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Abstract

Background: The androgen receptor, an X-linked gene, has been widely studied in human populations because it
contains highly polymorphic trinucleotide repeat motifs that have been associated with a number of adverse
human health and behavioral effects. A previous study on the androgen receptor gene in carnivores reported
somatic mosaicism in the tissues of a number of species including Eurasian lynx (Lynx lynx). We investigated this
claim in a closely related species, Canada lynx (Lynx canadensis). The presence of somatic mosaicism in lynx tissues
could have implications for the future study of exonic trinucleotide repeats in landscape genomic studies, in which
the accurate reporting of genotypes would be highly problematic.

Methods: To determine whether mosaicism occurs in Canada lynx, two lynx individuals were sampled for a variety
of tissue types (lynx 1) and tissue locations (lynx 1 and 2), and 1,672 individuals of known sex were genotyped to

further rule out mosaicism.

genotyped samples.

Results: We found no evidence of mosaicism in tissues from the two necropsied individuals, or any of our

Conclusions: Our results indicate that mosaicism does not manifest in Canada lynx. Therefore, the use of hide
samples for further work involving trinucleotide repeat polymorphisms in Canada lynx is warranted.
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Background

The X-linked androgen receptor (AR) gene codes for a
transcription factor that controls the binding of andro-
gens in different tissue types [1-3]. The organization
and location of the AR gene on the X-chromosome has
been conserved for both male and female placental, mar-
supial and monotreme mammals [3, 4]. Androgenic hor-
mones including testosterone and dihydrotestosterone
are integral in a number of bodily processes, most not-
ably sexual differentiation and development [5]. The
wide range of functions that the AR gene encompasses
has concurrently lead to a range of disease-associated
phenotypes, which have been linked to variable tandem
trinucleotide repeats occurring in the first codon of the
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AR gene coding sequence [6]. Trinucleotide repeats are
repeat structures that consist of units that are 3 nucleo-
tides long, caused by the selection against frame-shift
mutations which would alter the reading frame of the
transcribed protein [7]. The natural variation of these re-
peats within humans indicates that these motifs have a
critical role in “normal” protein function and evolution-
ary adaptation [8, 9]. More specifically, trinucleotide re-
peats are known to affect phenotype, such that disease
in humans has been attributed to frequency of repeats
exceeding a certain threshold, beyond which, the tran-
scriptional activity of the AR gene is affected [10, 11].
For this reason, trinucleotide repeat fragments of the AR
gene have been extensively studied in humans for their
potential role in infertility [12, 13], aggressive or domin-
ant behavior [14-16], criminal activity [17, 18], per-
sonality disorders [19, 20], and the development of some
cancers and other diseases [21-25].
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Studies of the AR gene in wildlife are rare but are
likely to become more frequent in the future as the role
of trinucleotide markers in mediating adaptive evolution
in contemporarily short time-frames becomes more
clear [26]. While it is well understood that climate
change will have profound effects on wildlife [27], we
are currently unable to predict whether species will be
able to adapt and evolve new strategies to cope with the
increasing environmental change. The characterization
of exonic standing genetic variability will therefore allow
for a better understanding of the adaptive capacities of
populations to be resilient to the effects of stressful
events including climate change. As a result, there is a
recognized need to identify and characterize the genetic
variability of fitness-related traits [28] and the response
of genes to environmental change [29, 30]. Trinucleotide
repeats are particularly desirable candidates for studies
of the genomics of adaptation because they occur in as
many as 20 % of human genes, have relatively higher
rates of mutation than single nucleotide polymorphisms
(SNPs), and can show consistently high levels of
within-population variation [6, 26]. Importantly, such
high rates of mutation may facilitate adaptation to
stressors (e.g., climate change) in contemporarily short
timeframes. Recently, several studies have demonstrated
the potential evolutionary and adaptive importance of tri-
nucleotide repeats within clock genes in both birds [31]
and fish [32]. Thus, the study of trinucleotide repeat struc-
tures in a range of other vertebrate species [8, 26, 33, 34]
offers the potential to use the properties of microsatellite
repeats [35] to understand the genomics of rapid
adaptation.

Historically, the characterization of the AR gene has
been affected by biological and technical issues, with im-
plications for accurate genotyping. More specifically,
somatic mutations and allele peak morphology issues
have been encountered upon scoring size separated al-
leles differing in the number of exonic trinucleotide re-
peats [36—38]. Mosaicism in biological systems can be
defined as “the presence of more than one genetically
distinct cell line in a single organism” in which tissue-to-
tissue genetic variations occur that may not follow
Mendelian rules of inheritance ([39]; p. 748). More re-
cently, Kohler et al. (2005) [p. 106] describe somatic
mosaicism as “different proportions of cells containing
either mutant or wild-type proteins that are present in
various tissues of the same individual [22]”. Telenius et al.
(1994) provided the first report of heterogenic somatic
mosaicism of CAG repeats in tissues [40]. Since then, sev-
eral studies have detected tissue-specific somatic mosai-
cism of CAG repeats in the AR gene in both the neural
and non-neural tissues of individuals with Huntington’s
disease, spinal bulbar muscular atrophy, spinocerebellar
ataxia type 1, denatorubural-pallidoluysian atrophy and
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Machado-Joseph disease [21]. For individuals with andro-
gen insensitivity syndrome, genotype-phenotype discrep-
ancies have been traced to somatic mosaicism of the AR
gene itself [36, 37].

Much of the research conducted on the AR gene to
date has involved the study of human disease. Trinucleo-
tide repeats in the AR gene have yet to be correlated
with transcriptional activity in species other than
humans, and the limited number of studies that have
been conducted on other species suggests lower levels of
variability than in humans [41, 42]. Of particular interest
is a study by Wang et al. (2012) who examined the vari-
ability of AR trinucleotide repeat in carnivores through
sequencing of the first exon in the AR gene (containing
three trinucleotide repeat tracts) [42]. The authors re-
ported a change in CAG repeat number in the same
tissues of a number of carnivore species, indicating
tissue-specific mosaicism patterns in the AR gene of
studied species. In their study, somatic mosaicism was
evident in all three poly-glutamine tracts within exon
lof the AR gene, with a maximum extent of five alleles
in several carnivore species. The authors concluded that
the higher frequency of tissue-specific mosaicism in
the AR gene of carnivores compared to other stud-
ied taxa implies that carnivores tend to exhibit mo-
saicism [42].

The objective of our study was to test for somatic mo-
saicism in a carnivore, the Canada lynx (Lynx canadensis).
Canada lynx are closely related to the Eurasian lynx
(Lynx lynx), one of the species shown by Wang et al.
(2012) to exhibit somatic mosaicism. We consider it im-
portant to evaluate the potential for somatic mosaicism in
Canada lynx before conducting further research on the
AR gene. If allelic patterns of mosaicism are revealed, sim-
ple genotyping of individuals may not provide conclusive
results with respect to genetic variability of individuals at
this gene, which could complicate high throughput geno-
typing of individuals at the AR gene. Further, if mosaicism
in this gene is caused by trinucleotide repeat instabilities,
there will be important consequences for future studies
that wish to examine trinucleotide repeat variability in
wildlife species at any gene. This makes the investigation
of potential somatic mutations a worthwhile goal as som-
atic mosaicism could significantly confound the use of
trinucleotide repeat markers in the study of the adaptive
genomics of wildlife. In such a case, we will need to begin
considering the more dynamic nature of genes within
genomes when designing studies, in particular those con-
taining trinucleotide repeats.

We test the hypothesis that somatic mosaicism occurs
in the androgen receptor gene in Canada lynx. We re-
port AR genotypes for multiple samples taken from two
necropsied lynx, as well as hide samples from lynx sam-
pled at multiple locations across Canada.
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Methods

To address the question of whether or not Canada lynx
exhibit mosaicism at the AR gene, we designed a study
that was composed of two levels of analysis. First, we
conducted necropsies and tissue sampling of two lynx
individuals (one full carcass and one hide), which
allowed for multiple samples of various tissue types to
be taken from one individual and a variety of sampling
locations spanning the entire lynx carcasses in both indi-
viduals. Second, as we recognize that the sample size
from the necropsies alone is limited, we genotyped add-
itional samples collected across the Canada lynx range
to verify our findings on a broader scale. Canada lynx are
currently listed as not at risk by the Committee on the
Status of Endangered Wildlife in Canada (COSEWIC),
and are legally harvested annually. Thus, we obtained our
additional samples either through licensed, commercial
fur harvest, or under the authority of the Ontario Ministry
of Natural Resources and Forestry (OMNREF). While se-
quence data would provide additional information about
repeat purity (i.e., perfect vs. imperfect repeat structures)
and the potential for SNPs within the flanking regions of
the repeats, we conducted microsatellite genotyping on all
of our samples as mosaicism can very easily be detected as
size based variants. Mosaicism was evident in [42] largely
based on size, indicating that if mosaicism is present in
our study species, we should be able to detect it given our
study used the same primers as [42] in addition to our
large sample size.

Necropsy sampling

To test the hypothesis that somatic mosaicism exists in
Canada lynx tissues, a necropsy was conducted for
strategic sampling of two lynx individuals. The first indi-
vidual (lynx 1) consisted of an entire carcass and the
second (lynx 2) was a hide. The lynx carcass was a road-
killed individual that was collected by the Ontario
Ministry of Natural Resources and Forestry in 2010 and
stored frozen until tissue sampling was conducted to
ensure optimal preservation of high-quality tissues for
DNA extraction. The lynx hide was collected in 2006
from a fur harvester in Ontario, Canada. It was import-
ant for the purpose of assessing the influence of the AR
gene in different tissues, to obtain and analyze the gen-
etic profile of a large number of different cell types. A
total of 87 hide, muscle, liver and brain samples were
taken from the two individuals. The liver we sampled
had five lobes; two main lobes rested on top of three
smaller lobes.

DNA extraction, quantification and amplification

DNA extraction and quantification was solely performed
on the necropsy samples. DNA for the remaining 1,672
lynx samples (979 males and 693 females) was previously
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extracted from hide tissue according to the protocols
outlined in [43], and was available in working concentra-
tion for PCR amplification. The availability of hide tis-
sues from both museum specimens and fur auction
houses makes this tissue type highly accessible for the
genetic surveying of Canada lynx and other furbearer
populations (e.g., [44—47]). The hide samples in our
study represent individuals trapped in Yukon, British
Columbia, Alberta, Manitoba, Ontario, and Quebec,
Canada, as well as Alaska, USA.

Tissues were prepared for extraction by mincing ap-
proximately 1 mm X 1 mm pieces of tissue and placing
it in 500ul of 1X lysis buffer [4 M Urea, 0.2 M NaCl,
0.5 % n-lauroyl sarcosine, 10 mM 1,2-cyclohexanediami-
netetraacatic acid (CDTA), 0.1 M Tris—HCI (pH 8) and
600 U/ml proteinase K (Roche Applied Science, Laval
QC)]. DNA from tissues was extracted by a modified
version of the MagneSil® (Promega) manufacturers pro-
tocol, in which 200ul of the prepared tissues was
substituted for the suggested 60ul of whole blood, and
the number of wash steps was reduced [48]. All liquid
handling was carried out by a JANUS® Automated
Workstation from Perkin Elmer. Extracted DNA was
quantified by PicoGreen® (Invitrogen) method according
to the manufacturers protocols [49, 50].

From quantification, samples were normalized to a
working concentration of 2.5 ng/ul and amplified with the
primers developed by [42], which capture a ~700 bp re-
gion of exon 1 containing three trinucleotide repeat tracts.
Amplification was conducted in a 10ul reaction containing
deionized water (Invitrogen), 1X PCR Reaction Buffer
(Invitrogen), 2 mM MgCl, (Invitrogen), 0.2 mM dNTP so-
lution (Invitrogen), 0.2 mg/mL BSA, 0.4uM forward and
reverse primers (forward primer labeled with the fluores-
cent dye HEX) (Integrated DNA Technologies), 0.025U
Invitrogen Platinum Taq DNA Polymerase, and 5 ng of
DNA. The PCR reaction was run in a Bio-Rad DNA
Engine Dyad and Dyad Disciple thermocycler under the
following conditions: 95 °C for 10 min; followed by 29 cy-
cles of 94 °C for 30 s, 58 °C for 1 min, and 72 °C for
1 min, and completed with a step of 65 °C for 15 min.

Difficulties and biases in PCR amplification have been
previously reported for the AR gene (e.g., [38]), most
likely due to the high GC content in many exonic
trinucleotide repeat fragments including AR. Many re-
searchers have since obtained successful amplification and
improved results by substituting Invitrogen Platinum Taq
DNA Polymerase for the standard Invitrogen Taq DNA
Polymerase (e.g., [51]). Such improvements were also evi-
dent in our study (Fig. 1).

Sexing of lynx necropsy individuals
The knowledge of sex for each individual allowed for the
development of a search image for detecting mosaicism.
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Fig. 1 Differential peak morphologies of androgen receptor alleles
resulting from DNA dilution and reagent use. Lynx positive control
DNA sample amplified with Invitrogen Tag DNA Polymerase and
diluted to 1:10 (@), 1:20 (b), and 1:50 (c) ratios with deionized water.
Lynx positive control DNA sample amplified with Invitrogen

Platinum Tag DNA Polymerase (no dilution necessary) (d)

For male lynx tissues, a homozygous genotype is ex-
pected as the AR gene is X-linked, and males should
therefore only inherit a single copy of the gene. In our
study, any heterozygote male individual is a candidate
for exhibiting mosaicism. Female lynx can be homozy-
gous or heterozygous at the AR gene naturally, however,
the allelic diversity of lynx at this locus predicts three al-
lele patterns should be observed if mosaicism is occur-
ring. If mosaicism were detected in female individuals
with three alleles, the extent of mosaicism in females
would still be an underestimate given that heterozygous
females could be undetected somatic homozygous indi-
viduals. In the necropsy analysis, mosaicism would be
suggested if more than the expected number of alleles
were discovered across multiple samples from the same
individual (i.e., more than one allele for males and two
alleles for females across all samples).

To confirm sex of necropsied lynx, two samples from
each individual (one hide and one muscle from Lynx 1
and two hide samples from Lynx 2) were amplified at
two sex loci. The first primer pair, SRY-Y53-3D-F and
SRY-Y53-3C-R amplified a ~218 bp region of the SRY
genetic marker [52]. The second locus, a ~447 bp region
of the ZFX/ZFY genetic marker, was amplified with the
primer pair ZFX-P3-3EZ-F and ZFX-P3-5EZ-R [53].
Amplification was conducted in a 10ul reaction con-
taining deionized water (Invitrogen), 10X PCR Reaction
Buffer (Invitrogen), 50 mM MgCl, (Invitrogen), 100 mM
dNTP solution (Invitrogen), 3 mg/mL BSA, 40uM forward
and reverse primers (Integrated DNA Technologies) men-
tioned above (forward primers labeled with the fluorescent
dye HEX), 0.0375U Invitrogen Taq DNA Polymerase, and
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5 ng of DNA. The PCR reaction was run in a Bio-Rad
DNA Engine Dyad and Dyad Disciple thermocycler under
the following conditions: 94 °C for 15 min; followed by
29 cycles of 94 °C for 30 s, 52 °C for 1 min 30 s, and 72 °C
for 1 min 30 s, and completed with a step of 60 °C for
45 min. Amplified samples were run on an 80 mL, 1.5 %
agarose gel stained with ethidium bromide at 90 volts for
45 min, and visualized under ultraviolet light and to deter-
mine sex. Female individuals were identified by the pres-
ence of two bands, and males, by the presence of three
bands on the gel. Controls of a known male and female
lynx were included to rule out technological errors and
strengthen conclusions.

Genotyping

For genotyping, 5ul of MapMarker 1000 X-Rhodamine
(MM-1000-Rox) size standard (BioVentures) was mixed
into 1 mL of deionized HiDi Formamide (Applied
Biosystems), and 9.5ul of this product was added to
0.5ul of each amplified sample. Genotyping was per-
formed on the Applied Biosystems 3730 DNA Analyzer.
Genotypes were scored with SoftGenetics LLC Gene-
Marker AFLP/Genotyping Software Version 1.91. We
used GenAlEx version 6.5 (Peakall & Smouse 2006,
2012) to calculate allele and genotype frequencies for
both males and females.

Results & discussion

We observed ten different alleles across all genotypes
samples, ranging between sizes 711-744 bp (including
flanking sequence). The smallest three alleles observed
were only found in a single female individual each, and

Table 1 Allele frequencies of the trinucleotide repeat tracts
within exon 1 of the androgen receptor (AR) gene in Canada
lynx (Lynx canadensis)

Allele Frequency Frequency Frequency
(Males only) (Females only) (All samples)
711 0.000 0.001 0.000
714 0.000 0.001 0.000
720 0.000 0.001 0.000
726 0.109 0.078 0.096
729 0.401 0.379 0.392
732 0.289 0.335 0.313
735 0.100 0.119 0.108
738 0.077 0.075 0.076
741 0.007 0.009 0.008
744 0.008 0.003 0.006

Frequencies are shown for male samples only (N =979), female samples only
(N =693), and both males and females combined (all samples; N=1672). As
the AR gene is X-linked, and all males are therefore homozygous, allele
frequencies are equivalent to genotype frequencies for males. No individuals
were observed with alleles 717 or 723. The two most common alleles are

in bold
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Table 2 Genotype frequencies of the trinucleotide repeat tract within exon 1 of the androgen receptor (AR) gene in Canada lynx
(Lynx canadensis). Frequencies are shown for female samples only (N =693)

First allele/Second allele AN 714 720 726 729 732 735 738 41 744
an - - - - - - - - - -
714 0.001 - - - - - - - - -
720 - - - - - - - - - -
726 - - - 0.009 - - - - - -
729 - - - 0.059 0.160 - - - - -
732 - - - 0.039 0.253 0.123 - - - -
735 - - - 0.019 0.078 0.081 0.020 - - -
738 - - 0.001 0.017 0.040 0.048 0.017 0.012 - -
741 - - - 0.004 0.006 0.004 0.001 0.001 - -
744 - - - - 0.001 0.001 0.001 0.001 - -

no individuals with alleles 717 or 723 within the allelic
range were found. The most common alleles were ob-
served in the middle of the allelic range (Tables 1 and 2).

Sex identification indicated that the necropsied lynx
represented one female (lynx 1) and one male (lynx 2)
specimen. Of the tissues analyzed at the AR gene from
these individuals (62 from lynx 1 and 25 from lynx 2),
all resulted in a single clear genotype for each individual
(a consistent homozygote and heterozygote genotype
across all tissue samples for the male and female,
respectively).

Additional genotyping of the 1,672 lynx samples did
not detect somatic mosaicism in any of our male or
female Canada lynx samples, although a single sample
was removed from the data set due to contamination
(see Additional file 1). All other samples fell within
our search image of what is expected in a typical
individual not exhibiting mosaicism (all males were
homozygotes and no females exhibited more than two
alleles). The absence of any evidence of mosaicism in
Canada lynx does not provide conclusive evidence
that it is not present in other, unanalyzed individuals,
however, given the high allelic diversity of the AR
gene in Canada lynx, if undetected, mosaicism would
still only be present at a negligible level due to the
large sample size we surveyed. For the purposes of
our study, the overall lack of detection, coupled with
our large sample size indicates that mosaic events do
not pose a high risk of confounding large-scale ana-
lyses and genotyping in this study system, nor is an
important biological mechanism within Canada lynx.

Our findings are inconsistent with those of Wang et al.
(2012) who found AR mosaicism in multiple carnivore
species [42]. It is possible that expression of the somatic
mutation causing AR mosaicism is absent in Canada lynx
in particular, but does manifest in Eurasian lynx and other

carnivore tissues at a higher rate. As we evaluated a large
sample of lynx hides, we suggest that lynx hide tissue can
be used to study the AR gene in Canada lynx without the
risk of issues caused by mosaicism.

Conclusions

The implications of somatic mosaicism within exonic
trinucleotide repeat polymorphisms can have important
influences on the accurate reporting and use of geno-
types in studies of landscape genomics. This potential
issue, however, is rarely considered in research outside
of human disease studies. As the role of exonic repeat
fragments in mediating adaptive evolution becomes
clearer, it is likely that the prevalence of their use in
wildlife genomic studies will increase. This makes the
evaluation of somatic mosaicism in these repeat frag-
ments imperative. In this study, we report no evidence
of mosaicism in our two necropsied lynx individuals, or
our larger screening of Canada lynx hide tissue. All
males were homozygous for a single allele, and there
was no evidence of more than two alleles in females,
which would have been predicted if mosaicism was
present given the allelic diversity of the gene in lynx.
Our results indicate that even if mosaicism is present in
this species, its prevalence is low given our inability to
detect mosaicism in our large sample size. Therefore,
the use of hide samples for further work involving trinu-
cleotide repeat polymorphisms in Canada lynx is war-
ranted, given that the AR gene appears to follow typical
patterns of a X-linked gene in this species.

Availability of data

Genotypic data supporting the findings of this study can
be found on the Dryad Digital Repository: http://dx/
doi.org/10.5061/dryad.h43cl.
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Additional file

Additional file 1: During the course of the work for this manuscript,
a single male lynx was identified as heterozygous at the AR gene. A
quantitative analysis was conducted on this sample to evaluate possible
alternative hypotheses including; somatic mosaicism, chromosomal
abnormalities (e.g, an XXY male sample) and sample contamination.
Information on this analysis and its results are contained within the
supplementary information document associated with this manuscript.
(DOCX 16 kb)
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