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Abstract

MicroRNAs (miRNAs) are small RNAs widely present in animals and plants and involved in post-transcriptional regulation of
gene transcripts. In this study we identified and validated 58 miRNAs from an EST dataset of Spodoptera litura based on the
computational and experimental analysis of sequence conservation and secondary structure of miRNA by comparing the
miRNA sequences in the miRbase. RT-PCR was conducted to examine the expression of these miRNAs and stem-loop RT-
PCR assay was performed to examine expression of 11 mature miRNAs (out of the 58 putative miRNA) that showed
significant changes in different tissues and stages of the insect development. One hundred twenty eight possible target
genes against the 11 miRNAs were predicted by using computational methods. Binding of one miRNA (sli-miR-928b) with
the three possible target mRNAs was confirmed by Southern blotting, implying its possible function in regulation of the
target genes.
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Introduction

MiRNAs are small endogenous regulatory RNAs. They usually

are only about 22 nucleotides long and their precursor can fold

into a stem-loop structure [1]. Since the second miRNA let-7 was

reported in 2000 [2], these vital participators in post-transcrip-

tional gene regulation have received more and more attention and

many efforts have been made to discover new miRNAs in different

species. More than 15000 miRNAs have been identified from

different species, such as Bombyx mori, Caenorhabditis elegans,

Arabidopsis thaliana and Homo sapiens, by either computational or

experimental method and deposited in the miRbase (release 16.0

by mirbase) (http://www.mirbase.org).

MiRNA plays important roles in many physiological processes,

such as growth, development, metabolism, behavior and apoptosis

by mRNA cleavage or translational repression [1,3,4,5,6,7,8,9]. It

is found that one miRNA can target mRNA of several genes. In

human, mRNAs of one-third of genes are regulated by miRNA as

transcriptional or developmental factor; on the other hand, one

molecule of mRNA can be bound by several different miRNAs

[10].

Cloning usually is a direct approach to identify miRNAs,

however, significant variation in their expression levels has made it

difficult to clone low abundant miRNAs [11,12]. Therefore,

computational methods have become a helpful approach to

identify miRNAs by searching for signature structure of miRNA

molecules [13].

So far, the research of miRNA mainly focuses on mammals

(such as Homo sapiens and Mus musculus) and eudicotyledons (such as

Medicago truncatula and Arabidopsis thaliana). Insect miRNA identi-

fication is far behind nematodes, mammals and plants. Totally

more than 2300 insect miRNAs have been identified from 22

insect species, including Drosophila melanogaster, Anopheles gambiae,

Apis mellifera, Bombyx mori, D. pseudoobscura and deposited in

miRbase (release 16.0). Most of these insect miRNA are identified

by computational method and have not been experimentally

validated. No miRNA are reported in agricultural pest insects.

In this study we used computational and experimental methods

to identify miRNAs in the lepidopteran species Spodoptera litura, one

of the most destructive agricultural insect pests in tropical and

subtropical areas of the world. We examined the spatial and

temporal expression profiles of these miRNAs in the midgut,

epidermis and fat body during development from egg to adult

stages. We also predicted possible target genes for some of these

identified miRNAs.

Results

Computational Identification of S. litura miRNAs
Homologue search method was used to identify miRNAs in S.

litura. By using bl2seq program to analyze 1,132 un-annotated

ESTs, 90 sequences were found to contain the fragments

homologous to the 403 known miRNAs from five insect species,

including B. mori, A. gambiae, D. pseudoobscura, D. melanogaster and A.

mellifera in the miRbase (release 12.0) (Fig. 1). The homologous

regions of these 90 sequences had no more than five nucleotides

mismatch to the known miRNAs. Approximately 100 bp frag-

ments, including the homologous region and the upstream and

downstream flanking regions, of these 90 sequences were extracted

and used for RNA secondary structure analysis by RNAfold [14].

Fifty eight fragments were found to satisfy the prerequisite of a free

energy threshold [15] and considered to be encoded by potential
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miRNAs. According the nomenclature of miRNA [16–17], these

S. litura miRNAs were signed identity as shown in Table 1.

Most of these 58 miRNAs have multiple homologues in

different species. Over all the 58 miRNAs, the average similarity

between the homologues reached 85% and some of them had

similarity up to 96%, with only 1,2 bp difference. The

homologous miRNAs were generally conserved on the middle

region of the sequence, but diversed at either 59 or 39 ends. For

example, mature sli-miR-33b had 17, out of 24, nucleotides

identical to its homologues in other insects, with 7 nucleotides

being diverse and mainly locating at the both ends of the mature

miRNAs (Fig. 2).

Analysis of the 58 miRNA revealed that they were grouped into

46 miRNA families, among which 24 are found to be exclusively

present in arthropod species (miRbase), while 22 miRNA families

are conserved in more than one phylum. Two miRNA families

(miR-7 and miR-71) have been found in at least seven phylum,

implying that they conserved in evolution and may be involved in

regulation of the gene transcripts in important physiological

process.

One pair of the identified miRNAs sli-miR-3329 and sli-miR-

1814a was found to locate in the same EST sequence with an

insert of 126 nucleotides between them (Fig. 3). They are

considered as clustered miRNAs [18] and may be involved in

co-regulation of a same biology process.

Expression of the Identified miRNAs
To examine the expression of these 58 miRNAs, stem-loop RT-

PCR were performed using a mixture of total RNA isolated from

eggs, larvae, pupae and adults and using U6snRNA as control,

which is believed to be highly conserved in eukaryotes [19]. The

results indicated that the expression levels of 11 potential miRNAs,

clones 12 (sli-miR-307), 18 (sli-miR-71), 23(sli-miR-283), 25(sli-

miR-928a), 29 (sli-miR-33a), 30(sli-miR-33b), 31(sli-miR-983), 32

(sli-miR-1890), 35(sli-miR-928b), 39 (sli-miR-210) and 40(sli-miR-

34), were significantly higher than the control U6snRNA (at least

.2 folds) (Fig. 4). The expression levels of other 45 potential

miRNAs were similar or lower than U6snRNA, with ratios being

between 0.1,1. Two miRNAs, clones 14 (sli-miR-954) and 49 (sli-

miR-3001), had extremely low levels of expression with a ratio of

the miRNA to the control being smaller than 0.01. The results of

the stem-loop RT-PCR suggested that 56 out of 58 potential

miRNAs were expressed in S. litura and were probably functioning

miRNAs, while sli-miR-954 and sli-miR-3001 needed to be

further confirmed.

Figure 1. Identification pipeline of miRNA from Spodoptera litura. The numbers in the boxes on the right are the ones for corresponding ESTs
or miRNAs identified.
doi:10.1371/journal.pone.0037730.g001

Spodoptera litura miRNA
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Table 1. Predicted miRNA in Spodoptera litura.

No. miRNA Mature sequence No. miRNA Mature sequence

1 sli-miR-211 CUGUGCGUUGUACACACGGCUA 30 sli-miR-928b GUGGCUGUAGAGGCGGCGAC

2 sli-miR-125 UCACUGAGACCAAAACUCCUGA 31 sli-miR-1890b UGACAUAAUAACGAUUUCA

3 sli-miR-283a UAAGUAGUAGCUUUAAUUCU 32 sli-miR-928a CUGGCUGUGGAGCUGGCGCU

4 sli-miR-928c-1 CUGGCUGUGGAAGCUGGCGAA 33 sli-miR-970 ACAUACUACACUACCCGGCUAU

5 sli-miR-13 CACAUCACUAGGGCUGUGAUA 34 sli-miR-928c-2 CUGGCUGUGGAAGCUGGCGAA

6 sli-miR-10 ACAAAUUCGGAUCAAAAGACA 35 sli-miR-71 UGAAAGACUGGUGUGAGUGA

7 sli-miR-1890a-1 UGACAUCUUUGAUUAGGUCU 36 sli-miR-1000 ACUCCUGUCCAAGACAAUAA

8 sli-miR-286 UGAUUAGACCUACACACUCGCG 37 sli-miR-29b GCUGAGCCCAAAUGGGGCUA

9 sli-miR-263b-1 AUUGACACCGGAAGAAUUCGC 38 sli-miR-263b-2 GUGCAUACUUCAUGCCAAG

10 sli-miR-305-1 AUUGUACUUCUUGUUGGUCUG 39 sli-miR-983 UCAUUAGAUCAUACGCACUAU

11 sli-miR-283b UUAAUAACCACGCUAAUAUUUA 40 sli-miR-307 UCAGCAUCUCCUUGGGUGAC

12 sli-miR-283c AAAAUGUCGCUGGUAAUUCC 41 sli-miR-1175 UUACUUCGUGAGAGUAGAAACUCA

13 sli-miR-79 AUGCUAUUUUAAAUAUAGCUUUA 42 sli-miR-316 UGUGUUUUUCACUUUGCUGCAG

14 sli-miR-954 UCUGGGUGUCAUUGUGUAU 43 sli-miR-184 UCGACGAACAACUAUAAGGG

15 sli-miR-981 UUCGUAUGACAUGAAACCUG 44 sli-miR-15 CGGACGGAGUAGUCUUUAGGG

16 sli-miR-31a CACAAUAUGUCGCGUAGCUGA 45 sli-miR-278 GCCCAUUUGACUUGCCGUCCA

17 sli-miR-989 UGUGAUGCUAAUGUAGAUGCUAC 46 sli-miR-14 CGGGGAGAGAACUGGAAGAGG

18 sli-miR-210 UUGUUCGUGAUCGCAGCGGCUU 47 sli-miR-2771 UAACAUUAUGAGGAUGGGUUGAACUG

19 sli-miR-1006 UAAGAAUAGGAAGAACUCGAAUUU 48 sli-miR-2809 AAAACAGCAGACGGAUCACCUGAU

20 sli-miR-6 AAAAAGACCAGCCCUCUGGUA 49 sli-miR-3001 AACUCUACAAUUAUUUAAAUUUA

21 sli-miR-1890a-2 UGACAUCUUUGAUUAGGUCU 50 sli-miR-3242 CACGCGGGCGGGCGUAUCGCGUUGGA

22 sli-miR-7 UGAGAUAAAGGUUGUUUUGU 51 sli-miR-3279 UAUGUUAUACAAUAUUUAUGACU

23 sli-miR-33a GUGCAUUUGUAGUCGCAUU 52 sli-miR-3291 AAAUUCAUAUAUUUAGGUACAAA

24 sli-miR-981 UUCGUUGUAAGAAACUUACA 53 sli-miR-3290 UGUGUGAUUAUACUUAUGAUUUU

25 sli-miR-305-2 AUUGUACUUCUUGUUGGUCUG 54 sli-miR-3329 UCUGUAAUAAAUAAUUGUAUGU

26 sli-miR-279a UGACUAGCUCCCCCCUCAC 55 sli-miR-1814a AGGGUUUUUGAUUUUGUUUU

27 sli-miR-34 UGACAGUGUGGACAGGUGGC 56 sli-miR-3375 GAAAAUCUUUGAAAAAUUUGGAAUA

28 sli-miR-279b UGACGAGAUGCACUCAU 57 sli-miR-2478 UGGUGUCAGAAGUGGGAUCC

29 sli-miR-33b GUGCAUUUGUAGUUGCAUUGCA 58 sli-miR-2507a UUUUACGCACAAAAUUGUACAAC

doi:10.1371/journal.pone.0037730.t001

Figure 2. Sequence comparison and phylogenetic tree analysis of the members of the miR-33 family. The stars show the nucleotides
that are conserved in all the members of the miR-33 family. sli: S. litura; dme: Drosophila melanogaster; dps: Drosophila pseudoobscura; ame: Apis
mellifera; hsa: Homo sapiens; gga: Gallus gallus; bmo: Bombyx mori; mmu: Mus musculus.
doi:10.1371/journal.pone.0037730.g002

Spodoptera litura miRNA

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37730



Analysis of Expression Patterns of the Selected 11
miRNAs in Different Stages

Because regulation of target mRNA transcripts by miRNA

usually is a negative controlling mechanism [1], those miRNAs

that are up-regulated are more interested in our study. Those 11

miRNAs that highly expressed in the insect (Fig. 4) were further

analyzed for their expression pattern in eggs, larvae, pupae and

adults by using stem-loop RT-PCR (Fig. 5). The results indicated

that the expression of sli-miR-307 varied across the nine

developmental stages. High levels of expression were detected

at egg, pupal and adult stages, while low levels of expression

were detected in larval stages (particularly in 2nd instar) except

6th instar stage. Sli-miR-71 and sli-miR-283 showed similar

patterns of expression. Relative higher expression was found

starting from 5th instar stage to pupal stage. Sli-miR-928a and sli-

miR-33a shared a very similar expression pattern with the

highest levels of expression in 6th instar larvae and pupae. They

also have a moderate level of expression in eggs and adults. The

expression of Sli-miR-33b was similar to that of sli-miR-33a and

sli-miR-928a from egg to pupal stages, but no expression was

detected at adult stage. The expression pattern of sli-miR-1890

was similar to that of sli-miR-928b, but had much higher levels

of expression at egg and adult stages. These two miRNAs

increased their expression gradually during the development

from 5th instar larvae to pupae. The expression pattern of sli-

miR-983 was basically similar to sli-miR-928b, but sli-miR-983

had lower expression than sli-miR-928b at the egg, larval and

adult stages. Sli-miR-210 and sli-miR-34 highly expressed at 5th

and, particularly, 6th instar stages and then the expression

decreased at pupal and adult stages.

In summary, all of the 11 miRNA exhibited high levels of

expression during the 6th instar larval and pupal stages. Sli-miR-

928b, sli-miR-928a, sli-miR-307, sli-miR-983, Sli-miR-33a and

Sli-miR-33b also expressed in eggs. Sli-miR-928b, sli-miR-928a,

sli-miR-307, sli-miR-1890, sli-miR-283 and Sli-miR-33a ex-

pressed to different extent at adult stage. Most of the miRNAs

had low levels of expression during the larval development from

1st to 4th instar stages.

Analysis of Expression Patterns of the Selected 11
miRNAs in Different Tissues

Because the selected 11 miRNAs highly expressed at 6th instar

larval and pupal stages (Fig. 5) and the original ESTs were from

three stages of 6th instar larvae (day 1, 3 and 6 after ecdysis into

the 6th instar stage), detailed analysis of expression of the

miRNAs in different tissues of these three stages of 6th instar

larvae was performed. Total RNA was extracted from the

midgut, fat body and epidermis at L6D1, L6D3 and L6D6 for

stem-loop RT-PCR analysis. The results indicated that sli-miR-

1890 maintained at a relatively stable and high expression level

in the three tissues during the 6th instar stage (Fig. 6). Sli-miR-

33a and sli-miR-34 had similar expression pattern in the midgut,

while Sli-miR-33a had much higher expression at L6D3 in the

fat body and at L6D6 in the epidermis than sli-miR-34. sli-miR-

928b basically displayed a similar expression pattern as Sli-miR-

33a and sli-miR-34, but with lower levels, in different tissues at

the 6th instar stage. sli-miR-1890, Sli-miR-33a, sli-miR-34 and

sli-miR-928b were clustered together because in general they are

expressed in all the tissues of 6th instar larvae. Sli-miR-928a and

sli-miR-33b did not express in the epidermis, but expressed in

Figure 3. A miRNA cluster that contains sli-miR-1814a and sli-miR-3329 in the same EST isolated from S. litura.
doi:10.1371/journal.pone.0037730.g003

Spodoptera litura miRNA
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the midgut and fat body at different levels. Sli-miR-307, sli-miR-

983 and sli-miR-71 had a similar expression pattern in the

midgut and epidermis, for example, they were much higher

expression at L6D3 than at L6D1 and L6D6 in these two tissues.

In the fat body, Sli-miR-307 and sli-miR-983 had a high

expression at L6D3, while sli-miR-71 was not expressed. Sli-

miR-210 and sli-miR-283 had high expression in the epidermis

through 6th instar larval stage, while Sli-miR-210 also expressed

in the midgut and sli-miR-283 expressed in the fat body. Sli-

miR-283 did not express at all in the midgut. Sli-miR-307, sli-

miR-983, sli-miR-71, sli-miR-210 and sli-miR-283 were clustered

into a group because they expressed in the epidermis, separating

from sli-miR-928a and sli-miR-33b, which did not express in the

epidermis.

In summary, sli-miR-1890, sli-miR-33a, sli-miR-34 and sli-

miR-928b appeared to express in all the tissues during the 6th

stage, while sli-miR-928a, sli-miR-33b sli-miR-307, sli-miR-983,

sli-miR-71, sli-miR-210 and sli-miR-283 were more tissue- and

stage-specific in 6th instar larvae.

Target Gene Prediction of the Selected 11 miRNA
To identify potential target genes of the selected 11 miRNAs,

we used the Targetscan and PicTar programs [20] to search

Class I target genes and used RNAhybrid [21] to search Class II

target genes. Totally, 211 potential target genes were identified

for the 11 miRNAs, with 189 belonging to Class I and 22

belonging to Class II (Table 2). These target genes are involved

in metamorphosis, metabolisms, apoptosis, binding activity and

signal transduction.

Binding of miRNA with Target Genes
The identified miRNA sli-miR-928b has four predicted target

genes, CG2781, mRpL27, Atf-2 and CG1776. CG2781 is involve in

fatty acid elongation [22,23] and CG1776 encodes a calcium-

dependent protein kinase [24,25,26]. mRpL27 and Atf-2 encode

mitochondrial ribosomal protein L27 [27,28] and activating

transcription factor-2 [29,30], respectively. To examine the

possibility of sli-miR-928b binding to the transcripts of its

predicted target genes, the 39UTR cDNA fragments that

contained the sli-miR-928b complementary sequence of the four

target genes were amplified by RACE-PCR. Sli-miR-928b

miRNA was synthesized and labeled with 32P-ATP as a probe.

Southern blot hybridization between the 39UTR cDNA of four

target genes and the sli-miR-928b probe was performed. The

results showed that CG2781, Atf-2 and CG1776 could bind with

the sli-miR-928b probe in various degrees, while imRpL27 could

not (Fig. 7). The results suggested that sli-miR-928b may target

the transcripts of the CG2781, Atf-2 and CG1776 genes in vivo.

Figure 4. Expression of the 58 predicted miRNA detected by stem-loop RT-PCR. The expression levels of the 58 predicted miRNA of S. litura
by stem-loop RT-PCR were digitized by ImageQuantTL after gel electrophoresis and the relative expression levels of the miRNAs were calculated as
log10(miRNA/U6snRNA). The digital numbers were converted into image by using Cluster/Treeview. The scale bar shows the relative expression
levels of the miRNAs over the control (U6snRNA) from 23 to 3 folds (0.001 to 1000 folds). The numbers in the figure were corresponding to those in
Table 1.
doi:10.1371/journal.pone.0037730.g004

Spodoptera litura miRNA
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Figure 5. Developmental expression of the 11 selected miRNAs at different stages from eggs to adults of S. litura. The expression
levels of the miRNA by stem-loop RT-PCR were digitized by ImageQuantTL after gel electrophoresis and the relative expression levels of the miRNAs
were calculated as log10(miRNA/U6snRNA). The digital numbers were converted into image by using Cluster/Treeview. The scale bar shows the
relative expression levels of the miRNAs over the control (U6snRNA) from 23 to 3 folds (0.001 to 1000 folds).
doi:10.1371/journal.pone.0037730.g005

Figure 6. Spatial expression of the 11 selected miRNAs in the midgut, fat body and epidermis during the 6th (last) instar larval stage
of S. litura. The expression levels of the miRNA by stem-loop RT-PCR were digitized by ImageQuantTL after gel electrophoresis and the relative
expression levels of the miRNAs were calculated as log10(miRNA/U6snRNA). The digital numbers were converted into image by using Cluster/
Treeview. The scale bar shows the relative expression levels of the miRNAs over the control (U6snRNA) from -3 to 3 folds (0.001 to 1000 folds). Mg:
midgut; Fb: fat body; Ep: epidermis. D1, D3 and D6: day 1, 3 and 6 in 6th instar stage, respectively.
doi:10.1371/journal.pone.0037730.g006

Spodoptera litura miRNA
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Discussion

Reliability of Identified S. litura miRNA
Totally, 58 S. litura miRNAs were identified in this study. Firstly,

these miRNAs were identified from 1,132 ESTs, which have no-

hit homologues in the public databases, by sequence comparison

with the 403 known miRNAs of insects, including B. mori, A.

gambiae, D. pseudoobscura, D. melanogaster and A. mellifera. Some of

these known insect miRNA had been demonstrated to express or

function in the insects [31]. Secondly, these potential miRNAs

were further confirmed by stem-loop RT-PCR. Stem-loop RT-

PCR has been used to specifically amplify miRNA in many species

[32,33,34]. In stem-loop RT-PCR the primers were designed

based on specific miRNA structure, therefore, only those miRNAs

that have the same nucleotide sequences as the primers can be

amplified by RT-PCR. All of the 58 potential miRNA could be

amplified in this study, indicating that they possessed the miRNA

structure. Thirdly, three known B. mori miRNA (bmo-let-7,bmo-

miR-7,bmo-bantan; http://miRbase.org) were used along with

another three 22-bp sequences within the B. mori genes as negative

control to test the efficiency of the stem-loop RT-PCR. The results

showed that all of the three known B. mori miRNAs could be

amplified by stem-loop RT-PCR, whereas no PCR products were

amplified from the negative control. All these results together

indicate that this approach used in this study can efficiently

identify the potential miRNA in S. litura.

Expression and Potential Function of S. litura miRNAs
Eleven miRNAs mainly expressed from late larval stage

(L5,L6) to pupa stage. This changing pattern in expression of

miRNA is similar to another Lepidoptera insect, Bombyx mori [33]

and fly. In fly, the expression of miRNA targets decreases starting

from larval periods and lasting to adulthood, implying that the

expression of miRNAs tends to be high from early larval stage

(L24h) to adult [35] in fly.

Expression pattern analysis and target gene prediction can

provide some clues for potential function of the S. litura miRNAs

identified in this study. For example, miR-33 has been found to be

involved in the metabolism of high density lipoprotein (HDL) and

cholesterol in the pathway of fatty acid metabolism [36,37]. In this

study, sli-miR-33b was found to highly express in eggs, 6th instar

larvae and pupae (Fig. 5), particularly in the midgut of prepupal

larvae (Fig. 6). Potential target genes for sli-miR-33b were

predicted as CG32062, CG2781 and CASK. CG32062 encode

Ataxin-2 binding protein 1 and involved in nervous system

development and imaginal disc-derived wing vein specification

[38]. CG2781 is also a protein coding gene and involved in very

long-chain fatty acid biosynthetic process [23]. CASK is involved in

neurotransmitter secretion and cell shape [39,40]. A high level of

sli-miR-33b expression in eggs may imply that sli-miR-33b

regulates the nervous system development. However, sli-miR-

33b also had a high level of expression in the fat body of prepupal

and pupal stages, implying that it may regulate the fatty acid

elongation. On the other hand, although CG32062 is predicted as

a potential target gene for sli-miR-33b, but it appeared not to

express in the epidermis. Whether or not this miRNA is involved

in regulation of imaginal disc-derived wing vein specification is

suspected.

Table 2. Potential target genes of the selected 11 miRNAs.

No. miRNA No. of target genes Selected potential target genes

1 sli-miR-33a 2 CG18561, CG13492

2 sli-miR-33b 6 CG32062, CG14006, CASK

3 sli-miR-34 21(1)* Katanin60, bruchpilot, synaptotagmin, mbl

4 sli-miR-71 14(3) Obstructor-E, scabrous, cnc, neurotactin

5 sli-miR-210 27(2) LanB2, Khc-32, Or35a, flfl, tou, crb, pygo

6 sli-miR-283 14(1) Cnc, Gr59c, mbl, Nacalpha

7 sli-miR-307 39(2) Sr, fkh, Atg4, eIF-5A, kkv, LpR1, Or41a

8 sli-miR-928a 39(6) R, Cip4, B-H1, smg, kuz, AP-47, Atf-2

9 sli-miR-928b 44(7) R, Rab23, bur, how, AP-47, hbs, Tollo

10 sli-miR-983 5 CG8546, CG12996

11 sli-miR-1890 0 -

*The numbers in the parenthese are for the second class of miRNA target genes.
doi:10.1371/journal.pone.0037730.t002

Figure 7. Southern blotting analysis of sli-miR-928b binding
with the mRNA transcripts of its predicted potential target
genes, CG2781 (GenBank accession number: 40943), mRpL27
(GenBank accession number: 318825), Atf-2 (GenBank acces-
sion number: 37978) and CG1776 (GenBank accession number:
36002). The 39-UTR cDNA fragments that contained the sli-miR-928b
complementary sequence of the four target genes were amplified by
RACE-PCR (lower panel). Sli-miR-928b miRNA was synthesized and
labeled with 32P-ATP as a probe and used for the hybridization with the
39-UTR fragments of the genes (upper panel).
doi:10.1371/journal.pone.0037730.g007

Spodoptera litura miRNA
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The predicted target genes for sli-miR-307 are sr, fkh, Stat92E,

CG32467, Or42a and kkv. sr is involved in central nervous system

development and ectoderm development [41,42]. fkh is involved in

negative regulation of cell growth [43]. Stat92E is involved in

ovarian follicle cell development [44]. CG32467 is involved in

compound eye development [45]. Or42a is believed to be involved

in olfactory behavior and sensory perception of smell [46,47]. kkv is

suggested to be involved in chitin-based embryonic cuticle

biosynthetic process [48,49]. sli-miR-307 had a high level of

expression in eggs (Fig. 5), implying that it may regulate the central

nervous system, ectoderm development and chitin-based embry-

onic cuticle biosynthesis during the embryo development. Sli-miR-

307 also exhibited high levels of expression at the last larval, pupal

and adult stages, indicating that it may be also involved in ovarian

follicle cell development, eye development and olfactory behavior.

Sli-miR-928a and sli-miR-928b had similar expression patterns

and both had high levels of expression in eggs, later 6th instar

larvae, pupae and adults (Fig. 5). However, this similar expression

pattern was detected only in the midgut and fat body, whereas

their expression was different in the epidermis (Fig. 6). Sli-miR-

928b expressed in the epidermis but sli-miR-928s did not. The

predicted target genes common for both of sli-miR-928a and sli-

miR-928b are R [50] and seq [51,52], which regulated the cell

shape and axon extension, respectively. How these miRNAs

accurately and correctly regulate different processes in the tissues

at various stages is interesting.

Predicted target gene of sli-miR-983 is CG8546, which has been

suggested to have molecular function of ligand-gated sodium

channel activity [53]. It may be involve in sodium ion transport by

down-regulate the potential target CG8546. Sli-miR-283 was

highly expressed in the epidermis of 6th instar larvae (Fig. 6). One

of its potential target genes was mbl, which has been demonstrated

to be in involved in apoptosis [54] and compound eye

photoreceptor [55]. Sli-miR-71 highly expressed in the midgut

and epidermis of 6th instar feeding larvae (Fig. 6). One of its

possible target genes was obstractor-E, which has been found to be

involved in chitin metabolic process [56]. Therefore, it is possible

that sli-miR-71 may play a role in inhibition of obstractor-E and

then chitin degradation in the midgut and epidermis during larval

feeding stage. Similar to sli-miR-283, a potential target gene of sli-

miR-34 is mbl that is involved in apoptosis. In fact, several studies

reported that miR-34 is associated with inhibition of apoptosis

[57,58,59].

Sli-miR-210 highly expressed in the epidermis, as well as

midgut, in 6th instar larvae (Fig. 6). miR-210 has been found to

play an important role in endothelial migration, vascular

reconstruction [60] and arteriosclerosis [61]. The predicted

potential target genes of sli-miR-210 are CG5246 and CG6359,

which are involved in serine-type endopeptidase activity and

phosphatidylinositol binding, respectively [62,63,64], implying

that sli-miR-210 may be involved in process of proteolysis,

phagocytosis and engulfment of the epidermis.

No potential target genes were predicted for sli-miR-33a and sli-

miR-1890 when the 39UTR of D. melanogaster was used to analysis.

Sli-miR-1890 expressed in all the tissues tested in 6th instar larvae

(Fig. 6). Sli-miR-33a was the most highly expressed miRNA

among all of the identified miRNAs and it expressed in all the

tissues, particularly in the midgut of 3-day-old 6th instar larvae and

prepupal larvae (day 6 of 6th instar stage) and in the epidermis of

prepupal larvae. Because these two miRNAs always have high

levels expression, it is probably they suppress some genes that are

not benefic to cellular functions or activities.

Eleven potential TFs (CG32062, mbl, cnc, CG11776, CG15455,

CG34209, fkh, pdm3, CG14478, Atf-2, His4:CG33907) were found

among the 128 predicted target genes, being about 8.5% of the all

target genes identified. The ratio of TFs to nuclear proteins in

human is 50% (19/38) and to all the target genes in cellular

signaling networks is 11.9% (19/159) [65]. Based on the search in

the MicroCosm (http://www.ebi.ac.uk/enright-srv/microcosm/

cgi-bin/targets/v5/search.pl), the ratio of all the TFs and co-

factors to all the target genes in human is 6.7% (2363/34788). In

D. melanogaster this number is 7.2% (869/12046); in A. gambiae it is

6.2% (606/9721); in Mus musculus it is 7.6% (2316/30484). These

data indicate that the TFs apparently account for less than 10% of

the total miRNA target genes in these species.

Materials and Methods

Experimental Insects
Second instar larvae of Spodoptera litura was provided by The

Entomology Institute of Sun Yat-Sen University, Guangzhou,

China, and reared at 2761uC a relative humidity of 65%,75% in

the laboratory until adults. The larvae at the selected stages were

placed on ice and carefully dissected to isolate different tissues such

as midgut, epidermis and fat body for RNA extraction, or

immediately put into liquid nitrogen and stored at 280uC until

use.

EST Dataset Generation
Total RNA were extracted using Trizol Reagent (Gibco, USA)

and mRNAs were isolated using Oligotex mRNA Kits (Qiagen,

USA) from the midguts of the 5th to 6th instar molting larvae (day 1

in 6th instar, L6D0), 6th instar feeding larvae (day 3 in 6th instar,

L6D3) and prepupae (day 6 in 6th instar, L6D6). cDNA libraries

were constructed using pBluescript II KS (+) cDNA Library

Construction Kit (Stratagene, USA). Bacterial clones were

randomly selected from the three cDNA libraries and subjected

to 59-single pass sequencing using Applied Biosystems (ABI) 3730

DNA sequencer, generating 6,827 high-quality ESTs (Qili Feng et

al., data not published). The ESTs were assembled and blast

searched for homologues in the public databases such as nr, nt and

dbEST databases of NCBI GenBank (http://www.ncbi.nlm.nih.

gov/genbank/), InterPro (http://www.ebi.ac.uk/Tools/pfa/

iprscan/) and ExPASy (http://expasy.org/proteomics/

protein_sequences_and_identification).

Computational Prediction
A pipeline was set up for homologue searching and identifica-

tion of miRNA from expressed sequence tags of S. litura (Fig. 1).

Firstly, 403 known insect miRNAs in the miRbase were used to

blast the annotated 1,132 ESTs that were obtained from the

midgut cDNA libraries of S. litura and do not contain complete

open reading frames (Qili Feng et al., unpublished data). The EST

sequences that had less than 5 mismatching nucleotides against the

known miRNAs were regarded as the homologous sequences of

the corresponding miRNAs and the franking regions plus the

matching nucleotide sequences were taken as the potential

miRNA precursors. Analysis of secondary structure and free

energy of these sequences was conducted by using the RNAfold/

Mfold program [66,67]. A threshold value of free energy was set at

DG 220 kcal/mol. Classical stem-loop structure, core mfe,

Ch_ratio, GC content and mismatch nucleotides were also set

up and used as criterions for identification of putative miRNAs

[33]. Only those sequences that satisfied all these criterions would

be considered as a potential miRNA. If more than one precursor

agrees with those criterions for a potential miRNA, the one with

lowest free energy was considered as a possible precursor.
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Total RNA Extraction and Small RNA Enrichment
Total RNAs were extracted using RNAiso Plus (TAKARA)

according the manufacturer’s instruction from eggs, 1st instar to

6th instar larvae, pupae and adults, respectively. The quality of

total RNAs was examined by spectrum analysis using Nanodrop

ND-100 Spectrophotometer (GE Healthcare Life Sciences, Piscat-

away, USA) and gel electrophoresis.

Small RNAs (less than 200 nt) were enriched by PEG 6000

centrifugation (in 13% NaCl). The size range of small RNAs was

examined by electrophoresis in polyacrylamide gel.

Synthesis of cDNA and PCR Analysis of miRNAs
cDNA was synthesized from the small RNAs by using miRNA

specific stem-loop primers, which were obtained from Invitrogen

(California, USA). The mix of RNA template and primers

contained 150 ng small RNA sample, 0.5 ml stem-loop RT primer

(10 mM), 0.5 ml dNTPs (10 mM) and RNase-free ddH2O up to

7 ml. The mixture was degenerated at 65uC for 5 min and

immediately cooled down on ice in 2 min. Reverse transcriptase

reactions contained 7 ml of the template/primer mix, 2.5 U

Reverse Transcriptase XL (AMV), 2 ml 56AMV buffer, 20 U

RNase inhibitor in a total of 10 ml. The reactions were carried out

at 16uC for 30 min; then follow by 60 cycles at 20uC for 30 sec, at

42uC for 30 sec, at 50uC for 2 sec; at 85uC for 10 min and then

hold at 220uC. The synthesized cDNAs were used for PCR

analysis of miRNA expression or stored at 280uC for use later.

For PCR analysis, the PCR mixtures contained 1 ml cDNA

without dilution, 2 U Taq (5 U/ml), 3.6 ml 106PCR buffer

(10 mM), 1 ml dNTPs (10 mM), 0.8 ml F-primer (10 mM), 0.8 ml

URP (10 mM) in a total volume of 20 ml. The PCR reaction were

performed in 200 ml micro-tube at 95uC for 10 min; at 55uC for

2 min; followed by 30 cycles at 95uC for 1 sec, 65uC for 1 min,

and finally at 72uC for 5 min. The PCR products were analyzed

by electrophoresis in 3% agarose gel containing ethidium bromide

(0.5 mg/ml) and photographed using ImagaQuant 300 (GE

Healthcare Life Sciences, Piscataway, USA).

Cloning of S. litura miRNA
After electrophoresis, PCR products were recovered from the

gels according to Gel DNA Fragment Recovery Kit V 2.0

(Axygen, Hangzhou, China). The recovered cDNA products were

ligated to pMD-18T vector (TaKaRa Co., Dalian, China) using

T4 ligase and the recombinant DNA vectors were used to transfect

Escherichia coli DH5a competent cells. Positive clones were selected

and confirmed by PCR reaction (0.1 ml Taq, 0.2 ml dNTPs, 1 ml

106PCR buffer, 0.2 ml F-primer, 0.2 ml URP, add ddH2O up to

15 ml). The reaction conditions were 94uC for 3 min; the follow by

30 cycles of 94uC for 30 sec, 55uC for 30 sec, 72uC for 1 min and

finally 72uC for 10 min. DNA of the positive clones was then

extracted and sequenced.

Prediction of Target Genes for miRNAs
For predicting miRNA target genes, 39UTR sequences of

Drosophila melanogaster genes from the unigene database in NCBI

were subjected to predict the first class of target genes by using the

Targetscan(http://www.targetscan.org/fly_12/) and PicTar pro-

grams [20] (http://pictar.mdc-berlin.de/) with default parameters

at threshold value of free energy DG,220 kcal/mol. Fragments

of 12th nt, (x-2)th nt (x is the total length of the selected miRNA)

of miRNAs were also used to blast the 39UTR of D. melanogaster

genes using RNAhybrid [21] (http://bibiserv.techfak.uni-bielefeld.

de/) to determine the free energy. When the free energy DG

between two molecules was smaller than 220 kcal/mol, the genes

were considered as potential target genes for the corresponding

miRNAs.

Southern blot analysis was performed to examine binding of

identified miRNAs to the predicted potential target genes. Total

RNA was extracted from the larval midgut at days 1, 2 and 3 of 6th

instar stage and then mixed together. The 39UTR fragments of the

predicted target genes were cloned from S. litura using primers

designed based on the target gene sequences and by RACE-PCR

according to SMART RACE cDNA Amplification Kit protocol

(Clontech, California, USA). The amplified DNA was sequenced

for confirmation. The DNA was then detected by electrophoresis

on 1% agarose gel and then transferred to Amersham HybondTM-

N+ membrane. DNA Probes complementary to the miRNA were

synthesized and labeled with [c-32P] ATP. Membrane was pre-

hybridized in prehybridization solution containing 66SCC,

106Denhardt’s solution and 0.2% SDS at 65uC, 3 rpm for at

least 4 h. The membrane was then hybridized in hybridization

solution containing 66SSC, 56Denhardt’s solution, 0.2%SDS

with 1,56106 cpm [c-32P] ATP -labeled probe at 42uC, 3 rpm

for about 24 h. The membrane was washed three times for 5 min

each at room temperature with 66SSC and 0.2%SDS and then

washed once with 66SSC and 0.2%SDS at 42uC for 15 min.

After final wash, the membrane was exposed to phosphorus screen

for about 48 h and the signal was detected using a Typhoon Trto

Vanriable Mode Imager (Amersham, Piscataway, USA).
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