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Abstract: Cancer is a disorder of cell growth and proliferation, characterized by different metabolic
pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells
that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors
down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are
ubiquitinated/deubiquitinated via the ubiquitin–proteasome system (UPS). Depending on the target
protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor
suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive
regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by
applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their
inhibitors related to the Warburg effect are potential anticancer targets.

Keywords: anaerobic glycolysis; anticancer; hypoxia; small molecules; ubiquitin–proteasome sys-
tem (UPS)

1. Introduction

Cellular respiration is the process by which living organisms decompose organic
matter to inorganic matter for producing energy required for survival. Sequentially, this
encompasses the glycolysis process, the tricarboxylic acid cycle (TCA cycle, also called
Krebs cycle), and the electron transport system [1]. In normal cells, glucose is converted to
pyruvate through glycolysis in the cytoplasm, and the pyruvate enters the mitochondria
where it is completely degraded [2]. This process requires oxygen, and 38 ATPs are finally
produced from one molecule of glucose: 2 ATPs during glycolysis, 2 ATPs in the TCA
cycle, and 34 ATPs in the electron transport system [3]. Under hypoxic conditions, the
pyruvate is converted to lactic acid, which accumulates instead of entering the TCA cycle.
In cancer cells, there is an abnormal progression of metabolism that only utilizes glycolysis.
In normal cells, 38 ATPs are generated with one glucose molecule, whereas only 2 ATPs are
generated in cancer cells (Figure 1) [4]. Consequently, the cancer cells require more glucose
molecules than normal cells to obtain enough energy to survive. This is a remarkable
characteristic of cancer cells and has recently been applied as a method of detecting cancer
by exploiting the characteristic of excessive glucose utilization by cancer cells [5]. It is
essential to consider that cancer cells complete the glycolysis process regardless of absence
or presence of oxygen [6]. When cancer cells only obtain glycolysis-dependent energy even
in the presence of oxygen, the effect is called the “Warburg effect” [7].

Homeostasis, which is a property of maintaining a constant state in response to
various stimuli in an individual or a cell, is an essential factor. However, the imbalance
of homeostasis leads to various diseases, including cancer. Therefore, it is important
to maintain an optimized state by restoring an equilibrium state broken by changes in
the surrounding environment. The degradation and synthesis of proteins in cells are an
example of maintaining homeostasis. Proteins that need to be discarded after their half-life,
and unstable proteins due to damage, are degraded. Here, ubiquitin serves a marker
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for labeling proteins that need to be degraded. Ubiquitin is finally covalently bound to
the target protein through a series of processes using the E1, E2, and E3 enzymes [8].
Ubiquitin molecules attached to the substrate form a polyubiquitin chain, regulate the
activity and function of the substrate protein, and induce degradation through the 26S
proteasome [9]. The E3 ligase plays a role in attaching ubiquitin to the target protein,
whereas the deubiquitinating enzyme (DUB) induces a reversible reaction that breaks
the bond between the target protein and ubiquitin or between the ubiquitin [10]. The
ubiquitinated proteins mediated by an E3 ligase are degraded by the 26S proteasome,
thereby reducing the cellular functions of the proteins. Alternatively, DUBs stabilize the
substrate proteins and improve their cellular functions by modulating the degradation [11].
Thus, degradation and expression of proteins by the ubiquitin–proteasome system (UPS)
play an important role in cell homeostasis [12] and can be used as an anticancer drug to
remove oncoproteins or stabilize tumor suppressor proteins through UPS [13].
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system. In a hypoxic environment, pyruvates are accumulated without going through the TCA cycle. These accumulated 
pyruvates in the muscle tissue are converted to lactic acid and only produce 2 ATPs. (B) Cancer cells only use the glycolysis 
process, regardless of the presence or absence of oxygen; 2 ATPs are produced per glucose molecule and, therefore, com-
pared to normal cells, more glucose is required to obtain energy. 
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Figure 1. Differences in glycolysis pathways between normal cells and cancer cells. (A) In the presence of oxygen, normal
cells produce carbon dioxide up to 38 ATPs per glucose molecule through glycolysis, TCA cycle, and electron transport
system. In a hypoxic environment, pyruvates are accumulated without going through the TCA cycle. These accumulated
pyruvates in the muscle tissue are converted to lactic acid and only produce 2 ATPs. (B) Cancer cells only use the glycolysis
process, regardless of the presence or absence of oxygen; 2 ATPs are produced per glucose molecule and, therefore, compared
to normal cells, more glucose is required to obtain energy.

2. Cancer Metabolism Involved in the Warburg Effect
2.1. Changes in the Tumor Microenvironment

Unlike normal cells, cancer cells require considerable energy to replicate due to their
inherent characteristic of abnormally rapid proliferation [14]. The tumor microenvironment
(TME), such as hypoxia, results in metabolic changes, including the Warburg effect, in
cancer cells. Alterations of the tumor microenvironment due to HIF initiate transcription
programs under hypoxic stress conditions [15]. HIF is a transcription factor that regulates
angiogenesis, and heterodimers include HIF-1, HIF-2, and HIF-3. HIF-1α is expressed
in all cells, whereas HIF-2α is expressed in endothelial cells or hepatocytes and controls
angiogenesis and red blood cell production [16]. The level of hypoxia-induced neovascular-
ization varies and is dependent on the expression levels of ANGPT-2 and VEGF-A [17]. In
non-small-cell lung cancer cells, inhibition of the HIF-1α/VEGF signaling pathway by GLA
inhibits the hypoxia-induced cell invasion and proliferation [18]. The representative target
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of pVHL is HIF. pVHL binds to elongin C and CUL2, thus forming the VCB–CUL2 complex
with elongin B. Under normal oxygen conditions, acetylation and hydroxylation of proline
residues in the oxygen-dependent degradation domain (ODD) of HIF-α induces binding to
the VCB–CUL2 complex and functions as an anti-tumor when HIF-1α is degraded via the
ubiquitin–proteasome pathway [19]. Under hypoxia, the HIF-1α is not degraded, accumu-
lates in the cells, and subsequently interacts with HIF-β. Blood supply to all cancer cells
is restricted with tumor progression, and the tumor microenvironment stabilizes HIF-1α
and HIF-2α [20,21], which are therefore found to be upregulated in tumors; however, this
does not apply to all cancer cell types. In lung adenocarcinoma, HIF-1α is upregulated, but
HIF-2α is downregulated [22].

2.2. Changes in the Signaling Pathways

AKT is an important signaling molecule that induces the Warburg effect in cancer
cells. PI3K phosphorylates and activates AKT located on the cell membrane [23]. The
phosphorylated AKT separates from the cell membrane, causing intracellular reactions
with the mTORC-containing substrates. AKT promotes lipid biosynthesis and glucose
transport to cancer cells with improved glycolysis through activation of mTOR [24]. The
PI3K/AKT signaling pathway promotes the breakdown and uptake of glucose and lactic
acid production, thus playing an important role in the metabolic reprogramming of cancer
cells [25]. It also regulates the growth, proliferation, and apoptosis of cancer cells by
stabilizing, inhibiting, and regulating downstream factors [26]. Growth factors regulating
HIF-1α activate the PI3K/AKT signaling pathway [27]. Conversely, hindrance of the
AKT signaling pathway inhibits glycolysis and prevents cell growth. CTMP inhibits
AKT phosphorylation with subsequent inhibition of the PI3K/AKT pathway [28], and
FDFT1 negatively regulates the AKT/mTOR signal to inhibit glycolysis and proliferation
in colon cancer [29]. Moreover, PTEN also acts as a negative regulator of the PI3K/AKT
pathway [30].

2.3. Change from Oxidative Metabolism to Reduced Metabolism

NADH is an important factor involved in altering the redox metabolism of cells and
is used by the mitochondria for electron transport. NAD+ is regenerated from NADH by
a redox-linked mitochondrial shuttle, of which malate-aspartate is the most commonly
recognized shuttle [31]. During glycolysis, a malate-aspartate shuttle through the mitochon-
dria restores the NADH imbalance. However, when transport through the intracellular
membrane attains the maximum rate, the shuttle exceeds the range that accommodates gly-
colysis and subsequently converts pyruvate to lactic acid via LDH to produce NAD+ [32].
The conversion of NADH to NAD+ in the cytoplasm satisfies the redox imbalance occur-
ring in the glycolysis process, and the mitochondrial NADH produced enters the electron
transport system and eventually produces more ATPs [33]. Thus, the balance of NADH
redox contributes to a direct signaling role for the Warburg effect [34]. Inhibition of lac-
tate dehydrogenase A (LDH-A) suppresses the Warburg effect and returns to oxidative
phosphorylation to re-oxidize NADH and produce ATP [35].

2.4. Consumption of Glutamine

The Warburg effect is a major metabolic characteristic of cancer. Proliferating cells
require not only ATP but also other cellular components. Along with glucose, glutamine is
one of the most abundant nutrients in plasma. Similar to glucose, glutamine is degraded to
lactic acid and does not undergo complete oxidative phosphorylation in mammalian cells.
Glutamine is also utilized in biosynthetic pathways that provide a secondary carbon source
for fatty acid synthesis. Glutamine-derived α-ketoglutarate is supplied for the production
of citrate through forward flux via the TCA cycle and malic enzyme-dependent production
of pyruvate [36].
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2.5. Lipid Biosynthesis

Lipids are partially derived from acetyl CoA and many contain fatty acids (FAs),
which are essential for cancer cell proliferation. Adipocytes provide FAs for rapid tumor
growth. FAs are considered a major source of electrons for ATP production and are used
to produce energy in cancer cells [37]. In addition, mitochondrial fatty acid oxidation
(β-oxidation) produces flavin adenine dinucleotide (FADH2) and nicotinamide adenine
dinucleotide (NADH) via oxidative phosphorylation (OxPhos). A recent study found
that a lack of glucose in cancer cells does not reduce ATP levels; however, blocking fatty
acid oxidation (FAO) showed no effect in normal cells but reduced ATP production in
cancer cells by 40% [38]. Further studies are required to determine which pathways among
glucose, glutamine, and fatty acid metabolism are primarily used by cancer cells to produce
ATP. In addition, cancer cells are known to improve biosynthetic ability by expressing
pyruvate kinase isozymes M2 (PKM2) [39].

2.6. Drug Resistance

The inflow of glucose into cells is promoted by 14 GLUT transporter groups. GLUT1
and GLUT3 have been extensively investigated for cancer metabolism [40,41]. GLUT1
is upregulated in malignant tumors, such as prostate cancer [40] and breast cancer [42].
Increased GLUT1 expression activates mTOR [43], and activated mTOR increases the
expression of GLUT1 [44], thereby forming a positive feedback loop. LoVo cells resistant
to doxorubicin (an anticancer drug) showed a higher dependence on glucose metabolism
and expression of GLUT1 and MCT4 for survival as compared to doxorubicin-sensitive
LoVo cells. Silybin, an inhibitor of GLUT, is reported to decrease the expression of the
GLUT protein. Exposure to 50 µM silybin resulted in decreased expression of GLUT1
only in the doxorubicin-resistant cells; however, exposure to 10 µM silybin affected both
doxorubicin-sensitive and -resistant cells [45]. This result indicates that upregulation of
GLUT is a target of resistance to drugs, such as doxorubicin. GLUT3 is highly expressed in
brain tumor cells [46], and long-term treatment with temozolomide in human astrocytes
resulted in increased expression of GLUT3, indicating that GLUT3 has acquired resistance
to the temozolomide drug [47].

3. Ubiquitin–Proteasome System and DUBs

Ubiquitin is a small protein expressed in all eukaryotes, is composed of 76 amino acids,
and is covalently bound to substrates. Ubiquitination is a post-translational modification
that has various roles in cellular processes, including cell cycle, DNA repair, and signal
transduction [48]. Ubiquitination is a multistep enzyme cascade that functions via the E1
(ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ligase (ubiquitin
ligase) [49]. The glycine at the ubiquitin end first links to the cysteine residue of the E1
enzyme. ATP is required for this process, and the activated E1 enzyme transfers the linked
ubiquitin to the E2 enzyme, which then binds to the E3 enzyme and transmits ubiquitin
to the target protein [50]. The polyubiquitin chain formed by repeating this process leads
the target protein to the 26S proteasome and eventual degradation of substrates [51]. This
process is defined as the ubiquitin–proteasome system (UPS). The E3 enzyme is also called
the E3 ligase, which links the ubiquitin to a target protein in UPS; other enzymes that func-
tion opposite to E3 ligase are called the deubiquitinating enzymes (DUBs) (Figure 2) [12].
Ubiquitin has the capability to form a polyubiquitin chain at 7 Lys sites and 1 Met site: K6,
K11, K27, K29, K33, K48, K63, and M1. It is well known that the K6-linked polyubiqui-
tin responds to mitophagy and DNA repair [52]. K11-linked polyubiquitin is known to
control the cell cycle, proteasomal degradation, protein stability, mitophagy, trafficking,
and endoplasmic reticulum-associated protein degradation [52–54]. K27-linked polyubiq-
uitin activates kinases and regulates DNA repair [54]; K29-linked polyubiquitin plays a
role in kinase modification and proteasomal/lysosomal degradation [55]; and K33-linked
polyubiquitin induces kinases modification, innate immunity, and autophagy [54,56]. It is
also known that K48-linked polyubiquitin induces proteasomal degradation [57], and the
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K63-linked polyubiquitin plays a role in protein kinase activation and DNA damage [58].
Lastly, M1-linked polyubiquitin activates gene expression and innate immunity [52].
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Figure 2. The schematic diagram of the ubiquitin–proteasome system (UPS). The ATP-activated E1 enzyme binds to glycine
at the end of ubiquitin. The E1 enzyme delivers the ubiquitin to the E2 enzyme. The E2 enzyme binds to the E3 enzyme
(E3 ligase) bound to the substrate protein. Ubiquitin linked to the E2 enzyme moves to the substrate protein. By repeating
this process, several ubiquitins form a polyubiquitin chain, and the substrate is degraded through the 26S proteasome.
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DUBs are involved in two major roles. The first is to break the bond between ubiquitin
and a protein, so that the protein from which ubiquitin has been removed can continue
to function in the cells. The second involves breaking the bond between ubiquitin and
ubiquitin [59]. After the target protein enters the proteasome, the remaining ubiquitins
are broken down one by one in the form of a chain, and free ubiquitin is recycled back to
the UPS. DUBs are classified into nine subfamilies [60]: ubiquitin-specific protease (USP),
ubiquitin C-terminal hydrolases protease (UCH), Machado–Joseph disease protein domain
protease (MJD), ovarian tumor protease (OTU), Jab1/Pab1/MPN metallo-enzyme motif
protease (JAMM), monocyte chemotactic protein-induced protease (MCPIP), permuted
papain fold peptidase of dsDNA viruses and eukaryotes (PPPDE), motif interacting with
Ub-containing novel DUB family (MINDY), and zinc finger with UFM1-specific peptidase
domain protein (ZUFSP, also called ZUP1 or C60rf113) [61–63]. The USP, UCH, OTU, MJD,
MCPIP, PPPDE, MINDY, and ZUFSP subfamilies have cysteine peptidase activity, whereas
the JAMM subfamily contains zinc metalloisopeptidase activity [64,65].

4. DUBs of the Warburg Effect Factors
4.1. USP7

Ubiquitin-specific protease 7 (USP7), also called the herpesvirus-associated ubiquitin-
specific protease (HAUSP), is a protein belonging to USP, the largest subfamily of DUB. It
targets proteins associated with numerous tumors, such as p53 [66], MDM2 [67], PTEN [68],
FOXO4 [69], and histone H2B [70], and is responsible for various biological functions, such
as tumor suppression, DNA repair, immune response, and apoptosis [71].

SIRT7, a new target of USP7, plays a role in controlling a variety of cellular processes,
ranging from cell homeostasis [72], senescence [73], and DNA repair to cancer progres-
sion [74]. It also acts to resist various types of stress, such as hypoxia [75], endoplasmic
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reticulum stress [76], and low glucose levels [77]. USP7 is a DUB of SIRT7 and decreases the
K-63 linked ubiquitination level of SIRT7 in HCT116 cells. However, the binding affinity of
USP7 and SIRT7 is found to decrease in glucose starvation, and the ubiquitin level of SIRT7
decreases with increasing glucose concentration. SIRT7 deubiquitination by USP7 inhibits
the expression of G6PC, a key regulator of SIRT7-mediated glucose production [78].

FoxO1, a member of the FoxO subfamily of forkhead/winged helix transcription
factors, is important for inhibition of the insulin-mediated glucose production [79]. FoxO1
interacts with the insulin responsive enzyme (IRE) in the promoter regions of G6PC and
Pck1 [80]. Insulin signaling inhibits the transcriptional activity of FoxO1 through AKT-
dependent phosphorylation of FoxO1 at certain conserved residues (T24, S256, and S319 of
human FoxO1) [81]. USP7 deubiquitinates the FoxO1 and inhibits transcriptional activity
in HEK293A cells. In addition, USP7 regulates FoxO1 occupancy in the promoter of
the glucose-generating gene [82]. Thus, the activity of USP7 alleviates excessive glucose
production in a hypoxic environment.

4.2. USP19

The ubiquitin-specific protease 19 (USP19) protein belongs to the USP subfamily.
USP19 promotes tumor formation in gastric cancer by upregulating MMP2 and MMP9
involved in cancer migration and invasion [83] and regulates the growth of Ewing sar-
coma by acting as a DUB of the chimeric transcription factor EWS-FLI1 [84]. USP19 not
only regulates cancer cells but also performs various functions within cells, such as differ-
entiation of muscle cells [85], viral immune response [86], autophagy [87], macrophage
polarization [88], cell cycle regulation [89], chromosome stabilization, and repair of DNA
damage [90].

HIF is a transcription activator having subunits HIF-α (HIF-1α, HIF-2α, and HIF-3α)
and HIF-β, and mediates the response of cell proliferation/survival, angiogenesis, and
glucose metabolism [91]. USP19 interacts with HIF-1α and stabilizes HIF-1α, regardless
of the ER localization and catalytic activity of USP19 in HeLa cells. Knockdown of USP19
decreases the protein levels of HIF-1α and the mRNA expression levels of VEGF and
GLUT1, which are target genes of HIF-1α in hypoxia [92].

4.3. USP28

The ubiquitin-specific protease 28 (USP28) protein belongs to the USP subfamily and
USP28 responds to DNA damage and stabilizes proteins such as Myc and cyclin E [93]. In
addition, USP28 is overexpressed in tumors of human colon cancer patients and acts as an
oncogene that promotes the formation of intestinal tumors [94].

Fbw7, a substrate of USP28, is an E3 ligase that plays a role in Myc- or cyclin E-
mediated cancer development [95]. Loss of Fbw7 in mice decelerates the cardiovascular
development and increases embryonic mortality via an increase in the notch1 mRNA
levels [96]. USP28 does not directly bind to c-Myc but deubiquitinates the c-Myc through
interaction with Fbw7 in vivo and in vitro, the E3 ligase of c-Myc [97].

4.4. USP37

The ubiquitin-specific protease 37 (USP37) protein belongs to the USP subfamily.
USP37 has a role in regulating the cell cycle and accelerates conversion of the G1/S phase.
USP37 is also reported to be a transcriptional target of the oncogenic transcription factor
E2F1, which is upregulated in several cancers [98]. Recent studies report that USP37 is a
potential factor related to breast cancer progression [99].

The Myc oncogene, which contributes to the development of numerous human cancers,
encodes the transcription factor c-Myc, thereby linking altered cellular metabolism with
oncogenesis [100]. c-Myc plays an important role in promoting glycolysis in the Warburg
effect [101] and cooperates with E2F1 in regulating the expression of genes involved in
nucleotide metabolism. Along with HIF-1, it is reported to regulate the expression of
genes involved in glucose metabolism [102,103]. The overexpression of c-Myc can be
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controlled by the UPS. c-Myc is deubiquitinated and stabilized by direct binding to USP37
in HEK293T cells. Moreover, depletion of USP37 results in decreased expressions of GLUT1
and LDHA mRNAs required for glucose uptake and lactic acid production in H1299
cells. This suggests that USP37 regulates the Warburg effect via stabilizing c-Myc in lung
cancer [104]. Interestingly, unlike USP28 [97], USP37 directly binds to c-Myc and acts
independently of Fbw37.

4.5. USP44

The ubiquitin-specific protease 44 (USP44) belongs to the USP family and is a DUB
containing a zinc-finger domain and a USP domain. USP44 is involved in numerous
cellular functions, including stem cell differentiation [105] and central body position regu-
lation [106], and responses to DNA damage [107]. In addition, USP44 plays an important
role in human tumors acting as both a tumor suppressor and an oncogene. It inhibits cell
growth by inhibiting AKT signaling in non-small-cell lung cancer [108] and promotes the
growth of prostate cancer by stabilizing the EZH2 protein [109].

Fructose-1, 6-bisphosphatase 1 (FBP1) is an enzyme that regulates glucose production
and catalyzes the decomposition of fructose 1, 6-bisphosphate into fructose 6-phosphate
and inorganic phosphate. FBP1 acts as a tumor suppressor in diverse malignancies, such
as kidney cancer [110], breast cancer [111], lung cancer [112], and liver cancer [113]. Knock-
down of USP44 improves glucose utilization and lactic acid production capacity by reduc-
ing only FBP1, and not HK2 or PKM2, in PANC-1 cells. Conversely, overexpression of
USP44 increases the protein expression level of FBP1. This suggests that FBP1 mediates
USP44 and plays an important role in glucose metabolism [114].

4.6. OTUB2

Ubiquitin aldehyde binding 2 (OTUB2) belongs to the OTU subfamily, which relies on
DNA damage to fine-tune the ubiquitination level and supports the DNA repair pathway
selection [115]. In addition, OTUB2 promotes cancer metastasis by activating YAP and
TAZ, independent of the Hippo signaling pathway [116].

AKT, also known as protein kinase B (PKB), is a serine/threonine kinase that induces
cell growth and differentiation. AKT is capable of phosphorylating various downstream
factors related to apoptosis, transcription, and oncogene [117]. Phosphorylation-induced
AKT activation, overexpression, and mutation are frequently observed in human can-
cers [118]. Knockdown of OTUB2 reduces glycolysis and its ability to absorb glucose or
produce extracellular lactic acid in A549 and H1299 cells. In NSCLC cells, the expressions
of HIF-1α and c-Myc are decreased. In addition, OTUB2 increases the phosphorylation
levels of mTOR and AKT and protein expression levels of GLUT1, U2AF2, HK2, PGAM1,
PGK1, HIF-1α, and c-Myc in XL-2 cells. This indicates that the mTOR/AKT signaling
pathway can be activated by OTUB2 and suggests that OTUB2 is a regulator of the Warburg
effect through interaction with U2AF2 [119].

4.7. OTUD6B

A double allele mutation in the ovarian tumor domain-containing 6B (OTUD6B) gene is
associated with development of the intellectual disability syndrome [120]. Additionally,
the long noncoding RNA OTUD6B-AS1 (lncRNA OTUD6B-AS1) of OTUD6B exacerbates
oxidative damage in bladder cancer [121] and inhibits the growth, invasion, and migration
of thyroid cancer [122]. The lncRNA OTUD6B-AS1 also regulates the Wnt/β-catenin sig-
naling pathway to induce the proliferation and invasion of hepatocellular carcinoma [123].
However, it contrarily inhibits the proliferation of renal cell carcinoma [124].

The protein von Hippel–Lindau (pVHL) is an E3 ligase that plays a role as a tumor
suppressor. pVHL is present on chromosome 3(3p25–26) and mutations cause von Hippel–
Lindau disease, a genetic disease that is transmitted through generations [125]. In HCC
cells with OTUD6B knockdown, the protein levels of HIF-1α and HIF-2α were increased in
both the normal oxygen state as well as the hypoxic state. In addition, overexpression of
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OTUD6B resulted in increased ubiquitination of HIF-1α in MHCC-LM3 cells. However,
OTUD6B did not bind to HIF-1α but instead directly bound to pVHL. OTUD6B binds to
elongin B and enhances the interaction with pVHL-elongin C, thereby inhibiting pVHL
from proteasome degradation in HEK293T cells. The stabilized pVHL recognizes and
degrades hydroxylated or SUMOylated HIF-1α in hypoxia. As a result, OTUD6B increases
the stability of pVHL to prevent metastasis of hepatocellular carcinoma [126,127].

4.8. OTUD7B

The OTU domain-containing protein 7B (OTUD7B), also called Cezanne, is a member
of the OTU subfamily that contains the OTU domain. OTUD7B positively modulates and
activates T cells and induces an inflammatory response [128]. Moreover, by inhibiting the
NF-κB signaling pathway, OTUD7B negatively regulates and inhibits B cell activity [129].
OTUD7B not only responds to the immune system but also functions as an oncogene;
OTUD7B induces lung squamous carcinoma via the AKT/VEGF signaling pathway [130]
and activates the NF-κB signaling pathway to increase resistance to apoptosis in hepatocel-
lular carcinoma [131].

Under hypoxia, HIF-1 upregulates the expression of Pdk1, an enzyme regulating
glycolysis in cancer cells and VHL-deficient osteoblasts, and promotes the conversion of
cytoplasmic pyruvate to lactic acid [132]. Knockdown of OTUD7B decreases the protein
levels of HIF-1α in HeLa cells and mouse embryonic fibroblasts (MEFs) isolated from
OTUD7B knockout mice (OTUD7B−/−) and increases the K11-linked polyubiquitin chain
formed. However, it is confirmed that HIF-1α, which is degraded by OTUD7B, is regulated
through a proteasome-independent process in OTUD7B knockdown cells (Table 1 and
Figure 3) [133].

Table 1. The list of DUBs and cellular substrates involved in the Warburg effect.

DUBs Substrates Functions References

USP7 SIRT7 USP7 decreases the K-63 linked ubiquitination level of SIRT7. [78]
USP7 decreases the ubiquitin level of SIRT7 as the glucose concentration

increased.

G6PC Deubiquitination of SIRT7 by USP7 inhibits the expression of G6PC, a key
regulator of SIRT7-mediated glucose production.

FoxO1 USP7 deubiquitinates and regulates FoxO1 occupancy in the promoter of the
glucose-generating gene. [82]

USP19 HIF-1α Silence of USP19 decreased the protein level of HIF-1α. [92]
VEGF Silence of USP19 decreased the mRNA level of VEGF.

GLUT1 Silence of USP19 decreased the mRNA level of GLUT1.

USP28 c-Myc USP28 deubiquitinates c-Myc through interaction with Fbw7. [97]

USP37 c-Myc USP37 directly binds to c-Myc and deubiquitinates the c-Myc. [104]

GLUT1 Depletion of USP37 leads to decreased expression of GLUT1 mRNAs
required for glucose uptake.

LDHA Depletion of USP37 leads to decreased expression of LDHA mRNAs required
for lactic acid production.

USP44 FBP1 Knockdown of USP44 improves glucose utilization and lactic acid
production capacity by reducing FBP1. [114]

OTUB2 c-Myc OTUB2 increases the expression level of c-Myc. [119]
HIF-1α OTUB2 increases the expression level of HIF-1α.
GLUT1 OTUB2 increases the expression level of GLUT1.

U2AF2
OTUB2 increases the expression level of U2AF2.

OTUB2 regulates the Warburg effect via interaction with U2AF2.
HK2 OTUB2 increases the expression level of HK2.

PGAM1 OTUB2 increases the expression level of PGAM1.
PGK1 OTUB2 increases the expression level of PGK1.
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Table 1. Cont.

DUBs Substrates Functions References

mTOR OTUB2 increases the level of phosphorylation of mTOR.
AKT OTUB2 increases the level of phosphorylation of AKT.

OTUD6B HIF-1α Overexpression of OTUD6B increased the ubiquitination level of HIF-1α and
decreased protein level of HIF-1α. [126,127]

pVHL OTUD6B inhibits pVHL from proteasome degradation through binding with
elongin B and enhancing the interaction with pVHL-elongin C.

OTUD7B HIF-1α Knockdown of OTUD7B decreases the protein levels of HIF-1α and increases
the K11-linked polyubiquitin chain. [133]Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 20 
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4.9. Other DUBs

There are DUBs excluded from this paper because they are not identified to be related
to the Warburg effect, glycolysis, or cancer, yet. For example, USP1 limits PI3K–AKT–
FoxO signaling by removing the K63-linked polyubiquitin chain from AKT in prolonged
starvation mouse muscle and depletion of USP1 increases ubiquitination level of AKT,
glucose uptake, and PI3K–AKT–FoxO signaling [134]. However, different results may
occur when applied to humans or other diseases such as cancer, because DUBs function
differently depending on the cell types. Another DUB that regulates AKT, UCH-L1, induces
lymphoma by deregulating AKT signaling [135]. However, the effect of UCH-L1 on the
Warburg effect or glycolysis is not known yet.

There are other DUBs excluded from this paper for the same reason as described.
DUBs which affect c-Myc are CYLD [136], USP2a [137–139], USP7 [140,141], USP13 [142],
USP16 [143], USP18 [144], USP22 [145,146], USP28 [147], USP36 [148,149], and OTUD6B
isoform 2 [150]. DUBs that regulate FBP1 include USP22 [151] and USP44 [114]. The DUBs
of HIF-1α are MCPIP1 [152], UCH-L1 [153–155], USP7 [156], USP8 [157], USP20 [158], and
USP28 [158]. USP4 [159], USP5 [160], USP9X [161], USP10 [162], and OTUD5 [163] regulate
mTOR signaling, and USP22 [164] and OTUB1 [165] regulate activity of mTOR.

These DUBs affect signaling pathways, but it is not known how they affect survival,
apoptosis, the Warburg effect, or glycolysis in cancer cells. Therefore, follow-up studies
related to metabolism in cancer cells and clinical samples are required.

5. Small Molecules of DUBs Associated with the Warburg Effect

Depending on the target protein, DUBs can play a role in tumor formation as well
as suppression. For example, when a DUB acts on the tumor suppressor protein p53, the
degradation of p53 is inhibited, and the tumor suppressor role is restored by stabilizing
p53 [166,167]. However, if the DUB targets an oncoprotein such as c-Myc, it plays a role in
tumorigenesis [97,104,119]. Therefore, inhibiting a DUB, which acts as an oncoprotein, may
be another way to inhibit the Warburg effect and treat cancer. Table 2 reveals the inhibitors
and small molecules of DUBs featured in this paper (Table 2). However, since inhibitors or
small molecules of DUBs are yet to be developed, such DUBs are other potential targets for
anticancer therapeutics.

Table 2. The list of DUBs and inhibitors involved in the Warburg effect.

DUBs Inhibitors References

USP7 FT671 [168]
FT827 [168]

GNE-6640 [169]
GNE-6776 [169]

HBX 19,818 [170]
HBX 28,258 [170]
HBX 41,108 [171]

P22077 [172]
P50429 [173]
P5091 [174,175]
vif1 [176]
vif2 [176]

XL177A [177]
XL188 [178]

USP19 unknown
USP28 AZ1 [179]

[1,2,3]triazolo[4,5-d]pyrimidine [180]
USP37 unknown
USP44 unknown
OTUB2 unknown
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Table 2. Cont.

DUBs Inhibitors References

OTUD6B unknown
OTUD7B unknown

Broad spectrum DUB inhibitor Betulinic acid [181–185]
PR-619 [186,187]

5.1. USP7

FT671 and FT827 are small molecule inhibitors that specifically target USP7 and no
other DUBs. FT671 is a non-covalent inhibitor, whereas FT827 is a covalent inhibitor,
which binds and inhibits the catalytic domain of USP7. By inhibiting USP7, FT671 induces
increased protein levels of p53 and p53 target proteins in HCT116 and U2OS cells and
stabilization of the p53 protein and degradation of N-Myc in the IMR-32 cells [168].

GNE-6640 and GNE-6776 non-covalently target 12Å remote from the catalytic cysteine
and not the catalytic domain of USP7. GNE-6640 and GNE-6776 interact with the side
chain and acidic residues of ubiquitin K48. This means that USP7 binds and decomposes
ubiquitin moieties having the side chain of K48 and, consequently, inhibits the activity of
USP7 by weakening the binding with ubiquitin [169].

HBX 19,818, HBX 28,258, and HBX 41,108 are small molecule substances that inhibit
the activity of USP7, where HBX 19,818 and HBX 28,258 inhibit HAUbVS binding to
USP7. In particular, HBX 19,818 covalently binds to the catalytic cysteine C223 of USP7
and increases the deubiquitination level of the USP7-mediated MDM2 and functional
activation of p53 [170]. In addition to the p53-dependent apoptosis, HBX 41,108 induces
USP7-mediated p53 stabilization and activation. Unlike HBX 41,108, which non-specifically
inhibits DUB, HBX 19,818 and HBX 28,258 target USP7 as specific targets [170,171].

P22077 is an inhibitor that jointly targets USP7, USP47, and USP10, and P50429 inhibits
USP7 and USP47. P22077 and P50429 covalently modify the catalytic cysteine (C233) of
USP7 and promote structural changes of enzymes related to rearrangement of the active
site. In addition, P22077 causes a partial loss, but P50429 completely abolishes the link
between Ub-vinyl methyl ester (Ub-VME) and USP7, which is an ubiquitin variant that
binds to the catalytic cysteine of DUB [173]. The inhibition of USP7 by P22077 results in
accumulation of the 26S proteasome complex and polyubiquitinated substances but does
not directly block the proteasome proteolytic activity. In the early stage of P22077 treatment,
there is a decrease in the USP7-mediated HDM2, with increased protein expressions of p53
and p21; however, in the later stages, there is a decrease in the protein expression level of
HDM2 due to the p53/HDM2 feedback loop. In addition, P22077 decreases the expression
levels of claspin and Chk1, resulting in a checkpoint arrest [172].

P5091 is a trisubstituted thiophene with dichlorophenylthio, nitro, and acetyl sub-
stituents and reacts specifically with USP7, but not with other DUBs. P5091 inhibits USP7
by binding to USP7 competitively with Ub-VME, and inhibiting the deubiquitinating activ-
ity of USP7, but not the proteasome [174]. In multiple myeloma (MM) cells treated with
P5091, the level of ubiquitination of HDM2 and protein expression levels of HDM2 and
HDMX are increased, and the protein levels of p53 and p21 are downregulated. Moreover,
there is also a reduction in the angiogenic activity [175].

vif1 and vif2 are peptides derived from Kaposi’s sarcoma-associated herpesvirus
(KSHV) vIRF4; vif1 binds competitively with the TRAF domain of USP7, which is known
to bind to a substrate having P/A/E-x-x-S, whereas vif2 inhibits the deubiquitination
activity of USP7 by binding both the TRAF domain and the catalytic domain of USP7.
Treatment with vif1 and vif2 promotes anti-tumor effects via p53-mediated apoptosis and
p21-mediated cell cycle arrest [176].

XL177A is an irreversible inhibitor that acts on the catalytic cysteine C223 of USP7.
When treated with XL177A, the MCF7 cells expressing USP7 show reduced expression of
HDM2 and upregulation in the expression levels of p53 and p21, CDKN1A and GADD45A
(proteins that arrest the cell cycle), and Bax and DDB2 (apoptotic proteins) [177]. XL188
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is a small molecule inhibitor, which was developed before XL177A, and is reported to
inhibit noncovalent active sites. XL188 treatment induces downregulation of HDM2 and
upregulation of the p53 and p21 proteins [178].

5.2. USP28

AZ1 is a double inhibitor targeting both USP25 and USP28. The fluorophenyl ring of
AZ1 forms an arene–H interaction with Phe370, while the bromophenyl ring forms a π–π
interaction with Phe370. The fluoro and OH groups form hydrogen bond interactions with
the Glu366 and Lys381 residues. Treatment of AZ1 induces apoptosis by downregulating
the expression level of the tumor protein c-Myc in cancer cell lines [179]. Binding of
the [1,2,3]triazolo[4,5-d]pyrimidine to the catalytic domain of USP28 and attachment of
the benzyl group to the triazole ring of [1,2,3]triazolo[4,5-d]pyrimidine are important for
activity. [1,2,3]triazolo[4,5-d]pyrimidine inhibits the survival, proliferation, cell cycle, and
migration of cancer cells and induces apoptosis through the degradation of c-Myc by the
proteasome [180].

5.3. Broad Spectrum of DUB Inhibitors

Betulinic acid is a natural anticancer drug derived from birch, which induces apoptosis
by inhibiting the proteasome reaction in various cancer cells. Betulinic acid induces
apoptosis by activating NF-κB, a major mediator of the cellular stress response [181]. It
also upregulates the Bax protein [182], downregulates the expression of VEGF [183], and
induces cell cycle arrest [184]. Interestingly, normal tissues and cells are not affected by
betulinic acid [185].

PR-619 targets a wide range of DUBs but not all cysteine proteases. PR-619 induces
G2/M cell cycle arrest in esophageal squamous cell carcinomas cells (ESCCs) and inhibits
cell growth by inhibiting cyclin B1 and stabilizing p21. It also induces ER stress and
promotes apoptosis [186]. In fibroblasts, there is increased sensitivity to the TNF-related
apoptosis ligand (TRAIL) that selectively targets cancer cells but not non-malignant normal
cells [187].

6. Conclusions

From the discovery of Warburg in the 1920s till today of 2021, the Warburg effect
has received considerable attention, and the number of publications related to cancer cell
metabolism is rapidly increasing. Therefore, to treat malignant tumors, it is important to
comprehend the metabolic changes in cancer cells.

Among the substances that cells metabolize during glycolysis (glutamine, FA, and
glucose), the Warburg effect is associated with the process that catalyzes glucose. Normal
cells go through three steps (glycolysis process, TCA cycle, and electron transport system)
in a normoxic environment and generate 38 ATPs per glucose molecule. Under hypoxia,
normal cells produce two ATPs per glucose molecule as well as lactic acid solely through
the glycolysis process. However, since cancer cells prefer anaerobic glycolysis under
both normoxia and hypoxia, they require more glucose to produce the same energy as
normal cells. One method being applied to detect tumors is by using the difference in
metabolism between normal cells and cancer cells, and metabolic anticancer drugs are
also being studied along with cytotoxic chemotherapy, targeted anticancer drugs, and
cancer immunotherapy.

In cancer cells, proteins related to glycolysis are either upregulated or downregulated,
and these proteins can be stabilized by DUBs or prevented from degradation by E3 ligases.
Therefore, if UPS can be applied to control the expression levels of proteins related to
glycolysis, it can prevent cancer cells from obtaining energy and, thus, be used as a
new anticancer therapy. However, the expression levels and cellular roles of DUBs vary
depending on the cell type or their substrates. On the other hand, clinical results are
insufficient compared to in vivo or in vitro experiments. Therefore, follow-up clinical
studies are required.
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