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Abstract

Purpose

When seeking a confirmed molecular diagnosis in the research setting, patients with one

descriptive diagnosis of retinal disease could carry pathogenic variants in genes not specifi-

cally associated with that description. However, this event has not been evaluated system-

atically in clinical diagnostic laboratories that validate fully all target genes to minimize false

negatives/positives.

Methods

We performed targeted next-generation sequencing analysis on 207 ocular disease-related

genes for 42 patients whose DNA had been tested negative for disease-specific panels of

genes known to be associated with retinitis pigmentosa, Leber congenital amaurosis, or

exudative vitreoretinopathy.

Results

Pathogenic variants, including single nucleotide variations and copy number variations,

were identified in 9 patients, including 6 with variants in syndromic retinal disease genes

and 3 whose molecular diagnosis could not be distinguished easily from their submitted

clinical diagnosis, accounting for 21% (9/42) of the unsolved cases.

Conclusion

Our study underscores the clinical and genetic heterogeneity of retinal disorders and pro-

vides valuable reference to estimate the fraction of clinical samples whose retinal disorders

could be explained by genes not specifically associated with the corresponding clinical diag-

nosis. Our data suggest that sequencing a larger set of retinal disorder related genes can

increase the molecular diagnostic yield, especially for clinically hard-to-distinguish cases.
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Introduction

Inherited retinal diseases are a heterogeneous group of disorders that lead to retinal dysfunc-
tion and visual impairment. Retinitis pigmentosa (RP) is a group of progressive retinal dystro-
phies affecting about 1 in 3000 individuals [1,2]. RP causes night blindness and progressive loss
of peripheral vision in early stages and loss of central vision later in life. Leber congenital amau-
rosis (LCA) represents a group of severe retinal disorders causing profound visual disability
recognizable shortly after birth or within the first year of life. LCA affects about 1 in 50,000
people and is characterized by early onset visual impairment, nystagmus, and non or poorly
recordable responses in the electroretinogram (ERG) [3]. Familial exudative vitreoretinopathy
(FEVR) is a retinal disorder associated with defective retinal angiogenesis. FEVR is character-
ized by avascularity in the peripheral retina with variable clinical presentations, from no symp-
toms to early onset blindness [4]. To date, pathogenic variants in about 55, 19, and 5 genes are
known to cause non-syndromic RP, LCA, and FEVR, respectively [5–7].

Targeted next-generation sequencing (NGS) has been used extensively for the molecular
diagnosis of retinal diseases [8,9]. The diagnostic yields of targeted NGS panels range from
36% to 82% for RP 18% to 40% for LCA, and 49% for FEVR [6,10–14]. It has been reported
that patients with a descriptive clinical diagnosis of retinal disease may carry pathogenic vari-
ants in genes not specifically associated with that diagnosis due to the substantive phenotypic
overlap and genetic heterogeneity [6,15–17]. For example, apparently non-syndromic patients
with retinitis pigmentosa may carry pathogenic variants in the Bardet-Biedl syndrome gene,
BBS1 [18]. Patients with severe visual impairments can have pathogenic variants in pattern
dystrophy gene PRPH2 [6]. Thus, tests focused on a specific group of genes for a particular
clinical diagnosis may not detect variants in genes not typically associated with that condition.
Despite a few reports in research settings, this phenomenon has not been evaluated systemati-
cally in clinical diagnostic laboratories that fully validate all target genes to minimize both false
negatives and false positives [12].

Previously, our laboratory analyzed 98 RP, 13 LCA, and 12 FEVR samples by targeted cap-
ture NGS. A total of 207 ocular disease genes were captured and sequenced for each of these
samples (S1 File). However, we focused the sequence analysis on 66 RP, 19 LCA, and 4 FEVR
genes that have been clinically validated and are well known to be associated with the corre-
sponding disorders. As a result, definitive molecular diagnoses were previously established in
73% (72/98) of RP, 46% (6/13) of LCA, and 25% (3/12) of FEVR cases, which are similar to pre-
viously published results mentioned above (S1 Table).

We hypothesized that a portion of the unsolved cases might be caused by pathogenic vari-
ants in other retinal disease genes not analyzed initially. Since the sequence data of 207 ocular
disease-related genes are readily available, we analyzed the remaining genes of the 42 unsolved
cases in this study. Our data underscore the clinical and genetic heterogeneity of retinal disor-
ders and suggest that sequencing a larger set of related retinal disease genes can increase the
molecular diagnostic yield.

Materials and Methods

Patient samples

A total of 42 DNA samples tested negative for pathogenic variants in the clinically validated 66
RP, 19 LCA, or 4 FEVR genes at CLIA-certified and CAP-accredited Baylor Miraca Genetics
Laboratories (BMGL) were further analyzed as described below. The subsequent analyses were
performed by protocols approved by Institutional Review Board for Human Subject Research
of Baylor College of Medicine, and complied with the tenets of the Declaration of Helsinki.
Patient information was de-identified prior to the analysis.
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Sequencing analyses and variant interpretation

Our targeted capture NGS approach has been described recently [12]. Briefly, a custom-
designed DNA probe library was used to capture target exons and 20bp of the flanking intron
regions of 207 ocular disease genes (S1 File). Indexed captured samples were pooled to be
loaded onto each lane of the flow cells for sequencing on a HiSeq2000 (Illumina, Inc., San
Diego, CA, USA) with 100 cycle single-end reads. Clinical validations were performed for 66
RP, 19 LCA, and 4 FEVR genes that are well-known to be associated with the corresponding
disorders (https://www.bcm.edu/research/medical-genetics-labs/, test code 2190, 5090, 5250).
Those regions with coverage<20X, usually GC rich or highly repetitive, were covered by PCR/
Sanger sequencing. An average of 1000X per base sequence depth was achieved and 3–12 can-
didate variants were obtained per sample [12]. American College of Medical Genetics guidance
was used for the interpretation of sequence variants [19]. Pathogenic variants were confirmed
by Sanger sequencing.

Copy number variation analysis

Analysis and detection of exonic CNVs were performed according to our recently published
method [20]. Briefly, normalized coverage of each exon of a test sample was compared to the
mean coverage of the same exon in the reference samples. The exons with possible CNVs were
depicted automatically. The script for the detection of CNVs is deposited at https://sourceforge.
net/projects/cnvanalysis. Candidate CNVs were confirmed by a custom-designed oligonucleo-
tide CGH array [21].

Results

Summary of identified pathogenic variants

Pathogenic variants in other retinal disease genes not previously analyzed were identified in
five RP, two LCA, and two FEVR cases, accounting for 19% (5/26), 29% (2/7), and 22% (2/9) of
unsolved RP, LCA, and FEVR cases, respectively (Tables 1 and 2). Additionally, single hetero-
zygous pathogenic variant in autosomal recessive disorders were identified in two RP patients
(data not shown). All the reported variants were confirmed by Sanger sequencing. Taken
together, variants in other retinal disease genes were identified in 21% of (9/42) unsolved
patients (Table 1).

Patients with variants in syndromic retinal disease genes

Six of these patients have variants in syndromic retinal disease genes. Syndromic features other
than an isolated retinal dystrophy may be detected or may develop later in life than the time at
which the patient is evaluated for visual impairment. Thus, the additional systemic features
may not have evolved or may be overlooked at the time of the initial ophthalmologic evalua-
tion. These constitutional features may also be less evident than expected. Patient 1 harbors a
heterozygous reported nonsense change, c.1677C>A (p.Y559�), and a heterozygous novel

Table 1. Summary of cases in this study.

Disease Total initially unsolved cases Solved by other retinal disease genes

RP 26 5 (19%)

LCA 7 2 (29%)

FEVR 9 2 (22%)

Total 42 9 (21%)

doi:10.1371/journal.pone.0165405.t001
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frameshift indel, c.9_15delinsGC (p.S3Rfs�91), in BBS10 gene. Defects in BBS10 cause Bardet-
Biedl syndrome 10 (BBS10) [MIM: 615987], an autosomal recessive ciliopathy characterized by
retinitis pigmentosa, obesity, kidney dysfunction, polydactyly, obsessive-compulsive behavior,
and hypogonadism [26]. This patient had widespread rod and cone dystrophy but did not have
obesity, speech pathology, intellectual disability, polydactyly, or hypogonadism (Fig 1A). How-
ever, the family subsequently disclosed that he was born with a horseshoe kidney and had had
surgical repair of an ureterocele, which has been observed in BBS [27]. Patient 2, a 25-years-old
woman, was referred for molecular diagnosis of non-syndromic RP and was found to have a
heterozygous well established pathogenic variant, c.1169T>G (p.M390R), and a heterozygous
nonsense variant, c.1645G>T(p.E549�), in the BBS1 gene. Defects in BBS1 cause Bardet-Biedl
syndrome 1 (BBS1) [MIM: 209900], an autosomal recessive and genetically heterogeneous
ciliopathy characterized by retinitis pigmentosa, obesity, kidney dysfunction, polydactyly,
behavioral dysfunction, and hypogonadism. It has also been previously described that BBS1
mutations can result in a wide spectrum of phenotypes, including apparently nonsyndromic
retinitis pigmentosa, if other clinical features are not carefully sought for [18]. Patient 3 carries
a homozygous, well known pathogenic variant, c.1169T>G (p.M390R), in BBS1 gene. This
patient had widespread rod and cone dystrophy but did not have obesity, developmental delay,
speech pathology, intellectual disability, or renal defects (Fig 1B). However, after revealing the
results for BBS1 mutation, the parents disclosed the previous excision of a small extra digit,
consistent with polydactyly in BBS [12]. Patient 4 carries compound heterozygous novel

Table 2. Variants identified in genes not specifically associated with the corresponding disease.

Patient Gender Age

(yrs)

Test

Referred

Gene Allele1 Allele2 Clinical features Familial study

Autosomal Recessive

1 M 10 RP BBS10 c.1677C>A (p.

Y559*)[22]

c.9_15delinsGC (p.

S3Rfs*91)

Rod and cone dystrophy, horseshoe

kidney, ureterocele.

2 F 25 RP BBS1 c.1169T>G(p.

M390R)[23]

c.1645G>T(p.

E549*)[23]

Retinitis pigmentosa

3# M 17 RP BBS1 c.1169T>G(p.

M390R)[23]

c.1169T>G(p.

M390R)[23]

Rod and cone dystrophy, (excision of)

an extra digit

Both parents are

heterozygous for

p.M390R

4 M 9 LCA ALMS1 c.2816T>A (p.

L939*)

c.8776C>T (p.

R2926*)

Blindness, hearing loss, severe mental

retardation

5 F 8 LCA NPHP1 c.625-2A>G Whole gene deletion Infantile nystagmus, poor vision from

birth, non-recordable ERG

6 M 45 RP DFNB31 c.409dupG (p.

E137Gfs*42)

c.409dupG (p.

E137Gfs*42)

Retinitis pigmentosa, hearing loss Affected sibling is

homozygous for p.

E137fs

Autosomal Dominant

7 F 33 RP GUCA1A c.341C>T (p.

T114I)[24]

Retinal dystrophy

8 M 1 FEVR RIMS1 c.3399-2delA Bilateral retinal detachment, cataracts,

leukocoria, possible hearing loss,

delayed milestones

X Linked

9 M 13 FEVR RS1 c.214G>A (p.

E72K)[25]

Tractional retinal detachment, vitreous

hemorrhage, retinal dragging,

peripheral avascular retinas

#: This patient has been previously reported [12].

doi:10.1371/journal.pone.0165405.t002
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nonsense pathogenic variants, c.2816T>A (p.L939�) and c.8776C>T (p.R2926�), in the
ALMS1 gene. Defects in ALMS1 cause Alstrom syndrome [MIM: 203800], an autosomal reces-
sive disorder characterized by progressive cone-rod dystrophy leading to blindness, sensori-
neural hearing loss, childhood obesity associated with hyperinsulinemia, developmental delay,
and late onset type 2 diabetes mellitus. Subsequent clinical evaluation confirmed that this
patient indeed had hearing loss and intellectual impairment in addition to the profound visual
impairment that had initiated the request for molecular testing, consistent with the sequential
appearance of other features of Alstrom syndrome. Patient 5 had infantile nystagmus, poor
vision from birth, a non-recordable ERG, and thus was referred for genetic testing of LCA.
We identified a heterozygous novel splice site pathogenic variant (apparently homozygous),

Fig 1. Retina features of patient 1 and 3. The retinal examination of patient 1 showed moderate diffuse pallor of each optic disc,

moderate vascular attenuation, the dusky depigmentation of the retinal periphery, and small flecks of pigment migration into the

retina, especially in the nasal hemispheres, all evidence of a widespread rod and cone dystrophy. (B) The retinal examination of

patient 3 revealed slight diffuse pallor of each optic nerve, moderate attenuation of the retinal vasculature, and diffuse perimacular

depigmentation with bone spicule pigment migration into the retina, especially in the nasal hemispheres, all evidence of a

widespread rod and cone dystrophy.

doi:10.1371/journal.pone.0165405.g001
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c.625-2A>G, and a one copy whole gene deletion, in the NPHP1 gene (Fig 2). The deletion was
initially identified by NGS and was subsequently confirmed by aCGH. Defects in NPHP1 can
cause Joubert syndrome [MIM:609583], juvenile nephronophthisis [MIM:256100], and
Senior-Loken syndrome [MIM:266900], which all have renal abnormalities. Because of the
molecular results, the patient was referred for renal evaluation; subsequent renal ultrasound
examination at age eight revealed slightly enlarged and echogenic kidneys with poor cortico-
medullary differentiation, consistent with nephronophthisis. Patient 6 was a 45-years old man
with a history of RP and hearing loss. He was referred for the molecular diagnosis using our RP

Fig 2. Detection of heterozygous NPHP1 whole gene deletion in patient 5. (A) The ratio of normalized mean NGS coverage of

individual coding exon of CNGA3, a gene on the same chromosome with NPHP1, and NPHP1, to that of the reference was plotted

against the exon number. The normalization NGS coverage depth ratios of all exons of NPHP1 are about 0.5, indicating heterozygous

deletion. (B) The aCGH confirmation of the heterozygous NPHP1 whole gene deletion. Log2 ratios of most probes on NPHP1 gene are

-1, suggesting heterozygous whole gene deletion.

doi:10.1371/journal.pone.0165405.g002
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panel. A homozygous pathogenic novel variant, c.409dupG (p. E137Gfs�42), in the DFNB31
gene was identified. Defects in the DFNB31 gene are associated with autosomal recessive Usher
Syndrome Type IID characterized by hearing loss and retinitis pigmentosa [MIM:611383], and
autosomal recessive deafness 31 [MIM: 607084]. The patient’s clinical phenotype is consistent
with the molecular diagnosis. Our results suggest that syndromic retinal disease genes may
account for a substantial portion of the undiagnosed, apparently non-syndromic, retinal disor-
der cases (14%, 6/42).

Patients with variants in non-syndromic retinal disease genes

The working clinical diagnoses of some of these patients were confounded by their ages when
first evaluated by the ophthalmologist. For example, patient 7 was referred for RP testing but
was found to have a heterozygous variant, c.341C>T (p.T114I), in the GUCA1A gene after our
expanded analysis. This variant was reported previously in a single patient with cone dystrophy
but has never been reported in public databases [24]. It is known that mutations in GUCA1A
cause autosomal dominant cone dystrophy or cone-rod dystrophy (CRD) [MIM: 602093].
Since this patient was 32 years old at the time of diagnosis, the retinal dystrophy seems to have
progressed to a late stage for a clear clinical discrimination between RP and cone dystrophy/
CRD. It is also possible that RP may be a new phenotypic variability of this mutation. Similarly,
patient 8 carries a heterozygous novel deletion, c.3399-2delA, in the RIMS1 gene. This variant
changes the acceptor splice site of exon 23 and is very likely to cause exon 23 skipping. While
not validated for clinical use, the MaxEntScan and Human Splicing Finder algorithms predict
this change to completely abolish the acceptor splice site [28,29]. Nonsense and missense
changes in RIMS1 have been reported in autosomal dominant RP and CRD [30,31]. Patient 8
had bilateral retinal detachment and cataracts, which were not mentioned in those reported
patients with RIMS1 mutations but can be associated with RP [32]. Since this patient was evalu-
ated at 1 year of age, he may have been too young for a unique clinical diagnosis.

Definitive molecular diagnosis also reveals the wide clinical spectrum of non-syndromic ret-
inal diseases. Patient 9 was referred for FEVR testing because he had typical FEVR features
including tractional retinal detachment, vitreous hemorrhage, retinal dragging, and peripheral
avascular retina. However, our analysis identified a well-known hemizygous pathogenic vari-
ant, c.214G>A (p.E72K), in the X-linked retinoschisis (XLRS) gene RS1 [25]. XLRS is charac-
terized by splitting of the neural retina (schisis). Schisis occurs in the inner retinal layer and is
usually different from the retinal detachment in FEVR, which is the split between the neural
retina and the retinal pigment epithelium [33]. It has been reported that some XLRS patients
with RS1 mutations had atypical fundus findings, including tractional retinal dragging, exuda-
tive detachment, and vitreous hemorrhage, all of which are consistent with the clinical presen-
tation of patient 9 [34,35]. Therefore, our data demonstrate that molecular diagnosis can refine
or modify the descriptive clinical diagnosis and subsequently change the counseling for associ-
ated features, other complications, and recurrence risks for both the patient and the family.

Discussion

Our study suggests that a substantial portion of undiagnosed and apparently non-syndromic
retinal dystrophy cases can be explained by pathogenic variants in genes not specifically associ-
ated with the corresponding clinical diagnosis. We evaluated this hypothesis systematically by
analyzing sequence variants in 207 ocular disease-related genes and identified pathogenic vari-
ants in genes not specifically associated with the corresponding clinical diagnosis in 9 out of 42
cases that could not be explained by smaller set of disease-specificgenes. These cases account
for 19% (5/26) of RP, 29% (2/7) of LCA, and 22% (2/9) of FEVR cases in our unsolved patient
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cohort (S1 Table). Our analysis increases the overall diagnostic rate from 73% to 78% for RP.
The increases in diagnostic rate for LCA and FEVR are much higher, but the overall solved
rates remain much lower than that for RP. The increases may be underestimates, because in
this study we only focused on defined pathogenic variants and excluded variants of unknown
significance. Nevertheless, our results suggest that sequencing a larger set of retinal disorder-
related genes can increase substantially the diagnostic yield and help to identify unexpected
genotype-phenotype correlations.

Our study provides valuable reference to estimate the fraction of clinical samples whose reti-
nal disorders may be explained by genes not specifically associated with the corresponding
clinical diagnosis. Similar findings have been reported elsewhere [6,15–17,36–41]. Our
approach has unique advantages. We ensured 100% coverage by fill in the low or no coverage
regions such as ORF15 of RPGR gene, or regions with high GC content and/or homologous
sequences, by Sanger sequencing of specifically amplified PCR products. In addition, the aver-
age coverage depth is consistently at ~1000X per base, that allows the detection of heterozygous
exonic CNVs [20]. The CNV detection algorithm has been integrated into the routine analyti-
cal pipeline for clinical application that has been validated in parallel with exon targeted oligo-
nucleotide array CGH [20]. These unique features of our panel-based NGS approach greatly
improve clinical sensitivity. With 100% coverage and the ability to detect SNVs and CNVs
simultaneously, a negative result from deep NGS panel analysis suggests that the disease-caus-
ing variants are unlikely in the target regions, and other options such as WES may be consid-
ered. WES has been used for the molecular diagnosis of retinal disorders, however, it does not
ensure 100% coverage and is not validated clinically for CNVs [42–45]. Thus, in our experi-
ence, if a sample with isolated retinal disorder is negative for all candidate genes in the targeted
panel, the yield of additional WES analysis is minimal. Indeed, four of the samples in this study
also had clinical WES in our laboratory, and no additional reportable variants were identified.

Early identification of mutations in syndromic retinal disease genes of apparently non-syn-
dromic and isolated retinal disease patients could lead to timely and pre-planned management
before acute presentation of more serious features of the complete syndrome [16,46]. Among
the nine patients with variants in genes not specifically associated with the corresponding clini-
cal diagnosis, six carry variants in syndromic retinal disease genes. It has been reported that
pathogenic variants in syndromic retinal disease genes can lead to wide spectrum of pheno-
types, from non-syndromic retinal dystrophy to full syndromes [6,16,18]. In addition, it is not
unusual that ophthalmologists tend to attend more to the ocular findings of the patient, while
extra-ocular syndromic features were either unsought by the enquiring physician, unreported
by the patient or family, or not yet developed at the time of eye evaluation. Therefore, it is
important for physicians to gather clinical data comprehensively and be aware of the pheno-
typic overlapping among many retinal disorders. The remaining three patients carry variants
in other non-syndromic retinal disease genes. Many factors, such as age at evaluation, wide var-
iance in the phenotypic spectrum of diseases, genetic modifiers, and environmental exposures,
may confound the incisive distinction of subtle differences between two clinically similar reti-
nal phenotypes. In all these situations, sequencing a larger set of related retinal disease genes
can help to capture variants in unexpected genes, increase the molecular diagnostic rate, reach
a definitive clinical diagnosis, and lead to accurate prognosis and improved management of the
patient.

Other genetic and technical factors may account for the remaining molecular etiology of ret-
inal diseases. First, highly GC-rich, highly repetitive and/or homologous regions could not be
captured, sequenced, and aligned unambiguously by targeted capture NGS [47,48]. For exam-
ple, the open reading frame 15 (ORF15) of RPGR gene, which is a RP mutational hotspot,
contains a ~300 bp highly repetitive region that cannot be unambiguously analyzed by
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conventional capture NGS [12,49,50]. Long-range PCR followed by NGS may be used to iden-
tify variants in these regions. Second, nucleotide changes not at the canonical splice site, or
changes in regulatory regions such as promoter, or 3’ and 5’ untranslated regions, may be
disease-causing. For example, we have added specific probes to capture the frequent intronic
pathogenic variant c.2991+1655A>G in CEP290 in our panel [51]. Third, exonic deletion/
duplications have been shown to cause retinal diseases [52–54]. We have developed recently a
method to detect exonic CNVs efficiently with capture based NGS data [20]. Here, we success-
fully identified a one copy whole gene deletion of NPHP1 in patient 5 (Fig 2). Our data suggest
that exonic CNV analysis should be included in the NGS panel-based clinical testing of retinal
diseases to increase the diagnostic yield. Lastly, novel disease genes, yet to be identified, may
account for other unsolved retinal disease cases. To identify novel disease genes, whole exome
sequencing or whole genome sequencing may be considered.

Supporting Information

S1 File. The genes and transcripts included in the capture design.
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(DOCX)
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