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Human rhinovirus (RV) isolates from the RV-C species are recently discovered infectious agents that are closely linked to
asthma and wheezing etiologies in infants. Clinical study samples collected at the University of Wisconsin–Madison describe 41
nearly complete genome sequences representing 21 RV-C genotypes.
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Human rhinovirus (RV) isolates comprise the RV-A, RV-B,
and RV-C species of the Enterovirus genus in the Picornaviri-

dae family. A classic panel of 99 RV-A and RV-B species are the
canonical agents of the common cold. A full set of RNA genome
sequences for these historic types was completed in 2009 (1). Al-
though serotyping played an early role in RV taxonomy, current
classification is based on sequence conservation (2). Strains are
assigned to common species if they share �70% amino acid iden-
tity in the P1, 2C, and 3CD regions. Isolates are further subdivided
into numeric genotypes that respect the historic naming system,
but now rely almost entirely on sequence comparisons of the VP1
or VP4/VP2 coding sequences. The preferred RV nomenclature
designates the species letter (A, B, or C) and type number (e.g.,
A16). Strain designations are unique to each GenBank accession
number. Assignment of a new strain to a known genotype requires
�86 to 87% aligned nucleic acid identity in either or both of the
key capsid-coding regions (2).

The RV-C species were first discovered in 2006 as part of broad
spectrum clinical surveillance studies (3–5). While clearly rhino-
viruses, they are not readily propagated in typical cell culture sys-
tems (6) so much of their biology is inferred from sequence com-
parisons. Currently, 51 genotypes (as binned by VP1 nucleotide
identity) have been described (2). These isolates are important
because they are associated with up to half of RV infections in
young children (6). Within the context of virus surveillance, the
University of Wisconsin hospitals and clinics in Madison, WI, are
participating in several studies with the goal of determining how
RV sequence variation is linked to cold symptoms and asthma
exacerbations. The Childhood Origins of Asthma (COAST),
Mechanisms and Environmental Determinants of Rhinovirus Ill-
ness Severity (RhinoGen), and T Regulatory Cells and Childhood
Asthma (T-Reg) protocols collect and screen infant nasal secre-
tions using multiplex PCR assays (7), rhinovirus PCR (8), or both.
Between 1999 and 2010, hundreds of solitary RV infections
were identified. Partial sequencing assigned these isolates to

relevant species, but for some, particularly the RV-C species,
the data suggested several potential new genotypes, or provided
confirmation for similar reclassification proposals (9).

Multiple COAST and RhinoGen isolates were then reexam-
ined using massively parallel sequencing techniques applied
directly to clinical samples (10). The single-pass methodology
gave, on average, 93% genome coverage to a depth of 8 to 10
reads for 179 study-specific isolates. For the RV-C species, the
technique resolved nearly full genomes for 41 isolates, repre-
senting 21 different genotypes (9). Relative to prototype RV-C
genomes, which average ~7,097 bases (b) (1), most of these
assemblies were missing the difficult-to-sequence 5= and/or 3=
termini (average, � 465 b) and occasionally, short internal
fragments (�100 b) for which the contigs were not be explicitly
linked. Nevertheless, every new sequence (average, 6,592 b;
median, 6,632 b) was unambiguously aligned with an index
compilation of RV-C prototype sequences (2). For C17, C22,
C26, C28, C32, C36, C38, C41, C42, C43, C45, and C49, the
new data include the first non-capsid descriptions of these ge-
notypes.

Nucleotide sequence accession numbers. Each contiguous
data set has been deposited at DDBJ/EMBL/GenBank using the
accession numbers listed below. Each unit described here is
the first genome version of the sequence of that isolate: CO2,
JN815248, JN837695, JN990703, JQ245968, and JX025557; C03,
JN798567, and JN990700; C04, JF781509; C06, JN815245, and
JN990702; C07, JN798559, JN798570, JN837689, JQ994495, and
JX025556; C08, JQ245964, and JQ245973; C15, JN837688; C17,
JN815240, JN815244, and JQ837720; C22, JN621242; C25,
JN837685; C26, JX193796; C28, JN798569; C32, JN798581, and
JQ994498; C36, JN541267; C38, JN837691; C40, JF781505,
JN815251, and JQ245963; C41, JN798565; C42, JQ994500; C43,
JN815249, JN837687, and JX074056; C45, JN837686; C49,
JF907574, JN798566, and JN798568.
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