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Background: There is wide heterogeneity in sepsis in causative pathogens, host

response, organ dysfunction, and outcomes. Clinical and biologic phenotypes of sepsis

are proposed, but the role of pathogen data on sepsis classification is unknown.

Methods: We conducted a secondary analysis of the Recombinant Human Activated

Protein C (rhAPC) Worldwide Evaluation in Severe Sepsis (PROWESS) Study. We used

latent class analysis (LCA) to identify sepsis phenotypes using, (i) only clinical variables

(“host model”) and, (ii) combining clinical with microbiology variables (e.g., site of

infection, culture-derived pathogen type, and anti-microbial resistance characteristics,

“host-pathogen model”). We describe clinical characteristics, serum biomarkers, and

outcomes of host and host-pathogen models. We tested the treatment effects of rhAPC

by phenotype using Kaplan-Meier curves.

Results: Among 1,690 subjects with severe sepsis, latent class modeling derived

a 4-class host model and a 4-class host-pathogen model. In the host model, alpha

type (N = 327, 19%) was younger and had less shock; beta type (N=518, 31%) was

older with more comorbidities; gamma type (N = 532, 32%) had more pulmonary

dysfunction; delta type (N = 313, 19%) had more liver, renal and hematologic

dysfunction and shock. After the addition of microbiologic variables, 772 (46%)

patients changed phenotype membership, and the median probability of phenotype

membership increased from 0.95 to 0.97 (P < 0.01). When microbiology data were

added, the contribution of individual variables to phenotypes showed greater change

for beta and gamma types. In beta type, the proportion of abdominal infections

(from 20 to 40%) increased, while gamma type patients had an increased rate

of lung infections (from 50 to 78%) with worsening pulmonary function. Markers

of coagulation such as d-dimer and plasminogen activator inhibitor (PAI)-1 were

greater in the beta type and lower in the gamma type. The 28 day mortality was

significantly different for individual phenotypes in host and host-pathogen models (both

P<0.01). The treatment effect of rhAPC obviously changed in gamma type when

microbiology data were added (P-values of log rank test changed from 0.047 to 0.780).
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Conclusions: Sepsis host phenotype assignment was significantly modified when

microbiology data were added to clinical variables, increasing cluster cohesiveness

and homogeneity.

Keywords: phenotype, latent class analysis, host, pathogen, sepsis

INTRODUCTION

There are more than 49 million worldwide cases of sepsis
annually (1). Despite prompt recognition and treatment, sepsis
remains a leading cause of mortality (2, 3). Many trials of
candidate sepsis treatments failed to find beneficial effects, in
part due to the wide heterogeneity in causative pathogens, host
response, and patterns of organ dysfunction. A more precise
treatment strategy is needed to move beyond a “one-size-fits-all”
bundle (4–7).

Recent work proposed clinical and biologic phenotypes of
sepsis that may identify groups for targeted treatment and
enrichment strategies in clinical trials (8–17). These studies focus
mainly on clinical data in the electronic health record (EHR),
protein biomarkers, or molecular data. They do not typically
incorporate microbiology or pathogen data as these features are
(i) difficult to measure and adjudicate, and (ii) not available at
the point-of-care. Despite the inclusion of causative pathogen
in leading conceptual models of sepsis (18), its role in sepsis
classification using machine learning is unknown.

To address this challenge, we performed a secondary analysis
of the Recombinant Human Activated Protein C (rhAPC)
Worldwide Evaluation in Severe Sepsis (PROWESS) Study, a
large multicenter randomized clinical trial of sepsis patients
unique for its detailed microbiology data (19). We aim to
determine the effect of adding microbiology data to clinical
sepsis phenotypes.

METHODS

The project was approved by the University of Pittsburgh
institutional review board and conducted under data use
agreements (PRO15110441 and PRO17120315). The original
study was approved by the institutional review board at each
site, and written informed consent was obtained. The informed
consent specified that the data collected will be used for
further scientific studies in addition to the original clinical
trial (19).

Data and Study Population
We conducted a secondary analysis of the PROWESS study,
which enrolled 1,690 patients with severe sepsis at 164 centers
in 11 countries from July 1998 to June 2000. Severe sepsis was
defined as a known or suspected infection, 3 or more signs of
systemic inflammation, and the sepsis-induced dysfunction of at
least one organ or system. Patients were enrolled within 24 h after
they met the criteria of severe sepsis. Patients were randomly
assigned 1:1 to receive drotrecogin alfa or placebo at each center
within 24 h of meeting inclusion criteria (19).

Clinical and Microbiology Variables for
Phenotyping
We selected 24 clinical variables prior to randomization and 3
microbiological variables for analysis. We used clinical variables
previously mapped to sepsis phenotypes (15). They included
demographic variables (e.g., age, sex, Elixhauser comorbidities),
vital signs [e.g., heart rate, respiratory rate, Glasgow coma
scale (GCS) score, systolic blood pressure (SBP), temperature,
and oxygen saturation (SaO2)], markers of inflammation [e.g.,
white blood cell count (WBC), premature neutrophil count
(“bands”)], markers of organ dysfunction or injury [e.g., alanine
aminotransferase (ALT), aspartate aminotransferase (AST), total
bilirubin, blood urea nitrogen (BUN), creatinine, partial pressure
of oxygen (PaO2), platelets, and prothrombin time]and serum
glucose, sodium, hemoglobin, chloride, and albumin.

The microbiological variables in PROWESS included the
site of infection (e.g., bloodstream, central nervous system,
genitourinary, abdominal, lung, and others), type of pathogen
identified from a positive culture (e.g., mixed, fungus, gram
negative, gram positive, and organism negative), and drug
resistance (one or more drug resistance vs. no drug resistance).

Biomarkers, Clinical Outcomes, and
Treatment Effects
After phenotypes were assigned, we studied 14 serum biomarkers
measured at baseline prior to randomization. They included
inflammatory biomarkers [e.g., interleukin (IL)-1b, IL-6, IL-
8, IL-10, and tumor necrosis factor (TNF)] and coagulation
biomarkers [e.g., antithrombin, d-dimer, factor V, plasminogen
activator inhibitor (PAI)-1, plasminogen activity, protein C
activity, protein S activity, prothrombin fragment 1–2, and
thrombin-antithrombin (TAT) complex].

The primary outcome was 28 day mortality. Secondary
outcomes were 90 day mortality and 180 day mortality.

Statistical Methods
To derive phenotypes, we first explored candidate variable
distributions, missingness (Supplementary Table 1), and
correlation. We applied log transformations to non-normal data.
We handled missing data by using multiple imputations by
chained equations (MICE) (20). We included all covariates in
the imputation procedure, and modeled variables using logistic,
linear, multinomial, or ordinal regression, as appropriate.
We evaluated distributions of clustering variables before and
after imputation (Supplementary Table 2), and correlation of
variables using rank order statistics (Supplementary Figure 1).

We used latent class analysis (LCA) to derive host (24 clinical
variables) and host-pathogen (24 clinical plus 3 microbiological
variables) phenotypes (21). We determined the optimal number

Frontiers in Medicine | www.frontiersin.org 2 November 2021 | Volume 8 | Article 775511

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhao et al. Revising Sepsis Phenotypes Using Microbiology

TABLE 1 | Characteristics of the host model phenotypes.

Characteristic All patients α-type β-type γ-type δ-type P-value*

No. of patients (%) 1,690 327 (19.4%) 518 (30.7%) 532 (31.5%) 313 (18.5%)

Age, median [IQR], years 64 [49–74] 44 [34–55] 71 [63–77] 65 [52–74] 59 [46–73] <0.01

Gender, no. (%) 0.25

Male 964 (57%) 174 (53%) 310 (60%) 307 (58%) 173 (55%)

Female 726 (43%) 153 (47%) 208 (40%) 225 (42%) 140 (45%)

Elixhauser Comorbidities,

median [IQR]

1 [0–2] 0 [0–1] 2 [1–3] 1 [0–2] 1 [0–2] <0.01

Inflammation

Premature neutrophil count

(bands), median [IQR], %

1.1 [0.5–2.6] 0.8 [0.3–1.4] 1.1 [0.6–2.2] 1.3 [0.5–3.5] 1.2 [0.4–2.7] <0.01

Temperature, median [IQR], ◦C 38.6 [37.6–39.3] 39.0 [38.5–39.5] 38.1 [35.9–38.9] 38.7 [37.7–39.4] 38.6 [37.0–39.6] <0.01

White blood cell count, median

[IQR], ×109/L

14 [9–20] 14 [9–18] 15 [10–21] 13 [7–21] 15 [8–22] <0.01

Pulmonary

Oxygen saturation, median [IQR],

%

95 [90–97] 94 [88–97] 96 [92–98] 94 [90–96] 95 [89–98] <0.01

Partial pressure of oxygen,

arterial, median [IQR], mmHg

76 [62–101] 71 [55–92] 84 [65–125] 71 [62–82] 90 [63–132] <0.01

Respiratory rate, median [IQR],

breaths/min

31 [23–40] 32 [24–40] 28 [19–35] 32 [24–40] 32 [24–40] <0.01

Cardiovascular or Hemodynamic

Heart rate, median [IQR],

beats/min

130 [115–147] 133 [120–148] 122 [105–140] 136 [123–150] 133 [115–150] <0.01

Systolic blood pressure, median

[IQR], mmHg

80 [70–95] 90 [80–110] 85 [69–103] 78 [68–86] 77 [65–92] <0.01

Renal

Blood urea nitrogen, median

[IQR], mg/dL

10 [6–15] 5 [4–7] 11 [7–16] 11 [8–16] 14 [10–20] <0.01

Creatinine, median [IQR], mg/dL 1.5 [1.0–2.3] 0.9 [0.7–1.1] 1.4 [1.0–2.1] 1.8 [1.3–2.5] 2.3 [1.6–3.4] <0.01

Hepatic

Alanine transaminase, median

[IQR], U/L

28 [16–55] 26 [15–43] 20 [13–31] 27.5 [17–50] 130 [50–395] <0.01

Aspartate transaminase, median

[IQR], U/L

43 [24–93] 37 [22–68] 28 [20–43] 47 [28–85] 246 [102–616] <0.01

Bilirubin, median [IQR], mg/dL 0.7 [0.4–1.3] 0.7 [0.4–1.3] 0.5 [0.3–0.9] 0.8 [0.5–1.5] 1.0 [0.6–2.2] <0.01

Hematologic

Hemoglobin, median [IQR], g/dL 11 [9–12] 11 [10–12] 10 [9–12] 11 [9–12] 11 [10–12] 0.02

Platelets, median [IQR], ×109/L 168 [105–240] 193 [140–256] 205 [147–290] 135 [90–199] 129 [71–200] <0.01

Prothrombin time, median [IQR],

secs

19 [17–22] 17 [16–19] 18 [16–20] 20 [18–24] 22 [18–30] <0.01

Other

Albumin, median [IQR], g/dL 2.0 [1.6–2.4] 2.2 [1.7–2.6] 2.0 [1.6–2.5] 1.9 [1.5−2.3] 2.0 [1.5–2.5] <0.01

Chloride, median [IQR], mEq/L 106 [101–111] 105 [102–110] 106 [100–111] 107 [103–112] 105 [100–111] <0.01

Glasgow Coma Scale score,

median [IQR]

14 [11–15] 15 [12–15] 14 [9–15] 15 [12–15] 14 [10–15] <0.01

Glucose, median [IQR], mg/dL 146 [115–196] 133 [112–162] 163 [124–227] 144 [112–198.5] 144 [108–196] <0.01

Sodium, median [IQR], mEp/L 139 [135–143] 139 [135–142] 139 [135–143] 139 [136–142] 139 [135–144] 0.34

Outcomes

28 day mortality, no. (%) 469 (28%) 29 (9%) 157 (30%) 152 (29%) 131 (42%) <0.01

90 day mortality, no. (%) 593 (35%) 43 (13%) 210 (41%) 188 (35%) 152 (49%) <0.01

180 day mortality, no. (%) 638 (38%) 51 (16%) 233 (45%) 198 (37%) 156 (50%) <0.01

*Kruskal-Wallis used for continuous and or chi-square for categorical comparisons, across four phenotypes. IQR, interquartile range.
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FIGURE 1 | Visualization of phenotype assignments and comparison of clinical variables that contribute to phenotypes. (A) Visualization of phenotype assignments in

host, (B) host-pathogen model using t-distributed stochastic neighbor embedding (t-SNE) plot. Green, purple, red, and blue dots represent α-type, β-type, γ-type and

δ-type, respectively. Phenotype members have a similar frequency and distribution across models. (C) Differences in standardized mean value of each variable ranked

from maximum positive to negative separation (x-axis). Dark lines correspond to host model. Light lines correspond to same comparisons but from host-pathogen

model. Plot compares β-type (purple) to α-type (green). Variables ranked on the left x-axis are greater in β-type than α-type (e.g., age, BUN, and comorbidity) while

those on the right x-axis are lower in β-type than α-type (e.g., temperature, heart rate). (D) Comparison between γ-type (red) and α-type (green). (E) Comparison

between δ-type (blue) and α-type (green).

FIGURE 2 | Alluvial plot showing the change of membership from host model to host-pathogen model. (A) The change of membership from α-type of host model

(green, left column, N = 327) to host-pathogen model (right column), (B) from β-type of host model (purple, left column, N = 518) to host-pathogen model (right

column), (C) from γ-type of host model (red, left column, N = 532) to host-pathogen model (right column), (D) from δ-type of host model (blue, left column, N = 313)

to host-pathogen model (right column).
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of phenotypes using the minimum Bayesian information criteria
(BIC), class size, median probabilities of group membership,
entropy, and clinical features of groups. For each patient, we used
LCA to produce a posterior probability describing the likelihood
of the patient belonging to the phenotype, with posterior
probability ranges from 0 to 1. Patients were assigned to the
phenotype for which they had the highest posterior probability.
We estimated models ranging from two to seven phenotypes
(Supplementary Table 3). We determined the optimal number
of clusters using a combination of criteria, (i) a smaller BIC, (ii)
a higher Entropy, (iii) adequate sample size within cluster, (iv)
higher median posterior probabilities of group membership, and
(v) clinical characteristics of the clusters. We illustrated the host
and host-pathogen models in 2 ways: (i) t-distributed stochastic
neighbor embedding (t-SNE) plots (which show the frequency
and distribution of phenotype members) and (ii) alluvial plots
(which show the change of membership between host and host-
pathogenmodels by phenotypes).We compared the contribution
of continuous variables to phenotypes in both host and host-
pathogen models using the differences in standardized mean
value of each variable.

To quantify the change in phenotypes after addition of
microbiology, we measured the mean (SD) probabilities of
membership for the assigned group(s). We also compared the
proportion of patients in each group using chi square tests.
We tested for differences in 28, 90 and 180 day mortality
between phenotypes using chi square andKaplan-Meier curves to
illustrate differences in 28 day mortality. We tested the treatment

effects for rhAPC by phenotype using Kaplan-Meier curves of 28
day mortality. We conducted 2 sensitivity analyses, (i) excluding
variables with high missingness (missing >50%: hemoglobin and
premature neutrophil count [bands]) and (ii) using a 5-class
model as the optimal fit for the LCA. Analyses were performed
with Stata 15.1 (StataCorp, College Station, Texas), and R 3.4.1
(depmixS4 package for LCA; Rtsne package for making t-SNE
plots; alluvial package for making alluvial plots, Version: 0.1-2.
BojanowskiM and Edwards R; 2016. https://github.com/mbojan/
alluvial) with a significance threshold of <0.05 in 2-sided tests.

RESULTS

Patients
Among 1,690 subjects, the median age was 64 [IQR: 49–
74] years old, 964 (57%) patients were male, and median
Elixhauser comorbidity index was 1 [IQR: 0–2] (Table 1,
Supplementary Table 4). The primary infection site was lung
(54%), compared to abdominal (19%) or genitourinary (11%)
infections. A mixed pathogen infection (35%) was the most
common, compared to gram positive (22%) or gram negative
bacteria alone (16%).

Host Model
Using 24 clinical variables in the latent class analysis (host
model), we determined that a 4-class model was the optimal fit
[applied labels alpha (α), beta (β), gamma (γ), and delta (δ) types].
Entropy in all models was 0.75 or greater, and the BIC decreased

TABLE 2 | Example characteristics of β-type and γ-type in host and host-pathogen models.

Variable Host β-type Host-pathogen β-type Host γ-type Host-pathogen γ-type

No. of patients (%) 518 (31%) 519 (31%) 532 (32%) 374 (22%)

Clinical variable

Age, median [IQR] 71 [63–77] 69 [58–77] 65 [52–74] 70 [61–77]

Elixhauser comorbidity, median [IQR] 2 [1–3] 1 [1–2] 1 [0–2] 2 [1–3]

Heart rate, beats/min, median [IQR] 122 [105–140] 126 [110–144] 136 [123–150] 127 [112–145]

SBP, mmHg, median [IQR] 85 [69–103] 80 [70–92] 78 [68–86] 83 [69–103]

Bilirubin, mg/dL, median [IQR] 0.5 [0.3–0.9] 0.6 [0.4–1.1] 0.8 [0.5–1.5] 0.6 [0.3–0.9]

Glucose, mg/dL, median [IQR] 163 [124–227] 147 [117–198] 144 [112–199] 166 [127–227]

Oxygen saturation, %, median [IQR] 96 [92–98] 97 [94–98] 94 [90–96] 92 [85–95]

PaO2, mmHg, median [IQR] 84 [65–125] 92 [73–138] 71 [62–82] 64 [53–77]

Platelets, ×109/L, median [IQR] 205 [147–290] 175 [116–252] 135 [90–199] 205 [157–281]

Prothrombin time, s, median [IQR] 18 [16–20] 19 [17–23] 20 [18–24] 17 [15–19]

WBC Count, ×109/L, median [IQR] 15 [10–21] 13 [8–19] 13 [7–21] 16 [12–21]

Microbiological variable

Source

Bloodstream, no. (%) 17 (3.3%) 16 (3.1%) 27 (5.1%) 2 (0.5%)

Abdominal, no. (%) 102 (20%) 208 (40%) 120 (23%) 8 (2.1%)

Lung, no. (%) 293 (57%) 183 (35%) 268 (50%) 291 (78%)

Type

Mixed, no. (%) 188 (36%) 230 (44%) 183 (34%) 96 (26%)

Gram positive, no. (%) 87 (17%) 87 (17%) 130 (24%) 67 (18%)

Organism negative, no. (%) 128 (25%) 90 (17%) 109 (21%) 129 (35%)

Drug resistance, no. (%) 133 (32%) 198 (38%) 116 (28%) 64 (17%)

IQR, interquartile range; PaO2, partial pressure of oxygen; SBP, systolic blood pressure; WBC, white blood cell.
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FIGURE 3 | Comparison of median values of biomarkers between host and host-pathogen models across phenotypes. (A) Serum IL-6, (B) serum TNF-α, (C) serum

protein C activity, (D) serum protein S activity, (E) serum D-dimer, and (F) serum plasminogen activator inhibitor-1 (PAI-1). Gray lines represent host model, and black

lines represent host-pathogen model. Green, purple, red, and blue dots represent α-type, β-type, γ-type and δ-type, respectively.

as class number increased from 2 to 4. The median probability
of group membership was high (>95%, Supplementary Table 3,
Supplementary Figure 2). Phenotypes ranged in size from 19 to
32% of the cohort, and differed broadly in clinical characteristics
(Table 1, Figure 1). Consistent with prior data (15), patients
with the α-type (19%) were younger and had less shock,
β-type (31%) were older and had greater comorbidity, γ-
type (32%) had more pulmonary dysfunction, and δ-type
(19%) had more liver, renal, and hematologic dysfunction
and shock.

Host Pathogen Model
When 3 microbiological variables were included in the latent
class analysis (host-pathogen model), a 4-class model again
demonstrated optimal fit (also applied labels α, β, γ, and δ

types) (Supplementary Table 3, Supplementary Figure 2). We
visualized patients using t-SNE plots (Figures 1A,B) and found
that the proportion of phenotype members was similar in host
and host-pathogen models. However, 772 of 1,690 (46%) patients
changed phenotypes, particularly the β (45%) and γ-types
(80%) (Figure 2, Supplementary Table 5). The host-pathogen
phenotypes had higher median membership probabilities than
host phenotypes alone (host: 0.95 vs. host-pathogen: 0.97, P <

0.01, Supplementary Table 5). Among patients who rearranged
phenotypes in the host-pathogen model, the initial host model

membership probability was lower than patients who did not
change (median 0.90 vs. 0.98, p < 0.01, Supplementary Table 6).

The contribution of individual variables to phenotypes are
ranked before and after including microbiology data. These plots
show little change for δ- and α-types, but greater inconsistency
for the β- and γ-type variables (Figures 1D–F). For example,
among β-type patients, the proportion of abdominal infections
(from 20 to 40%) and mixed-type infections (from 36 to 44%)
increased, while the proportion of lung infections decreased
from 57 to 35%; γ-type patients had an increased rate of
lung infections (from 50 to 78%) with worsening pulmonary
function (PaO2 decreased from 71 to 64 mmHg) (Tables 1, 2,
Supplementary Tables 4, 7, 8).

Correlation With Baseline Biomarkers and
28-Day Mortality
Comparing host and host-pathogen models, 13 of 14
biomarkers were significantly different across phenotypes
when adding microbiology data (excluding only IL-1b,
Supplementary Tables 9, 10). For example, in the β-type,
the median level of PAI-1 increased from 25 to 35 AU/mL, and
d-dimer increased from 3.2 to 4.2µg/mL; while PAI-1 (from 41
to 24 AU/mL) and d-dimer (from 4.7 to 3.0µg/mL) decreased
in the γ-type (Figure 3). The cumulative 28 day mortality

Frontiers in Medicine | www.frontiersin.org 6 November 2021 | Volume 8 | Article 775511

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhao et al. Revising Sepsis Phenotypes Using Microbiology

FIGURE 4 | 28 day mortality by phenotypes using Kaplan-Meier curves. (A) Cumulative survival at 28 days by phenotypes using Kaplan-Meier curves in host model,

and (B) host-pathogen model. Green, purple, red, and blue lines represent α-type, β-type, γ-type and δ-type, respectively.

probability was significantly different for individual phenotypes
in host and host-pathogen models (both log-rank P < 0.01),
but was similar between models. In both models, 90 day and
180 day mortality were also significantly different for individual
phenotypes (all chi-square P < 0.01), but were similar between
models (Figure 4; Table 1, Supplemental Tables 4, 7).

Treatment Effect for rhAPC by Phenotype
After Including Microbiology Variables
In host model, rhAPC significantly decreased the cumulative 28
day mortality probability in gamma type (P = 0.047 by log rank
test), while when microbiology variables were added, the 28 day
mortality was similar between rhAPC and placebo group (P =

0.780 by log rank test) (Figure 5).

Sensitivity Analysis
To understand the robustness of these results, we derived
phenotypes excluding variables with high missingness and
found that a 4-class model remained optimal for both host and
host-pathogen models (Supplementary Figure 3). In addition,
these models had similar frequency and characteristics to
phenotypes as the primary analysis (Supplementary Table 11,
Supplementary Figure 3). For example, 713 (42%) patients
were rearranged when microbiological variables were
added, with highest rates of change in the β and γ-type
(Supplementary Figure 4). We also explored a 5-class model
and found that microbiological variables also rearranged 632
(37%) of patients, increased the probability of membership, and
changed variable characteristics in clinically meaningful way
(Supplementary Tables 12, 13, Supplementary Figure 5).

DISCUSSION

In this proof-of-concept analysis, the addition of microbiological
variables to host sepsis phenotypes led to meaningful
rearrangement of patients, particularly the beta and gamma
types. These changes did not modify short or long-term
outcomes, but changed the treatment effect for rhAPC in gamma
type. This work suggests that pathogen data may have an
under-recognized role in sepsis phenotype classification using
machine learning methods.

For decades, sepsis has been characterized by the offending
pathogen, such as Neisseria meningitis or pneumococcal
pneumonia. However, these labels alone do not capture the
combined complexity of the host response, tolerance, or
damage in sepsis (22). Recent work using machine learning to
subtype sepsis did not include pathogen data due to practical
measurement challenges during emergency care (8–11, 15,
23). Preliminary work in the PROWESS-SHOCK trial began
to use microbiology together with clinical data to propose
subphenotypes of septic shock (17). We extend this work by
investigating the question, how much does microbiology add
beyond that of clinical data alone? This is a key knowledge gap
that will guide the embedding of sepsis phenotypes into trials and
clinical practice.

We found that the addition of microbiological variables to
host phenotypes led to meaningful rearrangement of sepsis
patients. A large proportion, particularly of the gamma type, were
assigned to a different phenotype. The host pathogen model also
appeared to statistically increase in probability of assignment.
These changes were not, however, accompanied by changes
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FIGURE 5 | Comparison of the treatments effects for Recombinant Human Activated Protein C by phenotype. (A) The comparison of cumulative survival at 28 days

using Kaplan-Meier curves between rhAPC group and placebo group in α-type of both host and host-pathogen model, (B) β-type, (C) γ-type, and (D) δ-type. Dark

lines correspond to rhAPC group and light lines correspond to placebo group. Green, purple, red, and blue dots represent α-type, β-type, γ-type and δ-type,

respectively.

in patient outcomes by phenotype. We also found that the
addition of pathogen data could obviously change the treatment
effect for rhAPC in gamma phenotype. It further elaborated the
importance of pathogen data to sepsis phenotyping. As a proof of
concept analysis, many important steps follow, (i) to reproduce
in larger, generalizable cohort; (ii) determine if other treatment
effects, perhaps time to antimicrobials or source control, are
modified by pathogen informed subtypes.

A challenge to the incorporation of microbiological data into
sepsis phenotypes is that these parameters are not routinely
available during emergency care or at the time of typical
enrollment in clinical trials. Several rapid approaches are under
study to identify infection type (e.g., bacterial, viral), or drug
resistance. These include multiplex real-time polymerase chain
reaction (PCR) systems, next-generation sequencing (NGS) (24–
26), and those probing the pathogen specific host response
(27, 28). These approaches have complex workflow, a need for
rigorous quality control, and a yet-to-be-determined optimal
“clinical moment” in bedside care.

This study has several limitations. First, we performed a proof
of concept in a single trial with small sample, and generalizability
requires further study. Second, the microbiology data were
derived from the culture results of the database of PROWESS
which could not accurately and completely distinguish the
colonization, positive cultured infection, and negative cultured
infection. In addition, due to the low incidence, we did

not identify multidrug-resistant (MDR) and extensively drug-
resistant (XDR) bacteria in the drug resistance variables, these
two variables have greater clinical application value. Third, most
pathogens were bacteria, with low rates of viral and fungal
infection. Additional data is needed to parse through the role
of specific viral pathogens to phenotypes. Fourth, missing data
were common. Although we used multiple imputation, bias
may be introduced for those variables with high missingness.
To address this limitation, we excluded variables with high
missingness (>50%) in sensitivity analyses and found similar
results. Fifth, we compared mortality and treatment effects of
rhAPC between host and host-pathogen models using Kaplan-
Meier curves which may lead to non-rigorous results. Further
need to verify these effects using stratified proportional hazards
model in larger sample study. Sixth, the choice of optimal number
of clusters is semi-subjective and different statistical approaches
are available to determine cluster number. Informed by prior
work in SENECA (15), we focused on 4 class models. However,
we explored a 5-class model in sensitivity analyses and found
similar trends to those observed in the primary analysis.

CONCLUSION

Sepsis host phenotype assignment was significantly modified
when microbiology data were added to clinical variables,
increasing cluster cohesiveness and homogeneity. The clinical
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significance of these changes and importance for treatment
effects in clinical trials remains uncertain.
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