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Rationale and Objectives: To build a machine learning-based diagnostic model that

can accurately distinguish adult supratentorial extraventricular ependymoma (STEE) from

similarly appearing high-grade gliomas (HGG) using quantitative radiomic signatures from

a multi-parametric MRI framework.

Materials and Methods: We computed radiomic features on the preprocessed

and segmented tumor masks from a pre-operative multimodal MRI dataset

[contrast-enhanced T1 (T1ce), T2, fluid-attenuated inversion recovery (FLAIR), apparent

diffusion coefficient (ADC)] from STEE (n = 15), HGG-Grade IV (HGG-G4) (n = 24), and

HGG-Grade III (HGG-G3) (n = 36) patients, followed by an optimum two-stage feature

selection and multiclass classification. Performance of multiple classifiers were evaluated

on both unimodal and multimodal feature sets and most discriminative radiomic features

involved in classification of STEE from HGG subtypes were obtained.

Results: Multimodal features demonstrated higher classification performance over

unimodal feature set in discriminating STEE and HGG subtypes with an accuracy of

68% on test data and above 80% on cross validation, along with an overall above 90%

specificity. Among unimodal feature sets, those extracted from FLAIR demonstrated

high classification performance in delineating all three tumor groups. Texture-based

radiomic features particularly from FLAIR were most important in discriminating STEE

from HGG-G4, whereas first-order features from T2 and ADC consistently ranked higher

in differentiating multiple tumor groups.

Conclusions: This study illustrates the utility of radiomics-based multimodal

MRI framework in accurately discriminating similarly appearing adult STEE from

HGG subtypes. Radiomic features from multiple MRI modalities could capture

intricate and complementary information for a robust and highly accurate multiclass

tumor classification.
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INTRODUCTION

Supratentorial ependymoma are relatively rare neoplasms, which
constitute 3–5% of adult intracranial tumors and present
with a wide histopathological spectrum (1). Existing literature
illustrates that more than 25% of adult ependymoma can be
mis-diagnosed, thus, elevating the importance of an accurate
diagnosis (2). This is especially true in delineating extra-
ventricular supratentorial ependymomas (STEE) from high-
grade gliomas (HGG) as the appearance of ependymoma may
closely resemble that of a glioblastoma on a magnetic resonance
image (MRI) (2–4). STEEs generally appear hypointense on
T1-weighted imaging, hyperintense on T2-weighted imaging,
with an intermediate to high signal intensity on fluid-attenuated
inversion recovery (FLAIR) images and may demonstrate ring-
or wreath-like contrast enhancement on gadolinium based T1-
weighted imaging as shown in Figure 1 (2, 5–8). Moreover,
these lesions demonstrate marked heterogeneity within the
tumor. Cystic formation can be noted very frequently, and
calcifications are also common that can be seen in ∼50% of
ependymomas (4, 7, 9). Diffusion-weighted imaging (DWI) from
ependymoma demonstrates restricted diffusion within the solid
tumor compartment indicating high cellularity of the lesion,
while perfusion MRI shows marked increase in cerebral blood
volume. Finally, MR spectroscopy demonstrates elevated choline
and reduced N-acetyl-aspartate metabolism in tumor lesions (6).
The abovementioned features are also observed in HGG-grade
III (HGG-G3) referred to as anaplastic astrocytoma and HGG-
grade IV (HGG-G4) also known as glioblastoma (3, 10), which
are central nervous system neoplasms accounting for 59% of
the commonly occurring primary brain tumors (11). Although
the pathogenesis and treatment strategy of ependymoma differs
significantly from gliomas, and a standard course of management
in the case of STEE is not yet established, e.g., chemotherapy
and radiotherapy as an adjuvant to resection is a conventional
treatment protocol for gliomas (12–14); however, it is not
included as part of the accepted standard of care in case
of STEE (15). The European Association of Neuro-Oncology
guidelines published in 2017 advocate gross total resection
followed by adjuvant radiotherapy in grade 3 tumors and
adjuvant radiotherapy in low-grade neoplasms if residual tumor
is present. Chemotherapy is not advised in adult tumors,
although chemotherapy is indicated in children and adults with
recurrent tumor in whom primary treatment with resection and
radiotherapy has been exhausted (15). It is, therefore, crucial to
predict the tumor type to optimize treatment planning and assess
the therapeutic interventions, which can subsequently facilitate
better outcomes.

Radiomics is an emerging translational field that can extract
quantitative features beyond the level of human perception,
with an intent to create tumor phenotypic signatures to aid
in prognosis, stratification, disease tracking, and treatment

response evaluation (16). These features are generally based on

geometry (shape), intensity characteristics (histogram), entropy,

and numerous image textures that are extracted from the
tumoral region. Multivariate classification framework based on
these features can facilitate a single probabilistic marker for
the tumor type under consideration. The complete analysis

aims at delineating tumor types with the ultimate goal of
supporting clinical decisions that may consequently improve
patient outcomes.

Overall, there is scarce literature regarding neuroimaging
findings in ependymomas especially those seen in adult patients.
Existing work has demonstrated the utility of a radiomics-based
machine learning approach in differential diagnosis of pediatric
ependymoma from medulloblastoma and pilocytic astrocytoma
onmultiple 3DMRImodalities. These studies have reported high
classification performance of texture-based features using both
conventional T1- and T2-weighted images (17–19) as well as on
advanced ADCmaps (20, 21) in varying combinations. Recently,
studies have also demonstrated the role of radiomics in evaluating
treatment response of natural killer cell infusion therapy (22)
and novel network-driven approach using proton therapy (23)
in pediatric ependymoma. A radiomics-based signature of adult
STEE tumors is yet to be established. Apart from ependymomas,
radiomics has also shown potential in creating phenotypic
signatures of glioma genotypes such as isocitrate dehydrogenase
(IDH) (24–26), epidermal growth factor receptor (EGFR)
(27), and O6-methylguanine-DNA-methyl-transferase (MGMT)
(28–31). In glioblastoma, multimodal MRI-based quantitative
radiomic features have shown to predict tumor recurrence (32)
with better performance than traditional qualitative approaches
such as visualization of contrast-enhanced MRI and perfusion
kinematic changes in discriminating recurrence from radiation
necrosis (33, 34). These studies provide outcomes that evidently
encourage the use of radiomics-based multimodal MRI in
combination with machine learning framework to create an
imaging marker of adult STEE tumor, which can accurately
delineate it from HGG tumors.

This study aims to characterize adult STEEs using an
underlying phenotypic radiomics-based signature from
multimodal MRI images, which not only predicts but also
portrays the textural patterns that mark the uniqueness of these
tumors on MRI and discriminate them from HGG, thereby
serving as a potential biomarker. Such a non-invasive differential
prognostic signature of STEE can aid in better diagnosis, improve
clinical decision making, and timely therapeutic intervention
with better outcomes.

MATERIALS AND METHODS

Study Cohort and Imaging
Our dataset consisted of a clinical cohort of 75 adult tumor
patients that included 15 patients (age= 27.2± 11.73 years, M:F
= 8:7) with grade 2 and grade 3 STEEs, 36 patients with HGG-
G3 (age = 39.30 ± 11.64 years, M:F = 22:14), and 24 HGG-G4
patients (age = 48.8 ± 15.76 years, M:F = 11:13). All patients
included in this study had undergone surgical resection and
standard post-surgical care and were identified retrospectively
after reviewing the medical records. Final diagnosis was
confirmed based on the histopathological examination of the
resected tissue. Out of the complete cohort, 77% scanned were
performed on a Philips Achieva 3.0 T MRI scanner, while
others were scanned on a 3.0 T Siemens Skyra MRI system.
Multiple sequences were acquired as standard clinical MRI;
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FIGURE 1 | Multimodal magnetic resonance image (MRI) sequences of one supratentorial extraventricular ependymoma (STEE), high-grade gliomas-grade 4

(HGG-G4), and HGG-G3 tumor case with their tumor segmented masks, which shows similarly appearing necrosis tissue (red), diffused enhancement (yellow), and

edema tissue (green) in all three tumor groups.

however, we restricted our analysis to gadolinium-enhanced T1-
weighted (T1ce), fluid attenuation inversion recovery (FLAIR),
T2-weighted imaging, and apparent diffusion coefficient (ADC)
maps. T1ce scans were obtained using TR/TE = 8.0/3.7ms
using TFE sequence on Philips scanner, while TR/TE = 1,800–
2,200/2.3–2.6ms using T1MPRAGE sequence on Siemens with 1
× 1 × 1mm isotropic resolution. T2-weighted imaging protocol
consisted of TR/TE ranging from 3,600 to 6,000/80 to 99ms and
0.5 × 0.5mm resolution in the axial plane. FLAIR images were
acquired using TR/TE/TI of 11,000/125/2,800 within the plane
resolution of 0.5 × 0.5mm. ADC maps were acquired using the
DWI sequence. The institute review ethics committee approved
the study and the informed consent of the patient was waived off
as it was a retrospective study.

Image Processing and Radiomics
The detailed pre-processing of MRI images and radiomics
pipeline implemented in this study is shown in Figure 2.

Initially, for all the subjects, FLAIR, T2, and ADC maps
were resampled to 1.0mm iso-voxel and registered to T1ce
image using a 6 degree of freedom rigid body transformation.
T1ce images were further registered to standard MNI-spaced
image using affine transformation, and this transformation
matrix was further applied to FLAIR, T2, and ADC maps to
have them all in a uniform sampling space with a common
origin. All registration steps were performed using advanced
normalization tool (ANTs) toolbox (35). Brain extraction for
all co-registered modalities was performed using FSL’s BET
(36), followed by segmentation of enhancing tumor, edema,
and necrosis using a deep learning model (DeepMedic) (37).
This multiscale 3D convolutional neural network (CNN)
model was trained on multimodal images (T1ce, T2, and
FLAIR images) and labels from BRATS-2018 (https://www.
med.upenn.edu/sbia/brats2018/data.html) data (training n =

206, validation n = 52). The segmented output masks were
corrected manually by an expert annotator (M.J), followed by
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FIGURE 2 | Processing pipeline implemented for classification of tumor subgroups includes (A) Acquisition of multiple MRI modalities such as gadolinium enhanced

T1-weighted (T1ce), fluid attenuation inversion recovery (FLAIR), T2-weighted imaging, and apparent diffusion coefficient (ADC) maps. (B) Pre-processing of MRI

scans to segment different tumor tissues involved co-registration of FLAIR, T2, and ADC scans to T1ce scan and standardizing all modalities to 1mm iso voxel size

using advanced normalization tool (ANTs) software, brain extraction using all modalities using FSL’s BET, segmentation of enhancing tumor, edema, and necrosis

using deep learning (DeepMedic) model and its manual correction followed by intensity normalization. (C) Radiomic features such as shape, intensity-based

histograms, and texture features were computed from original segmented mask of each tumor tissue using PyRadiomics. (D) Dual stage feature selection was

performed on normalized radiomic features of each modality, where the first stage involved extraction of significantly varying features between tumor groups using

ANOVA F-test with a p-value cut-off of 1 xe−06. The second stage of feature selection was performed on features selected from stage 1 by implementing Random

Forest based Recursive Feature Elimination with Cross Validation (RF-RFECV), such that initially a RF model was fit in a 5 fold-CV framework, with elimination of

features at each cross validation (CV) based on their feature importance score and the model was recursively retrained on updated feature set until a minimum of 10

features were obtained that gave high accuracy across all the CVs. Classification performance of selected multimodal radiomic features in distinguishing different

tumor groups was assessed by implementing a multiclass classification modal using RF, support vector classifier (SVC) and artificial neural network (ANN) classifiers.

SVC coefficients were used to obtain the most important features.

intensity normalization and computation of radiomic features
using PyRadiomics 2.2.0 library (38). The feature set used
included 3D shape-based features, statistical features, gray-level
co-occurrence matrix (GLCM), gray-level dependent matrix
(GLDM), gray-level run length matrix (GLRLM), gray-level size
zone matrix (GLSZM), and neighboring gray tone difference
matrix (NGTDM). These features were also computed on filtered
images where the filters used were Laplacian, wavelets, Gaussian,
curvature flow, box mean, and box sigma. For each subject,
a total of 11,274 features were computed, comprising 1,409
features from each of the four modalities, making a total
of 5,637 features for each of the two tumor masks (edema
and T1ce-based tumor tissue enhancing). We excluded the
third region of interest (necrosis/cyst) from further analysis
due to its heterogeneous tissue composition, which involved
parts of non-enhancing tumor, cysts in some cases, and
tumor necrosis.

Feature Selection
Multivariate classifiers may overfit on the input radiomic
features, due to their enormously large size compared with the
available sample size. To alleviate this issue, feature selection
was performed to obtain an optimum feature set by removing
redundant features and reducing feature dimensionality of the
computed radiomic features. First, a 75–25% train-test split was
applied on the dataset, with 56 subjects in the training set and
19 subjects in the test set. We then normalized all radiomic
features using min–max normalization and implemented a
two-stage feature selection strategy on the training dataset. In
the first stage, features from each modality were statistically
compared between groups using an ANOVA F-test. A p-value
cutoff of 1 × e−06 was applied per modality to obtain up
to 50 significant radiomic features per modality. The second
stage of feature selection was performed on the selected
features obtained from stage 1 by implementing random
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FIGURE 3 | Feature selection plot of number of features vs. average cross validation (CV) accuracy for each unimodal MRI feature set obtained by implementing

Random Forest based Recursive Feature Elimination with Cross Validation (RF-RFECV) on training data. The vertical dotted line indicates a threshold on number of

features below which a drop in average accuracy was observed.

forest-based recursive feature elimination with cross validation
(RF-RFECV) (39–41). This two-stage feature selection process
was applied individually on all four modalities. RF-RFECV
was implemented by first fitting a random forest (RF) model
(42) in a cross-validation (CV) framework on the training
data using a fivefold CV. The least important features were
eliminated (minimum step size-5) after every CV based on
their feature importance scores pertaining to that CV, and an
averaged fivefold CV accuracy was noted at every elimination.
In the next step, the model was recursively retrained on
updated feature set until a minimum of 10 features were
obtained that gave high accuracy across all the CVs as shown
in Figure 3. Thus, for each modality, a specific number of
important selected radiomic features were used as input in the
classification models.

Classification Models
To distinguish between STEE, HGG-G3, and HGG-G4 tumor
types, we performed multiclass classification using the radiomic
feature set of each modality individually in a unimodal setup,
as well as by combining features from all modalities in a

multimodal setup. Additionally, we employed multiple machine
learning classification algorithms such as random forest (RF),
support vector classifier (SVC), and artificial neural network
(ANN) on both unimodal andmultimodal feature sets to evaluate
classification performance using different models. Random
forests are decision tree-based ensemble learning classification
algorithms that involve fitting multiple decision tree classifiers on
random subsamples of the data and predicting the final class by
aggregating votes or predictions from different decision trees. RF
algorithms control overfitting of the model that may occur in a
single decision tree (42). SVC is a supervised learning algorithm
that performs linear or non-linear classification by transforming
data to a higher dimensional space using a kernel function and
constructing an optimal hyperplane. The hyperplane classifies
data points into different classes by maximizing the distance
between the nearest point on its either side (43). ANN is a
biologically inspired feed forward neural networks that consists
of an input layer, hidden layer, and output layer with nodes that
act as activation functions and a back-propagation algorithm
that trains the model for classification (44). We implemented
RF classification model using 10,000 trees, maximum depth =
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TABLE 1 | Classification results from unimodal and multimodal feature sets

(testing/cross) validation (CV).

Classifier Accuracy Sensitivity Specificity F1-score AUROC

A) Classification based on T1ce feature set

RF 0.52/0.69 0.00/0.00 0.93/0.93 0.39/0.52 0.70/0.70

SVC 0.47/0.62 0.50/0.36 0.73/0.77 0.36/0.54 0.75/0.76

ANN 0.52/0.71 0.00/0.18 1.00/0.91 0.38/0.60 0.54/0.80

B) Classification based on FLAIR feature set

RF 0.63/0.53 0.5/0.18 0.93/0.73 0.61/0.44 0.76/0.73

SVC 0.63/0.67 0.5/0.18 0.93/0.91 0.61/0.57 0.79/0.80

ANN 0.57/0.75 0.50/0.36 0.86/0.93 0.53/0.68 0.75/0.85

C) Classification based on T2 feature set

RF 0.42/0.67 0.00/0.27 0.73/0.84 0.30/0.59 0.67/0.79

SVC 0.47/0.58 0.25/0.18 0.86/0.75 0.40/0.48 0.75/0.78

ANN 0.73/0.67 1.00/0.54 0.86/0.75 0.72/0.60 0.78/0.83

D) Classification based on ADC feature set

RF 0.57/0.67 0.25/0.27 0.93/0.88 0.51/0.58 0.78/0.78

SVC 0.42/0.64 0.25/0.27 0.73/0.82 0.31/0.55 0.75/0.82

ANN 0.52/0.69 0.00/0.27 0.93/0.86 0.39/0.60 0.64/0.80

E) Classification based on multimodal feature set

RF 0.53/0.75 0.50/0.36 0.80/0.95 0.49/0.73 0.77/0.80

SVC 0.68/0.80 0.75/0.45 0.93/0.95 0.68/0.74 0.78/0.84

ANN 0.68/0.87 0.75/0.81 0.93/0.91 0.68/0.85 0.78/0.94

Accuracy and f1-score (macro averaged) are overall classification scores, whereas

sensitivity and specificity are for STEE class.

AUROC, area under receiver operating curve; RF, random forest; SVC, Support Vector

Classifier; ANN, artificial neural network; FLAIR, Fluid Attenuated Inversion Recovery; ADC,

apparent diffusion coefficient; STEE, Supratentorial Extraventricular Ependymoma.

Highlighted scores indicate high classification performance.

2 and a maximum of square root of input features per tree
with “Gini” criterion as the loss. SVC was implemented using
a linear kernel on the training dataset having a c value of
1. A three-layer ANN was implemented with a single hidden
layer of five hidden units followed by a softmax activation
function at the output layer. The model was optimized using
Adam optimizer, with a learning rate = 0.005 and binary cross
entropy as the loss function. All three classification models
were trained on a training set of 56 subjects and tested on
19 subjects, in both unimodal as well as in multimodal setup.
Additionally, a leave-one-out-type cross validation (LOOCV)
was implemented on the training set for each classifier to
validate the model. To avoid classification bias in favor of
majority class due to our unbalanced group samples and
to attain robust prediction, we augmented the training data
using a borderline Synthetic Minority Oversampling Technique
(SMOTE) (45). Classification performance of the three classifier
models were compared by evaluating their performancemetrices,
which included macro-averaged accuracy, F1-score, and AUROC
(area under receiver operating curve), whereas the class-specific
classification performance was evaluated using precision, recall,
F1-score, and AUROC. To determine the most discriminative
features involved in classification, we further obtained SVC
coefficients for each pair of classes for unimodal as well
as multimodal feature sets, with a high coefficient score

TABLE 2 | Class-specific performance metrices of classifiers on unimodal and

multimodal feature sets.

Classifier Class Precision Recall F1-score

A) Class-specific performance metrices of SVC on unimodal feature set

T1ce STEE 0.33/0.29 0.50/0.36 0.40/0.32

HGG-G4 0.00/0.54 0.00/0.39 0.00/0.45

HGG-G3 0.58/0.83 0.78/0.89 0.67/0.86

FLAIR STEE 0.67/0.33 0.50/0.18 0.57/0.24

HGG-G4 0.75/0.57 0.50/0.67 0.60/0.62

HGG-G3 0.58/0.83 0.78/0.89 0.67/0.86

T2 STEE 0.33/0.15 0.25/0.18 0.29/0.17

HGG-G4 0.17/0.40 0.17/0.33 0.17/0.36

HGG-G3 0.70/0.89 0.78/0.93 0.74/0.91

ADC STEE 0.20/0.27 0.25/0.27 0.22/0.27

HGG-G4 0.00/0.56 0.00/0.50 0.00/0.53

HGG-G3 0.64/0.83 0.78/0.89 0.70/0.86

B) Class-specific performance metrices on multimodal feature set

RF STEE 0.50/0.38 0.25/0.27 0.33/0.32

HGG-G4 0.50/0.58 0.50/0.61 0.50/0.59

HGG-G3 0.64/0.83 0.78/0.89 0.70/0.86

SVC STEE 0.75/0.71 0.75/0.45 0.75/0.56

HGG-G4 0.60/0.70 0.50/0.78 0.55/0.74

HGG-G3 0.70/0.90 0.78/0.96 0.74/0.93

ANN STEE 0.75/0.69 0.75/0.82 0.75/0.75

HGG-G4 0.50/0.88 0.50/0.83 0.50/0.86

HGG-G3 0.78/0.96 0.78/0.93 0.78/0.94

HGG, high-grade gliomas. Highlighted scores indicate high classification performance.

implying high contribution of the feature in the classification of
tumor groups.

RESULTS

Clinical and Radiological Characteristics of
Tumors
Qualitative MRI features of patients with STEE, HGG-G3, and
HGG-G4 are depicted in Figure 1. It demonstrates the similarity
in the imaging findings of STEE and HGG with common
occurrences of edema, heterogenous enhancement, necrosis,
hemorrhage, and diffusion restriction in all three tumor groups.
Detailed radiological findings for STEEs are reported in (4).

Feature Selection and Classification of
Unimodal Radiomic Features
The two-stage feature selection process on each MRI modality
generated an optimum final feature set per modality (T1ce-10
features, FLAIR-10 features, T2-22 features, ADC-11 features)
based on the maximum average CV accuracy obtained using RF-
RFECV, as shown in Figure 3. The performance of classification
models using each unimodal feature set is mentioned in Table 1.
Among all modalities, radiomic features obtained from FLAIR
showed highest test accuracy of more than 60% using RF and
SVC classifiers, respectively. ANN showed a test accuracy of 57%,
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FIGURE 4 | (A) Receiver operating characteristic (ROC) curves for classification on multimodal feature set- ROC curves for multimodal features-based classification of

multiple tumor groups (STEE: supratentorial extraventricular ependymoma, HGG-G4: high-grade glioma-grade 4, HGG-G3: high-grade glioma-grade3) using random

forest (RF), support vector classifier (SVC), and artificial neural network (ANN) classifiers based on CV and test data. (B) ROC curves for SVC on unimodal features

set-ROC curves unimodal [gadolinium enhanced T1-weighted (T1ce), fluid attenuation inversion recovery (FLAIR), T2-weighted imaging, and apparent diffusion

coefficient (ADC)] feature-based SVC classification of multiple tumor groups using CV and test data.

a maximum CV accuracy of 75%, and AUROC of 85% among
the three classifiers. More than 75% AUROC were observed
consistently across all classifiers, along with high F1-score and
sensitivity using FLAIR modality. High specificity was observed
across all models for all modalities. As SVC model provided
balanced performance throughout all modalities, we further
assessed classification performance for each tumor group in a
one vs. all manner using the SVC model as shown in Table 2A.
Overall, all modalities gave high performance in identifying the
HGG-G3 group, while FLAIR modality showed high precision in
distinguishing all three tumor groups. In accordance with SVC
results, RF and ANN classifiers also showed high performance on
FLAIR and additionally on ADC and T2 modalities, respectively,
as shown in Supplementary Table 1.

Classification Performance of Multimodal
Radiomic Features
Classification performance of RF, SVC, and ANN models on
multimodal feature set is provided in Table 1E. Both SVC and
ANN showed 68% accuracy, 75% sensitivity, and 93% specificity
on test data, while on CV, both classifiers demonstrated more
than 80% accuracy and 90% specificity, along with 81% sensitivity
using the ANN classifier. All classifiers showed an AUROC
of 78% or more on test and CV; a maximum of 94% was

attained on CV of ANN as shown in Table 1D and Figure 4,
respectively. Higher accuracy and AUROC were obtained on
multimodal feature set compared with unimodal feature sets,
across all classifiers. Similar to the unimodal feature set, all
classifiers showed high performance in identifying the HGG-G3
group on multimodal feature set as shown in Table 2B.

Feature importances evaluated on multimodal feature set
using SVC are shown in Table 3. Radiomic features of FLAIR
on enhancement tissue, T2, and ADC on edema tissue were
the commonly occurring top 10 features that were most
discriminative between any two tumor groups. Particularly, the
texture-based GLRLM (gray-level run lengthmatrix) feature–run
length non-uniformity (RLN) was among the topmost frequently
occurring important feature in distinguishing STEE from HGG-
G4 as reported in Table 3A. From T2 and ADC modality,
first-order features and texture-based NGTDM (neighboring
gray tone difference matrix)-busyness and GLDM (gray-level
dependence matrix)–high gray-level emphasis (HGLE) features
on edema tissue were important in classifying STEE from
HGG-G3. The first-order features and GLRLM features were
important in distinguishing the HGG-G4 from the HGG-G3
tumor group. Interestingly, the GLDM feature from T2 edema
was significantly distinct between the STEE and HGG-G4
tumor groups and was also found to be the most important
feature in classifying HGG-G3 from HGG-G4 and STEE,
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TABLE 3 | Feature importances obtained using SVC coefficient scores on

multimodal feature set.

Sr.no. Features Coefficients p-value t-stat

A) STEE vs. HGG-G4

1 ADC_Edema_wavelet-

LHL_firstorder_InterquartileRange

1.214 0.554 0.598

2 FLAIR_Enh_wavelet-

LHH_glrlm_RunLengthNonUniformity

1.114 0.591 0.546

3 FLAIR_Enh_wavelet-

HLL_glrlm_RunLengthNonUniformity

0.987 0.831 0.216

4 FLAIR_Enh_wavelet-

LHL_glrlm_RunLengthNonUniformity

0.967 0.790 0.269

5 T2_Edema_wavelet-

HHL_gldm_HighGrayLevelEmphasis

0.790 0.055 −1.983

6 ADC_Enh_original_shape_LeastAxisLength 0.768 0.233 −1.225

7 T2_Edema_gradient_firstorder_Mean 0.759 0.586 0.550

8 FLAIR_Enh_wavelet-

HHH_glrlm_GrayLevelNonUniformity

0.620 0.602 0.530

9 T2_Edema_gradient_firstorder_Median 0.579 0.497 0.687

10 T1ce_Enh_wavelet-

HLH_ngtdm_Busyness

0.564 0.960 −0.051

B) STEE vs. HGG-G3

1 T2_Edema_wavelet-

HHL_gldm_HighGrayLevelEmphasis

1.145 0.000 −7.229

2 T2_Edema_gradient_firstorder_Median 0.949 0.000 7.181

3 ADC_Edema_wavelet-

LHL_firstorder_InterquartileRange

0.762 0.000 5.028

4 T2_Edema_wavelet-

HHH_glrlm_RunEntropy

0.598 0.000 −5.882

5 ADC_Edema_gradient_firstorder_Mean 0.582 0.000 5.493

6 T2_Enh_wavelet-LHL_ngtdm_Busyness 0.414 0.005 3.241

7 T2_Enh_wavelet-LHH_ngtdm_Busyness 0.378 0.004 3.254

8 ADC_Edema_gradient_firstorder_Median 0.360 0.000 5.111

9 T2_Edema_gradient_firstorder_Mean 0.351 0.006 3.160

10 T2_Enh_wavelet-HLH_ngtdm_Busyness 0.347 0.000 5.729

C) HGG-G4 vs. HGG-G3

1 T2_Edema_wavelet-

HHL_gldm_HighGrayLevelEmphasis

0.721 0.000 −5.617

2 ADC_Edema_gradient_firstorder_Median 0.647 0.000 6.007

3 ADC_Edema_gradient_firstorder_Mean 0.586 0.000 5.902

4 T2_Edema_gradient_firstorder_Median 0.532 0.000 6.415

5 ADC_Edema_wavelet-

LHL_firstorder_InterquartileRange

0.500 0.000 5.134

6 T2_Edema_square_glrlm_RunVariance 0.419 0.000 −5.658

7 T2_Edema_lbp-2D_glrlm_RunVariance 0.419 0.000 −5.658

8 T2_Edema_gradient_glrlm_RunVariance 0.419 0.000 −5.658

9 T2_Edema_exponential_glrlm_RunVariance 0.419 0.000 −5.658

10 T1ce_Edema_square_glrlm_RunVariance 0.419 0.000 −5.658

Highlighted scores indicate high classification performance.

respectively. Overall, the first-order features from T2 and ADC
on edema tissue were highlighted as the commonly seen
important features in discriminating STEE and HGG tumor
subtypes, whereas FLAIR-based GLRLM texture feature on
enhancement was particularly important in classifying STEE
from HGG-G4.

DISCUSSION

Radiological manifestations of STEEs are complicated and

can often be mis-diagnosed as HGGs, which are frequently
occurring neoplasms of the brain. This study aims at identifying

multimodal imaging signatures of STEE tumors through a

detailed radiomics-based quantitative evaluation. Our results
demonstrate that coalescence of multiple MRI modalities leads

to a superior classification performance compared with a
single modality. FLAIR, T2, and ADC emerged as the highly
discriminative modalities, whereas texture and higher-order
statistical features were able to capture intricate imaging markers
that could aid in accurately predicting STEE from HGG tumors.

Differential diagnosis of STEE is more challenging compared
with infratentorial ependymomas as the lattermostlymanifests in
the ventricles, whereas STEE may appear outside the ventricles,
in cortical regions, similar to other high-grade tumors such
as anaplastic astrocytoma and glioblastoma (2, 5). Necrosis,
internal hemorrhages, tissue heterogeneity, ring enhancement,
significant edema, choline/N-acetylasepartate metabolic ratio on
MR spectroscopy, occurrence of tumor in brain parenchyma,
and infiltration into the contralateral frontal hemisphere (2, 5–
7, 9) are some of the common characteristics of these tumors.
Radiographic imaging markers of STEE tumors manifest on
conventional MRI sequences as a heterogenous signal intensity
on T1- and T2-weighted images and as variable appearance on
FLAIR images (2, 5–8). Cyst and calcification are commonly
occurring attributes of STEE tumors (4, 7, 9). Higher ADC values
close to the white matter are also observed in these tumors
(4). DWI and perfusion imaging illustrate restricted diffusion
and high relative cerebral blood volume values, respectively, in
STEEs, which are similar to high-grade anaplastic astrocytoma
and glioblastoma (46). However, till date, there is no consensus
on an established differential diagnosis of STEE, primarily due to
its rare occurrence, which makes it difficult to conduct research
studies and develop a validated biomarker. This often results in
mis-diagnosis and poor prognosis of STEEs.

We investigated multiclass classification performance of
unimodal as well as multimodal feature sets using RF, SVC, and
ANN classifiers. Both SVC and ANN classifiers illustrated high
classification performance. Multimodal features demonstrated
consistently high AUROC of more than 75% and high CV
accuracy of more than 80% from these two classifiers for each
tumor type, as shown in Table 1E and Figure 4, suggesting
that a multiparametric MRI framework would be more efficient
and robust in classifying STEE from HGGs compared with a
single modality. Among the unimodal feature sets, radiomic
features computed from FLAIR modality provided maximum
macro average classification accuracy of more than 55% as
shown in Table 1B, which is significantly higher compared
with the baseline 33% accuracy for multiclass classification.
Moreover, in comparison with other modalities, FLAIR features
demonstrated consistently high AUROC for all tumor types while
assessing class-specific comparison of SVC as shown in Figure 4

and Table 2B. T2 and ADC modalities performed better in
delineating HGG-G3 tumors from other tumor groups as shown
in Table 2B.
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For a comprehensive understanding of each modality’s
contribution in classification of different tumor types in a
multiparametric framework, we ranked the most important
features based on the SVC coefficient score obtained from
multimodal feature sets as shown in Table 3. Overall, first-order
features such as mean, median, and interquartile range of edema
tissue from T2 and ADC along with GLDM-HGLE feature
from T2 were the commonly occurring most discriminative
features in classifying different tumor groups. The GLDM-
HGLE feature implies a larger concentration of high gray-level
intensities. It was most significant (p = 0.05) in classifying STEE
from HGG-G4 and was found to be lower in STEE compared
with the HGG groups and higher in HGG-G3 compared with
HGG-G4. Among other texture features, the GLRLM feature
indicative of homogeneity within the particular tissue types was
the commonly occurring important feature in the classification of
STEE from HGG-G4. STEE was found to be more homogenous
than HGG-G4 on enhancement tissue of FLAIR. NGTDM-
busyness was important in classifying STEE from HGG-G3
and was higher in STEE on edema tissue of T2 modality.
The busyness feature indicates a rapid change in intensities
within a pixel and its neighborhood. Thus, texture-based features
signifying concentration of high intensities, homogeneity, and
intensity fluctuations between pixel neighborhoods were some
of the key radiomics attributes that could distinguish different
tumor types.

There were a few limitations to this study. The sample size of
different tumor groups was unbalanced. Owing to the extremely
rare occurrence of STEEs, acquiring a large number of MRI
scans of these tumors is difficult. However, we controlled for this
limitation by implementing data augmentation using the SMOTE
technique, which provided a balanced dataset for our multiclass
classification. Another limitation was that multiscanner data
were used in the analysis. To control for scanner differences, we
normalized the intensity of the data during pre-processing stage,
prior to classification.

In conclusion, this study develops a potential quantitative
radiomics signature for accurately differentiating STEE from
HGGs using multimodal MRI. Radiomics features from FLAIR
modality can aid predominantly in the classification of STEE and
HGG-G4 tumor, whereas a multiparametric radiomics approach
constituting particularly of FLAIR, ADC, and T2 modalities
could provide intricate and complementary information that
could aid in highly accurate classification of STEE and HGGs

tumors. This work, thus, emphasizes the utility of radiomics-
based multimodal MRI framework in pre-operative clinical
diagnosis and effective treatment planning.
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