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Objective. This study is aimed at exploring the role of nuclear transporting factor 2 (NUTF2) in head and neck squamous cell
carcinoma (HNSCC) based on The Cancer Genome Atlas (TCGA) database. Methods. We obtained 528 HNSCC patients’
clinical data from TCGA and performed expression level analysis of NUTF2. Gene Sets Enrichment Analysis (GSEA) was
conducted to identify NUTF2-associated regulatory mechanisms in HNSCC. In addition, several other tools were used to enrich
the regulatory network. Results. We found that NUTF2 was significantly upregulated (P < 0:001) in HNSCC. We then observed
that higher NUTF2 is associated with poorer overall survival and disease-free survival. Further, by using Cox analyses, we
determined high NUTF2 as an independent risk factor of predicting poorer overall survival. Tumor immune infiltration analysis
revealed a significantly negative correlation between NUTF2 expression and the level of tumor infiltrated CD8+ T cell and B cell,
suggesting that NUTF2 may be involved in the immune regulation of HNSCC. Gene sets related to T/B cell receptor signaling
pathways were differentially enriched based on the NUTF2 expression phenotype. KEGG pathways were used to show that
NUTF2 may affect proliferation, differentiation, and immune response of T/B cell through regulating PI3K/AKT, NFκB, MAPK,
and Calcium signaling pathways. Conclusion. NUTF2 might be a valuable biomarker for HNSCC and correlated with T/B cell
receptor signaling pathway.

1. Introduction

Head and neck cancers (HNSC) occur in the mucosal linings
of the aerodigestive tract, including the lip, oral cavity, sali-
vary glands, pharynx, and larynx. About 900,000 new cases
of HNSCC occurred, and over 400,000 patients died from
it per year [1, 2]. Head and neck squamous cell carcinomas
(HNSCC) account for 90% of HNSC [3]. The prognosis for
patients with HNSCC is unfavorable and largely determined
by the cancer stage and TNM classification. Typically, the
survival rate of patients decreases rapidly with cancer pro-
gression [4, 5]. For HPV-positive HNSCC, early viral screen-
ing can be used to diagnose high-risk groups. At the same
time, the high expression of PD-L1 in HPV-positive HNSCC
provides evidence for the feasibility of immunotherapy [6].

Vaccine and drug advances continue to be made, making
the prognosis for these patients far better than that for the
HPV-negative ones [7]. So far, no evidence-based screening
protocols have been validated for all patients with HNSCC
[8]. Traditional treatment options for HNSCC including
surgical and nonsurgical methods have reached a bottleneck
in improving patient survival and prognosis [9]. The advent
of immunotherapy is the most remarkable advance in the
field of HNSCC treatment in the past decade. For patients
with refractory and/or metastatic (R/M) HNSCC, immuno-
therapy provides an option to maintain long-term remission
while other therapies have limited effect [10]. Clinical trials
have shown that immunotherapy can be used to enhance
the effectiveness of conventional therapies, and this combi-
nation therapy will be used in the first line [11]. Limited
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immunotherapeutic targets were found to be effective, and
the immune response to single antigen targeted therapy is
at a poor level. Synergy trials are underway, and molecular
targeted drugs will be combined with immunologic agents
in later stages [10].

NUTF2 (nuclear transporting factor 2, also known as
NTF2) is a factor that mediates the import of GDP-bound
Ran from the cytoplasm into the nucleus through nuclear
pore complexes (NPCs). In previous studies, NUTF2 was
the cargo that imported the small GTPase Ran [12]. The
process that Ran-GDP bound to NPCs was mediated by
NUTF2, which showed that NUTF2 played an essential role
in the translocation stage of nuclear protein import [13, 14].
Other results found that the level of NUTF2 could regulate
the efficiency of protein transport between nucleus and cyto-
plasm [15]. In previous studies of nuclear transporters, they
were often associated with tumor genesis. In particular,
cargo and NPCs play a regulatory role in altered nuclear-
cytoplasmic transport patterns in cancer cells [16]. In 2016,
Stelma et al. examined the Karyopherin superfamily, a kind
of transport receptor, involved in the regulation of cancer
through alterations in gene expression [17]. The potential
of nuclear transporters as biomarkers and therapeutic targets
was highlighted. However, few studies have explored the
relationship between NUTF2 and cancers. An experiment
in Xenopus laevis cells found that decreased level of NUTF2
may contribute to melanoma development through the reg-
ulation of cell nuclear size [18]. On the other hand, in 2020,
Du et al. found that NUTF2 is a downstream target of
LINC00173 and regulates tumorigenesis in glioma; its
overexpression awakens the proliferation, migration, and
invasion of cells [19]. The association between NUTF2 and
HNSCC has not been illustrated in previous studies.

In this study, we demonstrated NUTF2 expression in
HNSCC and investigated its clinical significance. The corre-
lations between NUTF2 expression and tumor infiltrated
CD8+ T cell and B cell were confirmed. Through using
GSEA, we explored the mechanism that may be related to
NUTF2 in the regulation of tumor immunity.

2. Materials and Methods

2.1. Clinical Data from TCGA. 528 HNSCC patients’ clinical
characteristics including age, gender, status, grade, and dif-
ferent cancer classifications were downloaded from TCGA
(https://portal.gdc.cancer.gov/). Furthermore, because of
the relevance between the NUTF2 expression and clinical
message, we obtained the gene expressions of these patients
from TCGA. To support further research like CNV analysis,
the copy number variation data were also downloaded from
TCGA. Before the analysis, incomplete data had been
deleted. Detailed information is shown in Table 1.

2.2. Statistical Analysis. Statistical analysis was performed by
the R software (version 3.6.1 (2019-07-05)). The Wilcoxon
rank-sum test was used to compare the expression of
NUTF2 in the patient’s normal tissues and cancer tissues.
In the clinical correlation analyses, the Wilcoxon rank-sum
test was used when only two groups of samples were com-

pared, and the Kruskal-Wallis rank-sum test was used when
the sample groups were more than two, reaching three or
more. Moreover, cox regression analysis was used to
determine NUTF2 as a risk factor for HNSCC by using the
Survival package of R. Besides, the expression data with

Table 1: Patient characteristics in TCGA-HNSCC.

Clinical characteristics Total 528 %

Age

61 (average)

(19-90)

Gender

Male 142 26.9

Female 386 73.1

Not available 1 0.2

Status

Alive 329 62.3

Deceased 199 37.7

Grade

G1 63 11.9

G2 311 58.9

G3 125 23.7

G4 7 1.3

GX 18 3.4

Not available 4 0.8

Stage

Stage I 27 5.1

Stage II 74 14.0

Stage III 82 15.5

Stage IV 270 51.1

Not available 75 14.2

T classification

T0 1 0.2

T1 49 9.3

T2 140 26.5

T3 101 19.1

T4 175 33.1

TX 39 7.4

Not available 23 4.4

M classification

M0 191 36.2

M1 1 0.2

MX 65 12.3

Not available 271 51.3

N classification

N0 180 34.1

N1 68 12.9

N2 72 13.6

N3 8 1.5

NX 75 14.2

Not available 25 4.7
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|log2 fold change (FC)| was adopted, which made HR more
pronounced than raw data. The amendatory P values were
also used to show the significance of HR. The data of
NUTF2 copy number variations (CNVs) in two kinds of
tissues was checked by the chi-square test, and the adjusted
P value was adopted. The Circos 2D track plot was produced
by the RCircos package of R [20].

2.3. GEPIA. Gene Expression Profiling Interactive Analysis
(GEPIA, version 2, http://gepia2.cancer-pku.cn/#index) was
a visualized gene expression analytical tool. In this study,
NUTF2 expression compared in different subtypes of
HNSCC was based on TCGA data from GEPIA, and the
boxplot was downloaded from GEPIA. The survival
Kaplan-Meier curve was plotted on GEPIA as well.

2.4. Gene Set Enrichment Analysis (GSEA).Gene Set Enrichment
Analysis (GSEA, version 3.0, http://software.broadinstitute.org/
gsea/index.jsp) is a genomewide expression analytical tool that
detects different sets of genes between two biological groups
[21]. In this study, GSEA was performed to reveal biological
pathways enriched in high-NUTF2 groups. The NUTF2
expression level was used as a phenotype label. The number
of gene set permutations was 1,000 for each analysis.
Annotated gene sets c2.cp.kegg.v7.0.symbols.gmt were
chosen to be the reference gene sets. The nominal P value
< 0.05 and false discovery rate ðFDRÞ < 0:25 were set as
the cut-off criteria.

2.5. TIMER. Tumor Immune Estimation Resource (TIMER,
version 2.0, http://timer.cistrome.org/) is an enhanced ver-
sion developed recently based on the original TIMER, which
is a web server for comprehensive tumor-immune interac-
tions research [22]. TIMER 2.0 integrates multiple algo-
rithms for immune infiltration estimation and allows users
to explore various associations between immune infiltrates
and genetic features in the TCGA cohorts [23]. Our results
were using the Microenvironment Cell Populations-
counter (MCP-counter) method, which allows the robust
quantification of the absolute abundance of eight immune
and two stromal cell populations in heterogeneous tissues
from transcriptomic data [24].

2.6. Connectivity Map. Connectivity Map (cMap, version 2.0,
also known as L1000, https://clue.io) is an online platform
that connects genes, drugs, and disease states by gene
expression signatures [25]. This new version of cMap con-
tains 1.3 million L1000 profiles, and its analytical tools allow
researchers to discover the mechanism of action of small
molecules, functionally annotate genetic variants of disease
genes, and inform clinical trials.

3. Results

3.1. Patient Characteristics in TCGA-HNSCC. As shown in
Table 1, the clinical data downloaded from TCGA database
consists of 528 HNSCC patients. The median age at diagno-
sis was about 61 years old. 26.9% patients were male, and
73.1% were female. The living status included 329 (62.3%)
dead and 199 (37.7%) alive. Histological grade I could be

found in 63 (11.9%) patients, G2 in 311 (58.9%), G3 in 125
(23.7%), G4 in 7 (1.3%), and GX in 18 (3.4%). In tumor clas-
sification, 1 (0.2%) in all was T0, 49 (9.3%) were T1, 140
(26.5%) were T2, 101 (19.1%) were T3, 175 (33.1%) were
T4, and 39 (7.4%) were TX. In metastasis classification, most
patients (n = 366, 63.6%) were not sure whether their cancer
cells metastasized, 191 (36.2%) were M0, and only 1 (0.2%)
was M1. And in regional lymph node classification, node
involvement was not observed in 180 (34.1%) patients, 68
(12.9%) were N1, 72 (13.6%) were N2, 8 (1.5%) were N3,
and 75 (14.2%) were NX.

3.2. Upregulated NUTF2 Expression in HNSCC. Compared
with the adjacent normal tissues, the results indicated that
NUTF2 expression was significantly upregulated in the
tumor tissues (Figure 1(a)). Furthermore, the paired analy-
sis, in which normal and tumor tissue come from same
patient, showed a significant upregulation of NUTF2 expres-
sion in HNSCC (Figure 1(b)). GEPIA database was used to
check NUTF2 expression in different subtypes of HNSCC.
With four major subtypes of HNSCC, atypical, basal, classi-
cal, and mesenchymal, NUTF2 expression in three subtypes
was significantly higher in cancer tissues compared with
adjacent normal tissues (P < 0:01); only the atypical subtype
showed no significant difference, but high NUTF2 expres-
sion in tumor tissue was still observed in the boxplot
(Figure 1(c)). To probe the mechanism of NUTF2 amplifica-
tion in HNSCC, we examined the copy number variation
(CNV) of this gene in patients with HNSCC. A positive cor-
relation between copy number variation and NUTF2 expres-
sion was found (Figure 2(a)). Besides, the increased copy
number of NUTF2 in HNSCC patients can be observed from
the Circos 2D track plot (Figure 2(b)). We concluded that
NUTF2 expression was significantly upregulated in HNSCC,
which related to the increase of CNV.

3.3. Diagnostic and Prognostic Value of NUTF2 Expression in
HNSCC. To explore the clinical significance of NUTF2, we
compared NUTF2 expression in HNSCC patients according
to different clinical features. However, there was no signifi-
cant difference between different groups in age, TN classifi-
cation, histological grade, and cancer stage (Figure 3).

To assess the prognostic value of NUTF2 for HNSCC,
patients were divided into two groups, one with low NUTF2
expression and the other with high NUTF2 expression. We
found significant differences between the two groups both
in overall survival (OS, Figure 4(a)) and disease-free survival
(DFS, Figure 4(b)). The survival rate (both OS (P < 0:05) and
DFS (P < 0:001)) in high NUTF2 group was lower than that
in low NUTF2 group. This result indicated that high NUTF2
expression had a positive association with low survival rate
of HNSCC patients. Hazard ratio (HR) implied that high
NUTF2 expression might have a predictive value for lower
survival rates in HNSCC patients (OS: HR = 1:7, P < 0:05;
DFS: HR = 1:7, P < 0:001). To check NUTF2 as a risk factor
for HNSCC, the univariate and multivariate cox regression
analysis was performed. Through univariate analysis, we
confirmed that expression of NUTF2 had a close connection
with OS in HNSCC (HR = 1:465, 95% CI = 1:037-2.070,
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Figure 1: NUTF2 expression in the tumor tissues vs. the adjacent normal tissues. (a) NUTF2 showed significantly higher expression in the
tumor tissues than in the adjacent normal tissues; (b) NUTF2 was significantly upregulated in HNSCC compared with the paired
noncancerous adjacent tissues from same patient using Wilcoxon rank-sum test; (c) NUTF2 was upregulated significantly in basal,
classical, and mesenchymal subtypes of HNSCC. The red box (on the left) represents tumor, and the blue box (on the right) represents
normal. Statistical significance compared with the control is indicated by ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 2: CNV analysis of NUTF2 in HNSCC. (a) Positive correlation between NUTF2 copy number and NUTF2 expression; (b) NUTF2
was located on chromosome 16. The black point at the corresponding site indicated that the copy number of NUTF2 in cancer tissues
usually increased.
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P < 0:05). In multivariate analysis with relevant clinical fea-
ture adjustment, such as age, gender, grade, stage, T classifica-
tion, and N classification, the result shown in Table 2 further
confirmed that high NUTF2 expression was an independent
risk factor associated with significantly worse overall survival
(HR = 1:456, 95% CI = 1:020-2.079, P < 0:05).

3.4. Tumor Immune Infiltration Analysis by TIMER. To
uncover the relationship between NUTF2 expression and
tumor immune infiltration, Tumor Immune Estimation

Resource (TIMER) was used. As the figure showed, the popu-
lation of tumor infiltrated CD8+ T cell and B cell in HNSCC
had significantly negative correlations withNUTF2 expression
(Figures 5(b) and 5(c), Rho < 0, ∣Rho ∣ >0:3, P < 0:05). While
the tumor purity of HNSCC showed no relationship with
NUTF2 expression, which excluded the interference of
NUTF2 on the tumor microenvironment (Figure 5(a)). With
tumor purity unregulated, the correlations further illustrated
the possible role of NUTF2 in the regulation of tumor infil-
trated CD8+ T cell and B cell.
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Figure 3: Comparison of NUTF2 expression in HNSCC according to vital status (a), age (b), histological grade (c), T classification (d), N
classification (e), and stage (f).
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3.5. Identification of Potential Pathways by GSEA. To iden-
tify the altered pathways related to NUTF2 in tumor immu-
nity of HNSCC, Gene Set Enrichment Analysis (GSEA) was
conducted between low and high NUTF2 expression groups
of HNSCC cases. As Figures 6(a) and 6(b) showed, gene sets
related to T cell receptor signaling pathway and B cell recep-
tor signaling pathway were differentially enriched with the
low NUTF2 expression phenotype, which suggested NUTF2
negatively regulated T cell receptor signaling pathway and B
cell receptor signaling pathway. The relevant genes of T cell
receptor signaling pathway and B cell receptor signaling
pathway were shown in Figures 6(c) and 6(d). Among them,
the core genes of the leading edge subsets which were most
closely associated with T/B cell receptor pathway enrich-

ment and the specific pathways they regulate were shown
in Figure 6(e). Furthermore, we exhibit the proteins encoded
by the enriched core genes in the signaling pathways, and
the results demonstrated the negative correlation between
these proteins and NUTF2 expression. The proteins encoded
by the core enrichment genes were concentrated in PI3K/
Akt, NFκB, MAPK, and Calcium signaling pathways, which
determined the proliferation, differentiation, anergy, and
immune response of T/B cells (Figure 7). This result suggests
that the negative role of NUTF2 in the regulation of T/B cells
through the above pathways.

3.6. Candidate Small Molecule Drugs Based on cMap. To
identify potential small molecule drugs targeting NUTF2,
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Figure 4: Survival analysis of NUTF2 based on data from TCGA-HNSCC in GEPIA database. The results showed significant correlations
between higher NUTF2 expression with poorer overall survival ((a), P < 0:05) and Disease Free Survival ((b), P < 0:001). HR: hazard ratio.

Table 2: Univariate and multivariate cox analysis of overall survival in patients with HNSCC.

Parameter
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age 1.020 1.004-1.036 0.014 1.025 1.008-1.043 0.003

Gender 0.723 0.506-1.035 0.076 0.798 0.550-1.158 0.235

Grade 1.177 0.903-1.533 0.228 1.026 0.774-1.360 0.857

Stage 1.627 1.279-2.069 ≤0.001 1.327 0.887-1.986 0.168

T 1.316 1.104-1.570 0.002 1.028 0.795-1.330 0.838

N 1.527 1.273-1.832 ≤0.001 1.375 1.088-1.739 0.008

NUTF2 1.465 1.037-2.070 0.030 1.456 1.020-2.079 0.039

HR: hazard ratio; CI: confidence interval.
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Connectivity Map (cMap) was performed to screen out can-
didate molecule compounds. 9 genes expressed similarly
with NUTF2 in HNSCC were detected by GEPIA; then,
the 10 upregulated genes were uploaded to Connectivity
Map. The output contained the name of compounds, their
corresponding connectivity score, target, and mode of
action. The connectivity score ranked from -100 to 100.
The closer it gets to -100, the more likely it would be the
potential drug for HNSCC. The 10 most significant com-
pounds were benzbromarone, mosapride, ITE, azathioprine,
orphenadrine, H-9, pergolide, protriptyline, CITCO, and
rhamnetin (Table 3).

4. Discussion

Previous studies have demonstrated nuclear transporters
regulate carcinogenesis by nuclear transporting in cancer
cells. However, few studies have explored the topic of
NUTF2 with cancer. This study is aimed at demonstrating
the role of NUTF2 in HNSCC.

We found a significant upregulation of NUTF2 expres-
sion in HNSCC patients, and high NUTF2 expression was
associated with poor overall survival. The same result was
observed by Huang’s research [26]. Besides, we found higher
NUTF2 expression in different HNSCC subtypes as well as
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Figure 5: The relationship between NUTF2 expression and immune cell infiltration level. The relationship between tumor purity of HNSCC
and NUTF2 expression (a) was shown on left as a control. CD8+ T cell (b) and B cell (c) infiltration levels had negative correlations with
NUTF2 expression (Rho < 0, ∣Rho ∣ >0:3, P < 0:001).
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in paired comparisons of tumor tissue with normal tissue
from the same patients. Moreover, we discussed the prog-
nostic value of NUTF2 in HNSCC by DFS analysis, which
excludes patients who survive but relapse with HNSCC,
offering patients a direct clinical benefit on tumor recurrence
and can be a more valuable survival index. Furthermore,
univariate and multivariate Cox analyses confirmed NUTF2
expression as an independent risk factor of HNSCC. Based
on the results above, NUTF2 is a useful prognostic bio-
marker of HNSCC.

Early reports showed that NUTF2 engaged in protecting
from diabetic retinopathy through depressing vascular endo-
thelial growth factor (VEGF) expression [27]. Moreover,
NUTF2 aggregation may alter nucleoplasm transport in
nerve cells of Alzheimer’s disease patients, leading to neuro-
nal abnormalities and death [28]. RB NLS-mediated nuclear
import was critically regulated by NUTF2 [29]. In addition,
it was observed that NUTF2 cell localization was different
between young cells and senescent cells, suggesting that
NUTF2 may influence the cell aging process to some extent
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[30]. In tumor research, long noncoding RNA (lncRNA)
LINC00173 could promote the development of disease by
enhancing NUTF2 expression in glioma [19]. Besides, the
level of NUTF2 expression was downregulated and nega-
tively correlated with nuclear size in melanoma tissue [18].
NUTF2 overexpression was examined to exhibit melanoma
metastasis, cell proliferation, and increase apoptosis.
Increasing NUTF2 levels plays a negative role in the progres-
sion of melanoma. In addition, NUTF2 was expected to pro-

vide a target for combination therapy as a novel treatment
for cancers; in prostate cancer cells, it improved drug sensi-
tivity and reduced cell proliferation; in melanoma, it down-
regulated factors that caused drug resistance [31, 32].

In this study, the tumor immune infiltration analysis
suggested negative correlations between NUTF2 expression
and infiltrated T cell and B cell levels in HNSCC. Moreover,
negative correlations were found between NUTF2 expres-
sion and T cell receptor signaling pathway and B cell
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functional modules through these four pathways. TCR: T cell receptor; BCR: B cell receptor.

Table 3: Top 10 most significant compounds based on cMap analysis.

cMap name Score Target MOA

Benzbromarone -99.93 ABCC1, SLC22A12 Chloride channel blocker

Mosapride -99.89 HTR4, HTR3A Serotonin receptor agonist

ITE -99.89 AHR Aryl hydrocarbon receptor agonist

Azathioprine -99.89 HPRT1, IMPDH1, PPAT Dehydrogenase inhibitor

Orphenadrine -99.86 CYP2B6, GRIN1, GRIN2D, GRIN3A, GRIN3B, HRH1, SCN10A, SLC6A2 Acetylcholine receptor antagonist

H-9 -99.86 PRKACA PKA inhibitor

Pergolide -99.86
DRD1, DRD2, ADRA2A, ADRA2B, ADRA2C, DRD3, DRD4, DRD5,

HTR1A, HTR1B, HTR1D, HTR2A, HTR2B, HTR2C, ADRA1A,
ADRA1B, ADRA1D, KCNA5

Dopamine receptor agonist

Protriptyline -99.82 SLC6A2, SLC6A4 Tricyclic antidepressant

CITCO -99.82 NR1I3 CAR agonist

Rhamnetin -99.79 ALOX5, MAPK8 HDAC inhibitor

MOA: mode of action.
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receptor signaling pathway. As we know, through antigen
presentation, T cells and B cells were activated and sup-
pressed the tumor progression [33], and the dysfunction
of T cells and B cells leads to the immune escape of tumor
cells [34]. Many tumor cells inhibit the effector function of
tumor-specific T cells, inducing a state of anergy [35]. T/B
cell costimulator is known to activate downstream signaling
molecules including NFκB, MAPK, ErK, and nuclear factor
of activated T cells (NFAT) [36–38]. The aberrant expres-
sion of NUTF2 in T/B cells resulted in the disorder of
PI3K/Akt, NFκB, MAPK, and Calcium signaling pathways,
which determine the immune response and fate of T/B
cells. Our findings suggested that NUTF2 may participate
in the immune regulation through regulating T/B cell
receptor signaling pathways in the process of tumor oncol-
ogy in HNSCC.

Besides, cMap analysis was used to search for candidate
small molecule drugs. 10 upregulated genes (NUTF2 and
other 9 genes detected by GEPIA) in HNSCC were submit-
ted, and the output showed several compounds that have a
high negative correlation and potential to treat HNSCC.
Among the top 10 compounds, some have been proven to
have anticancer effects, such as ITE. ITE is an AhR (aryl
hydrocarbon receptor) ligand; the AhR can inhibit cellular
proliferation in a ligand-dependent manner and act as a
tumor suppressor. In previous studies, ITE was examined
to be able to suppress the proliferation and migration of sev-
eral kinds of cancer cells, such as breast, endogenous, and
ovarian cancer cells [39–41]. Moreover, ITE was found to reg-
ulate T cell function in inflammation and autoimmune dis-
eases [42, 43]. In addition, pergolide may play an indirect
immunomodulatory role by regulating the level of adrenocor-
ticotropic hormone [44]. Therefore, we consider the identified
molecule drugs might have the potential to treat HNSCC.

HNSCC is an immunosuppressive type of cancer [45].
Clinical trials have demonstrated that chemotherapy com-
bined with immunotherapy can improve overall survival in
patients with HNSCC partly [40]. We found that NUTF2
was associated with the regulation of T/B cell receptor sig-
naling pathways; therefore, it may be a potential target for
treatment of HNSCC. In summary, our work showed the
role of NUTF2 in HNSCC and explored several possible
pathways; however, the specific functions and regulatory
mechanism still need further research.
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