusion
The constant and variable regions of the lentiviruses EIAV,
HIV, SLRV, SIV, BIV, and FIV can be identified by rather
crude mathematical models based on HMMs. We attempt
at present to extract the nature of the statistical signals
which allow to distinguish between these regions. In this
spirit, it has been reported that the retroviral G → A hyper-
mutation occurs mainly in specific dinucleotide contexts,
like GpG and GpA [30,31]. Hence, one of our objectives
now is to compare to known contexts of mutation the
nucleotide words which are, as the present study shows,
statistically characteristic of the variable regions of these
lentiviruses.

The most interesting contribution of the combined mod-
els based on nucleotide or deduced amino-acid sequences
of different lentiviruses is the rapid identification of the C
and V regions on newly identified lentivirus sequences
without the requirement to alignment. This should be
especially useful for highly divergent sequences.

HMMs are usually used to identify homogeneous seg-
ments in long sequences. In this study, we showed that
HMMs are powerful tools able to identify very short seg-
ments in sequences of just few hundred nucleotides. We
are considering to generalize our method to study small
motifs in short sequences.

Methods
Biological data
This section describes the sets of SU nucleotide sequences,
used to train and to test the models (Table 3). When the
set of sequences for a virus was sufficiently large, like for
EIAV or HIV, we chose to break down it into two equal
parts and to use half of the sequences to train the models
and half to test the models. When the number of available
sequences of a virus is more limited, we chose to use 3/4
of the sequences for the traning set in order to have
enougth data to estimate the parameters of the models.

• EIAV: 187 sequences [6,9,32-35].

Training set: 94 sequences. Test set: 93 sequences.

According to the regions described in [6], we considered 8
variable regions (V1 to V8) and 9 constant regions (C1 to
C9).

• HIV: 155 HIV-1 sequences. The panel is composed of the
HIV-1 HXB2 sequence and representative sequences from

the following subtypes: A (21 sequences), B (27
sequences), C (26 sequences), D (18 sequences), E (19
sequences), F (3 sequences), G (21 sequences), H (2
sequences), and 17 sequences of recombinant forms.

Training set: 78 sequences. Test set: 77 sequences.

Variable regions V1 to V5 are as defined in [7]. However,
V1 and V2 are considered as a unique variable region V1/
V2, since these variable regions are separated by a small
constant region composed of only a few nucleotides.

• SIV: 61 sequences. Training set: 45 sequences. Test set:
15 sequences.

Variable regions V1 to V5 are as defined in [5].

• SRLV: 68 sequences. Training set: 51 sequences. Test set:
17 sequences.

Variable regions V1 to V5 are as defined in [8].

• BIV: 13 sequences. Test set: 13 sequences.

We compared the predicted regions with the variable
regions V1 to V6 previously defined in [10].

• FIV: 16 sequences. Test set: 16 sequences.

We compared the predicted regions with the variable
regions V1 to V5 previously defined in [11].

Hidden Markov models

We recalled in the introduction that HMMs involve pairs
of random processes, called respectively the hidden proc-
ess and the observed process. In our context, the hidden
process (Si)1 ≤ i ≤ L describes the succession of homogene-

ous regions along a sequence of length L. For every i, Si

belongs to a given finite set of size N and is called the hid-
den state at position i. The observed process (Xi)1 ≤ i ≤ L

describes the nucleotide sequence or the deduced amino-
acid sequence. For every i, Xi belongs to a given finite

alphabet  of size M and is called the observation at

position i. For instance, M := 4 and  : = {A, C, G, T} for
nucleotide sequences, and M := 20 for deduced amino-
acid sequences.

We use HMMs of type M1Mm, hence the hidden process
is a first order Markov chain. That is, the value Si at posi-
tion i depends probabilistically on the value Si - 1 at posi-
tion i - 1. The transition matrix T is defined as

T(s'|s) := P(Si = s'|Si-1 = s),



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for every states s and s', that is, T(s'|s) denotes the proba-
bility that Si = s', conditionally on the fact that Si - 1 = s. In
turn, conditionally on the state process, the observed
process is an inhomogeneous Markov chain of order m
whose transition probabilities at position i depend only
on Si. The emission matrix B is defined as

B(x |s,x1, ..., xm) := P(Xi = x | Xi - 1 = x1,..., Xi-m = xm, Si = s),

for every state s and every observations x, x1, ..., xm. In
words, the state at a given position depends on the state at
the previous position, and the observation at a given posi-
tion depends on the state at the same position and on the
m previous observations.

Hence, the full model is specified by the pair of matrices
(T, B) and by some initial distributions.

Parameter estimation
The estimation of the best model (T, B) for a given train-
ing set of sequences is usually based on maximum likeli-
hood methods. Assume first that the segmentation of the
observed sequences is available, that is, that one knows
the state sequences. Then, the parameters of the model
can be estimated with direct counting methods. For every
states s and s', one sets

where N(s), respectively N(ss'), denotes the number of
times the letter s, respectively the word ss', appears in the
state sequence, that is,

Likewise, for every observations x, x1, ..., xm, and every
state s, one sets

with

Here N(xm ... x1z|s) is the number of times the word xm ...
x1z appears in the observation sequence while the state is
s at the position of the observation x, that is,

As is well known, maximum likelihood estimators are
sensitive to overfitting. To avoid such problems, we added
constant pseudo-counts n0 to every N(s), N(ss') and N(xm
... x1z|s), equal to n0 := 1.
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Table 3: GenBank accession numbers of the sequences used in this study.

EIAV AF005104 to AF005151 (except AF005113, AF005136 and AF005145 to AF005148); AF016316; AF298666 to AF298762 (except AF298752 
and AF298691 to AF298694); AF429316 to AF429353

HIV K03455; AB032740, AB03274; AF133821; AF190127, AF190128; AF197340; AF209205, AF209208; AF219261, AF219272; AF322202 to 
AF322214; AF411964, AF411965; AF413978, AF413979; AF413987; AF443113 to AF443115; AF457079 to AF457090 (except AF457082 to 
AF457084, AF457086 and AF457089); AF460972, AF460974; AF484478, AF484493; AF484507 à AF484519 (except AF484508, AF484510, 
AF484512 and AF484517); AF529572, AF529573; AF530576; AF544007, AF544008; AJ417424 to AJ417431; AY037268 to AY037270; 
AY037280 to AY037283; AY158533 to AY158535; AY173957, AY173958; AY217545; AY228556, AY228557; AY253305 to AY253322 
(except AY253307, AY253309, AY253315 to AY253316 and AY253319); AY255823 to AY255827; AY322184 to AY322191 (except 
AY322186 and AY322188); AY357571 to AY357576 (except AY357574); AY358069 to AY358073 (except AY358070); AY371155 to 
AY371163 (except AY371158 to AY371162); AY423908 to AY423928; AY494965 to AY494974 (except AY494967 to AY494968, 
AY494970 and AY494972); AY505010, AY505011; AY535509 to AY535513; AY563169; AY818641 to AY818643

SIV AF075269; AF103818; AF131870;  AF188114 to  AF188116; AF328295; AF334679; AF382828, AF382829; AF447763; AY033233; 
AY159321, AY159322; AY169968;  AY221508 to  AY221513;  AY290709 to  AY290716;  AY523865 to  AY523867; AY587015; AY588946; 
 AY599198 to  AY599201; AY611488;  L20008,  L20009;  L20098, L20099; L40990; M29975; M33262; M58410; M66437; M83293; U04005; 
 U10897 to  U10898;  U25712 to  U25715;  U25744, U25745; U58991;  U72748

SRLV A15114; AF015180; AF156858 to AF156877; AF338227; AF474005 to AF474007; AF479638; AJ400718 to AJ400721; AY039765 to 
AY039784; L06906; M31646; M33677; M34193; M60609, M60610; M60855; S51392; S55323; U35795 to U35804 (except U35797, U35802 
and U35803); U51910

BIV L43126 to L43132; M32690; NC_001413; L04972; U80989 to U80991

FIV M25381; M36968; L00608; M59418; X57001 to X57002; M73964 to M73965; X60725; L06725; X69494 to X69502 (except X69495, 
X69500 and X69501)
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF005104
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF005151
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF005113
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF005136
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF005145
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF005148
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF016316
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF298666
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF298762
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF298752
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF298691
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF298694
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF429316
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF429353
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=K03455
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB032740
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB03274
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF133821
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF190127
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF190128
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF197340
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF209205
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF209208
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF219261
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF219272
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF322202
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF322214
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF411964
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF411965
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF413978
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF413979
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF413987
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF443113
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF443115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF457079
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF457090
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF457082
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF457084
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF457086
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF457089
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF460972
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF460974
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484478
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484493
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484507
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484519
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484508
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484510
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484512
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF484517
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF529572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF529573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF530576
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF544007
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF544008
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ417424
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ417431
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY037268
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY037270
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY037280
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY037283
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY158533
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY158535
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY173957
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY173958
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY217545
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY228556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY228557
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253305
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253322
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253307
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253309
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253315
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253316
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY253319
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY255823
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY255827
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY322184
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY322191
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY322186
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY322188
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY357571
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY357576
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY357574
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY358069
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY358073
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY358070
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY371155
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY371163
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY371158
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY371162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY423908
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY423928
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY494965
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY494974
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY494967
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY494968
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY494970
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY494972
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY505010
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY505011
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY535509
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY535513
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY563169
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY818641
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY818643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF075269
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF103818
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF131870
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AF188114
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AF188116
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF328295
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF334679
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF382829
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF447763
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY033233
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY159322
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY169968
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY221508
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY221513
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY290709
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY290716
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY523865
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY523867
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY587015
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY588946
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY599198
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= AY599201
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY611488
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= L20008
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= L20009
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= L20098
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L20099
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L40990
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M29975
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M33262
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M58410
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M66437
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M83293
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U04005
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term= U10897
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Reconstruction algorithms

When the segmentation of the training sequences is not

available, the maximum likelihood estimators ( , ) of
(T, B) cannot be directly computed. But there exists several
algorithms which estimate iteratively the parameters of
the models with no foreknowledge of either the observa-
tion process or the state process. The most classical one is
the expectation-maximization (EM) algorithm, intro-
duced by [36]. In the context of hidden Markov chains,
this algorithm is known as the Baum-Welch algorithm,
see [13,37] for a detailed description of the algorithm, and
[12]. To compute maximum likelihood estimates of the
parameters, this algorithm alternates E-steps and M-steps
until convergence. During each E-step, the algorithm esti-
mates the missing data (the hidden states sequence), com-
puting the most likely state sequence with respect to the
current value of the parameters, obtained through the pre-
ceding M-step. During each M-step, the algorithm maxi-
mizes the transition and emission probabilities, using the
state sequence computed during the preceding E-step.
There is no guarantee that the EM algorithm should pro-
duce a sequence (Tn, Bn)n ≥ 0 of models which converges to

( , ). Indeed, starting from an unspecified initial point
(T0, B0), the algorithm can get stuck in one of many local

maxima of the likelihood. But there exists a neighbor-

hood of ( , ), such that, for any (T0, B0) in this neigh-

borhood, (Tn, Bn)n ≥ 0 indeed converges to ( , )

([38,39]). To introduce some information about the com-
position of the different regions, we also define and use a
new algorithm based on the EM algorithm and on direct
counting methods. The details of this new algorithm are
as follows. The emission matrix B, corresponding to the
transition probabilities between observations for each
state, is defined by counting on training sequences. Then
one estimates iteratively the state transition probabilities
of the T matrix with the EM algorithm, keeping every
emission probabilities at their calculated value. The M-
step of the EM algorithm is modified, to omit the usual
maximization of the emission probabilities. Then, the E-
step and the maximization of the transition probabilities
are performed as in the classical EM algorithm. We call
this new algorithm fixed EM algorithm (which stands for
EM algorithm with fixed emission probabilities). In
details, the fixed EM algorithm produces a sequence (Tn,

Bn)n ≥ 0 of models as follows.

Step Initiation
The transition probabilities T0 are initialized using ran-
dom values. The emission matrix B0 is defined by count-
ing on training sequences as follows:

with the same notations than in the section "Parameter
estimation".

Step Estimation (E)
Computation of the probability Pk, � of every successives
states k and � in S, under the current value (Tn, Bn).

Pk,� = P(Si = k, Si+1 = �|x1, ..., xL, (Tn, Bn)).

This probability can be computed using the forward and
backward variables fk(i) and bk(i) defined by:

fk(i) = P(x1, ..., xi, Si = k),

and

bk(i) = P(xi+1, ..., xn | Si = k, xi-m+1, ..., xi).

We have:

Step Maximization (M)
Computation of (Tn+1, Bn+1), through the formulas

where

and

Bn+1 = B0.

Step End
The steps E and M are executed alternatively until conver-
gence.

The fixed EM algorithm converges to the maximum likeli-

hood estimators ( , ) conditioned by the emission

matrix B. The model ( , ) yields a lower likelihood
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than the model ( , ) obtained with the EM algorithm.
Experimentally, on EIAV sequences, we observe that the
convergence of fixed EM occurs 10 times faster than the
convergence of the EM algorithm. We defined the fixed
EM algorithm to introduce some information about the
number N of types of regions and the statistical composi-
tion in words of nucleotides or amino-acids of these
regions. On the contrary, we introduced no information
about the order or the position of the regions along the
sequence.

In both EM and fixed EM algorithms, to reconstruct the
hidden states sequence and to identify the predicted C and
V regions, one determines the sequence of the most prob-
able hidden states, that is, one computes at each position
i of the sequence the likelihood of the different hidden
states (Si = s) conditionally on the observed sequence and
one selects the state with the highest likelihood. The like-
lihood of the hidden states for each position is computed
using the classical forward-backward algorithm, described
by [40].
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