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Ovarian cancer (OV) is a deadly gynecological cancer. The tumor immune microenvironment
(TIME) plays a pivotal role in OV development. However, the TIME of OV is not fully known.
Therefore, we aimed to provide a comprehensive network of the TIME in OV. Gene expression
data and clinical information from OV patients were obtained from the Cancer Genome Atlas
Program (TCGA) database. Non-negative Matrix Factorization, NMFConsensus, and nearest
template prediction algorithms were used to perform molecular clustering. The biological
functions of differentially expressed genes (DEGs) were identified using Metascape, gene set
enrichment analysis (GSEA), gene ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. The copy number variations (CNVs), single
nucleotide polymorphisms (SNPs) and tumormutation burden were analyzed using Gistic 2.0,
R package maftools, and TCGA mutations, respectively. Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data and CIBERSORT were utilized to
elucidate the TIME. Moreover, external data from the International Cancer Genome
Consortium (ICGC) and ArrayExpress databases were used to validate the signature. All
361 samples from the TCGA OV dataset were classified into Immune Class and non-Immune
Class with immune signatures. By comparing the two classes, we identified 740 DEGs that
accumulated in immune-related, cancer-related, inflammation-related biological functions and
pathways. There were significant differences in the CNVs between the Immune and non-
Immune Classes. The Immune Class was further divided into immune-activated and immune-
suppressed subtypes. Therewas no significant difference in the top 20 genes in somatic SNPs
among the three groups. In addition, the immune-activated subtype had significantly increased
proportions of CD4 memory resting T cells, T cells, M1 macrophages, and M2 macrophages
than the other two groups. The qRT-PCR results indicated that themRNA expression levels of
RYR2, FAT3, MDN1 and RYR1 were significantly down-regulated in OV compared with
normal tissues. Moreover, the signatures of the TIME were validated using ICGC cohort and
the ArrayExpress cohort. Our study clustered the OV patients into an immune-activated
subtype, immune-suppressed subtype, and non-Immune Class and provided potential clues
for further research on the molecular mechanisms and immunotherapy strategies of OV.
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1 INTRODUCTION

Ovarian cancer (OV) is the third most commonly diagnosed
cancer and the second leading cause of reproductive system
death-related mortality in 2020 (Sung et al., 2021). Last year,
313,959 new cases of OV were reported, and 207,252 women died
of this cancer worldwide. Despite the advances in surgery,
chemotherapy, and target therapy for OV in recent decades,
the 5-year survival rate for OV remains around 25%–35% (Lee
et al., 2018). Therefore, research into potential molecular
mechanisms and biomarkers to develop new anti-tumor
therapy targets and to further improve the therapy response of
OV patients is urgently needed.

Avoiding immune destruction is widely recognized as a key
hallmark of cancer (Hanahan and Weinberg, 2011). The cancer
cells can escape immune surveillance during tumor development
(Chew et al., 2012; Liu and Cao, 2016) and evade immunological
destruction by host immune systems (Mantovani and Sica, 2010;
Hart et al., 2011; Veglia et al., 2018). Thus, many types of cancer,
such as lung (Xia et al., 2021) and kidney cancer (Koh et al., 2021),
are characterized by immune dysfunction. Recently,
immunotherapy has emerged as a promising anti-tumor
treatment strategy. Several studies have shown that
immunotherapies are effective in clinical practice for cancer
patients. For example, the patients with metastatic renal cell
carcinoma responded to nivolumab (a programmed cell death
protein 1 (PD-1) immune checkpoint inhibitor antibody) plus
ipilimumab (a cytotoxic T-lymphocyte antigen-4 (CTLA-4)
immune checkpoint inhibitor antibody) with acceptable
toxicity (Gul et al., 2020). In patients with metastatic
nonsquamous non-small cell lung cancer, pembrolizumab (an
anti-PD-1 monoclonal antibody) plus pemetrexed-platinum
improved overall survival (OS) and progression-free survival
(PFS) with manageable safety (Gadgeel et al., 2020). In
patients with advanced or metastatic esophageal squamous cell
carcinoma, camrelizumab significantly improved OS, with a
manageable safety (Huang et al., 2020).

Recently, evidence of a spontaneous anti-tumor immune
response, satisfactory clinical response to immunotherapy, and
immune evasion mechanisms have indicated that OV is an
immunogenic cancer (Rodriguez-Garcia et al., 2017). Several
studies have confirmed that tumor-infiltrating lymphocytes
(TILs) are associated with a good prognosis of OV. Zhang
et al. (Zhang et al., 2003) demonstrated that intratumoral
T cells were observed in 54.8% of OV patients and were
associated with a higher 5-year OS rate (38% vs. 4.5%). Other
investigators showed that the patients with intraepithelial CD4+

and CD8+ TILs had better OS (CD4+ TILs, hazard ratio [HR] =
0.260; CD8+ TILs, HR = 0.503; both p < 0.05) and better PFS
(CD4+ TILs, HR = 0.389; CD8+ TILs, HR = 0.478, both p < 0.005)
than those without them (Pinto et al., 2018). Moreover, another
study showed that 44.7% of OV patients had a high expression
level of PD-L1 (PD-L1high), and patients with PD-L1high had a
worse OS (HR = 2.877; p = 0.001) and PFS (HR = 1.843; p = 0.021)
than those with low expression of PD-L1 (Zhu et al., 2017). M1
and M2 macrophages represent an important component of the
tumor microenvironment (TME). M1 macrophages promoted

OV metastasis through the activation of NF-κB pathway (Cho
et al., 2018). Infiltration M2 macrophages was associated with
poor prognosis of OV patients (Badmann et al., 2020). A high
ratio of M1/M2 predicted a higher OS and PFS in OV patients
(Maccio et al., 2020). Although these results offered the possibility
that immunotherapy could be used for OV, the efficacy of
immune checkpoint blockers in the clinic was still far from
optimal. For example, the KEYNOTE-028 trial (Varga et al.,
2019) showed that the objective response rate (ORR) in PD-L1-
expressing advanced OV patients treated with pembrolizumab
monotherapy was only 11.5%. On the other hand, another anti-
PD-1 antibody, nivolumab, resulted in a 15%ORR in OV patients
(Hamanishi et al., 2015). Based on the dilemma, the potential
immunologic molecular mechanisms and the predictive
biomarkers for immunotherapy efficacy in OV are urgently
explored.

Emerging evidence suggested that the tumor immune
microenvironment (TIME) changed and played a pivotal
role in OV development and response to immunotherapies.
For example, Huo et al. (2021) found ten TME genes related to
the prognosis of OV patients. Olalekan et al. (2021) revealed
the immune cell types and their roles in TME of metastatic OV
by single-cell transcriptomics. Collagen type XI alpha 1
promoted OV growth and invasion by activating CAF (Wu
et al., 2021). Multiple chemical agents, such as platinum
derivatives, taxanes, and PARP inhibitors, regulate the
interaction between tumor and stromal cells bidirectionally
and extensively affect the TME (Eckert et al., 2021). Although
many studies focus on the TIME of OV, the molecular
mechanisms of TIME regulation of OV development remain
unclear and require extensive research. In addition, a thorough
understanding of the tumor immune microenvironment will
guide the development of more effective immunotherapy
targets for OV patients.

Therefore, we aimed to provide a comprehensive network of
the immune microenvironment in OV. To achieve this goal, we
divided the OV cohort of the Cancer Genome Atlas (TCGA) into
Immune Class and non-Immune Class with immune signatures
and analyzed the biological functions in each group. The Immune
Class was further divided into immune-activated and immune-
suppressed subtypes, and the gene signatures and TIME status
were assessed in the three groups. Moreover, the Immune
signatures of TIME were validated using the International
Cancer Genome Consortium (ICGC) cohort and the
ArrayExpress cohort.

2 METHODS

2.1 Data Processing
Single-nucleotide polymorphisms (SNPs), clinical data, gene
expression, and survival data of OV from the Cancer Genome
Atlas Program (TCGA) were downloaded from the UCSC Xena
platform. Gene expression data and clinical information of OV
patients were obtained from the Australian Ovarian Cancer Study
cohort (OV-AU). This study used TCGA data as the training data
set and two OV datasets from International Cancer Genome
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Consortium (ICGC) and ArrayExpress as the external validation
data sets.

The R package idmap1 annotated the expression data based on
the Human Genome Organization’s Gene Nomenclature
Committee (HGNC). We removed the mRNA expression data
of the normal samples and, therefore, only expressions of tumor
samples were retained to construct expression profiles for the
following analyses.

We obtained the raw chip data and the corresponding
annotations of the E-MTAB-62 dataset from ArrayExpress.
The R packages affy (Gautier et al., 2004) and makecdfenv
were used to read the raw chip data and generate the cdf
package and environment. The normalized expression data
using Robust Multi-array Average (RMA) method were
annotated to the corresponding platform (GPL20967-3976),
resulting in a gene symbol expression profile for subsequent
analyses.

2.2 NMF Clustering
We used Non-negative Matrix Factorization (NMF) to perform
molecular clustering and find the function features for each
group. NMF factorizes a non-negative matrix V into two non-
negative matrices, the base matrix W and the coefficient matrix
H, so that V = W × H. In subsequent analyses, the coefficient
matrices represent dimension-reduced matrices.

The TCGA mRNA expression profiles were subjected to NMF
using the R package NMF in R environment version 4.0.5
(Gaujoux and Seoighe, 2010). The rank K of the maximum
variation in cophenetic values was used as the optimal number
of clustering.

2.3 Identification of Immune
Microenvironment
We utilized the Estimation of STromal and Immune cells in
MAlignant Tumor tissues using the Expression data
(ESTIMATE; Becht et al., 2016) algorithm to predict the
content of stromal and immune cells in each tumor sample.
The stromal scores, immune scores, and ESTIMATE scores
represent the ratio of stromal, immune, and the sum of both,
respectively. We integrated the results of NMF and ESTIMATE to
elucidate the immune microenvironments in each group.

2.4 Classification by NMFConsensus
and NTP
We obtained and calculated the Immune Factors of the groups
based on NMF and ESTIMATE. The top 150 genes of the
Immune Factor were selected as Immune Genes to perform
functional analysis using the Metascape database (Zhou et al.,
2019). The Immune Gene expression profiles of all samples were
analyzed by the NMFConsensus module of Genepattern (Reich
et al., 2006) with default parameters. Samples were further
divided into the immune group and non-immune group
according to the result of NMFConsensus.

Nearest template prediction (NTP) is a convenient method for
predicting clinical disease subtypes. To further study the immune

features in OV, the GenePattern NTP module with default
parameters was performed based on the activated stroma
signature (Moffitt et al., 2015) of the immune group
expression profile. The immune group was further divided
into two subgroups: immune-suppressed and immune-
activated subtypes.

2.5 Identification and Functional Analyses of
Differentially Expressed Genes
The paired t-test of R package limma (Ritchie et al., 2015) was
used to identify DEGs between the immune and non-immune
groups. The absolute values of log2 [fold-change (FC)] > 1 and
adjusted p-values < 0.01 were used to identify DEGs.

To identify the functions and relevant pathways of DEGs, we
performed gene ontology (GO), and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis on
DEGs using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) provides (Dennis et al., 2003).
The GO terms of the biological process (BP) and KEGG pathways
were visualized with the bubble plots. We carried out Gene Set
Enrichment Analysis (GSEA) using the GSEA software to
determine whether DEGs exhibit significant and consistent
differences between the immune and non-immune groups
(Subramanian et al., 2005).

2.6 Polymorphism and Tumor Mutation
Burden Analyses
To analyze the copy number variation (CNV) mutations in the
immune-suppressed, immune-activated and non-immune
groups, we obtained CNV data for TCGA OV from GDAC
Firehose. The Gistic 2.0 module from GenePattern with
default parameters was conducted to identify regions with
CNVs in immune-suppressed, immune-activated, and non-
immune groups. The CNVs analysis results were collated and
visualized using the R package maftools (Mayakonda et al., 2018).
Analysis of Variance (ANOVA) tests were used to compare the
CNVs among the three groups.

SNP mutation annotation format (MAF) files were
downloaded from the UCSC Xena platform and processed
using the R package maftools. We explored the top 20 genes
of the somatic SNPs in the immune-suppressed, immune-
activated, and non-immune groups by plotting the waterfall
plots to identify the mutations of genes related to OV in the
three groups.

We performed TMB analysis to identify the number of
nonsynonymous somatic mutations in a specific genomic
region in each group with TCGA OV mutation data using the
R package TCGAmutations. The student’s t-test was used to
compare TMB between the immune and non-immune groups.

2.7 TME Analysis
The analyses of the immune microenvironment are essential to
identify the proportions of immune cells in tumor tissues.
CIBERSORT (Newman et al., 2015) is used for the
deconvolution of the expression matrix of human immune cell
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subtypes. This method provides gene expression signatures
consisting of 22 immune cell subtypes (LM22) to estimate the
abundances of immune cells. We applied CIBERSORT to analyze
the immune microenvironment of expression matrices and
obtained the proportion of 22 distinct immune cell types in
OV tissues of different groups. We used ANOVA to compare
the immune cell abundances among the three groups.

2.8 Sample Collection
18 OV tissues and 5 normal tissues were collected at People’s
Hospital of Peking University between January 2021 and
January 2022. OV tissues obtained from patients with
serous adenocarcinoma. Normal ovarian tissues obtained
from patients with benign gynecologic diseases who

undergone bilateral salping-oophenrectomy. The protocol
for this study was approved by the Ethical committee of
People’s Hospital of Peking University (2021PHB239-001).
Informed consent was obtained from all patients before
surgery for residual tissue use.

2.9 Cell Lines and Cell Culture
OV cell lines SKOV3, A2780, ES2, and CAOV3 were used in the
study. The human OV cells SKOV3 were incubated in McCoy’s
5Amedium (Gibco, USA) contained with 10% fetal bovine serum
(FBS) (Gibco, USA). The human OV cells A2780 and ES2 were
incubated in RPMI 1640 medium (Gibco, USA) contained with
10% FBS. The human OV cells CAOV3 were incubated in
Dulbecco’s modified Eagle medium (DMEM) medium (Gibco,

FIGURE 1 | NMF and ESTIMATE analysis of OV dataset of TCGA mRNA expression profile. (A) The cophenetic values varied with K = 2 to 15 in NMF analysis. (B)
The consensus map of NMF analysis results from the dimensional reduction of the original matrix and consensus analysis between modules. (C) The heat map of the
NMF clustering results and ESTIMATE analysis results of OV. (D) Functional analysis of the top 150 Immune Genes of Immune Factor.
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USA) contained with 10% FBS. All cells were cultured at 37°C in
5% CO2.

2.10 Quantitative Real-Time PCR
Total RNA was collected with the TRIzol Reagent (Invitrogen,
USA). The RNA was reversely transcribed into cDNA using a
reverse transcription kit (Takara, Japan). qRT-PCR was
conducted with SYBR Green PCR Master Mix (ABI, USA).
GAPDH was used as a control. The expression level of genes
was normalized to GAPDH. The relative expression of genes
was calculated by the 2−ΔΔCT method. All results are presented
as the mean ± standard deviation (SD). The primer sequences
used were presented in Supplementary Table S1.

3 RESULTS

3.1 Classification of OV Based on NMF and
ESTIMATE
The total TCGA-OV expression profile data (361 samples)
were grouped into 4 clusters by NMF. We estimate K from 2 to
15 and found that the cophenetic value changed the most when
K varied from 4 to 5 (Figure 1A). Consequently, K = 4 was
chosen as the optimal rank for NMF decomposition, and the
decomposition results showed that the samples had stable and
clear clusters (Figure 1B). We then conducted ESTIMATE
analysis on all samples, and the results were integrated with the
NMF results. Since cluster 2 (red module) from NMF analysis
corresponded to a higher Immune Score from ESTIMATE
analysis, we took cluster 2 as the Immune Factor for
subsequent analysis (Figure 1C).

To ensure the accuracy of the results of Immune Factor and
Immune Score from NMF analysis combined with ESTIMATE,

we extracted the top 150 genes corresponding to cluster 2 from
NMF analysis as Immune Genes to perform functional analysis
using Metascape. The results showed that the top 150 Immune
Genes from Immune Factor were significantly enriched in
many immune-related biological functions, such as negative
regulation of humoral immune response function and myeloid
leukocyte activation function, further illustrating the accuracy
of the results of Immune Factor and Immune Genes
(Figure 1D).

All the samples were classified as Immune Class and non-
Immune Class based on Immune Genes using NMFConsensus
analysis. Figure 2A showed that the Immune Class contained
almost all Immune Factors. Furthermore, the Immune Score of
the Immune Class was higher than that of the non-Immune
Class. In addition, principal component analysis (PCA) also
showed that the Immune Class and the non-Immune Class had
obvious characteristics (Figures 1B,C).

3.2 Functional Analyses of DEGs Between
Immune Class and Non-Immune Class
We conducted functional enrichment analyses to identify the
biological functions involving the Immune and non-Immune
Classes. We identified 740 DEGs by comparing Immune Class
with non-Immune Class (adj. p-value < 0.01 and |log2(FC)| >
1), including 230 upregulated and 510 downregulated DEGs
(Figures 3A,B). We conducted biological functions and
pathways enrichment analysis of the 740 DEGs using
DAVID. The top 15 GO terms were enriched with
biological processes, such as inflammatory response,
immune response regulation, cell-cell signaling, leukocyte
migration, signal transduction, cellular defense response,
chemical synaptic transmission, and adaptive immune

FIGURE 2 | Classification of OV dataset into Immune Class and non-Immune Class. (A) NMFConsensus analysis with the top 150 Immune Genes. (B,C) The
results of the Immune Class and the non-Immune Class based on principal component analysis (PCA). Each single point represents a sample.
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response, shown in Figure 3C. The top 15 entries enriched in
KEGG pathways include Staphylococcus aureus infection,
cytokine-cytokine receptor interaction, protein digestion
and absorption, ECM-receptor interaction, phagosome,
primary immunodeficiency, and complement and
coagulation cascades (Figure 3D).

The identified DEGs, involved in many biological processes
and pathways related to the immune system, suggested the
reliability of the immune classification of Immune Genes by
NMFConsensus. The DEGs were also involved in some
interesting terms, such as extracellular matrix organization,
cell adhesion, endodermal cell differentiation, signal

transduction in biological processes, and neuroactive ligand-
receptor interaction, nicotine addiction, protein digestion and
absorption, ECM-receptor interaction, and cell adhesion
molecules in KEGG pathways.

GSEA analysis showed that numerous pathways were
related to immune cell and immune response enrichment in
the Immune Class, such as B cell receptor signaling
pathway, leukocyte transendothelial migration pathway,
natural killer cell-mediated cytotoxicity pathway, T cell
receptor signaling pathway, antigen processing and
presentation pathway, chemokine signaling pathway,
cytokine-cytokine receptor interaction pathway (Figure 4;

FIGURE 3 | DEGs and functional analysis of Immune Class and non-Immune Class. (A) The distribution of DEGs is shown in the volcano plot. (B) NMF clustering
among all the DEGs into the Immune Class and the non-Immune Class. (C) The top 15 enriched GO items in BP were enriched among all DEGs. (D) The top 15 enriched
KEGG pathways among all DEGs.
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FIGURE 4 | The immune-related gene set enrichment in the GSEA analysis of Immune Class and non-Immune Class.

TABLE 1 | Gene sets enriched in the Immune Class and non-Immune Class.

Gene set name NES NOM p-val FDR q-val

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 1.638926 0.022449 0.062037
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 1.578712 0.030303 0.092335
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.812544 0.002062 0.043273
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 1.76816 0.008351 0.053921
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 1.937901 0.001984 0.035124
KEGG_CELL_ADHESION_MOLECULES_CAMS 1.604431 0.012072 0.079889
KEGG_CHEMOKINE_SIGNALING_PATHWAY 1.753623 0.004237 0.044366
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 1.752546 0 0.037925
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.847274 0 0.043403
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 2.030213 0 0.044734
KEGG_TGF_BETA_SIGNALING_PATHWAY −0.87039 0.623247 0.775175
KEGG_MAPK_SIGNALING_PATHWAY 0.875658 0.668763 0.851398

NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate. Gene sets with NOM p-val < 0.05 and FDR q-val < 0.25 are considered as significant.
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FIGURE 5 |NTP, CNVs, and SNPs analyses among immune-suppressed subtype, immune-activated subtype, and non-Immune Class. (A) TCGAOV dataset was
divided into the immune-suppressed subtype, the immune-activated subtype, and the non-Immune Class. (B) The TMB was estimated in the Immune Class and the
non-Immune Class. (C) Statistical analyses of CNV amplification among the immune-suppressed subtype, the immune-activated subtype, and the non-Immune Class.
(D) Statistical analysis of CNV deletion among the immune-suppressed subtype, the immune-activated subtype, and the non-Immune Class. (E–G) CNV analyses
in the non-Immune Class (E), the immune-activated subtype (F) and the immune-suppressed subtype (G) (red for CNV amplification and blue for CNV deletion, some
significant genes were marked). (H) Waterfall diagram of SNP analyses.
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Table 1). Some pathways related to proinflammatory were enriched
in the Immune Class, such as NOD-like receptor signaling pathway
and Toll-like receptor signaling pathway. There were several
pathways related to tumor promotion enriched in the Immune

Class, such as MAPK signaling pathway. The results of GO and
KEGG pathway analyses of DEGs identified more function and
pathways related to the immune system in the Immune Class than in
the non-Immune Class.

FIGURE6 | Estimation of immunemicroenvironments in TCGAOV samples. (A) The proportions of specific 22 immune cells in the non-ImmuneClass, the Immune-
suppressed subtype, and the Immune-activated subtype. (B) The proportions of specific 22 immune cells in each group from NMF analysis. (C–F) The differential
proportions of memory CD4 resting T cells (C), CD8 T cells (D), M1macrophages (E), andM2macrophages (F) among the non-Immune Class, the Immune-suppressed
subtype, and the Immune-activated subtype.
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3.3 TCGA OV Dataset Characteristics
Analysis
We applied the NTP algorithm to identify immune-suppressed
and immune-activated subtypes in the Immune Class identified
by integrated DEGs and classification analyses. The TCGA OV
dataset was divided into the non-Immune Class, immune-
suppressed, immune-activated subtypes according to their
immune microenvironments. The decrease in immune-related
scores and the increase in Tumor Purity from the Immune
activated subtype and the Immune suppressed subtype to non-
Immune subtype were observed (Figure 5A), which is consistent
with the features of the three subtypes.

We analyzed CNVs, SNPs, and TMB among the subgroups to
identify genetic variations among subgroups. CNV amplifications
differ significantly between the Immune-suppressed subtype and
non-Immune Class (p = 0.017) and Immune-activated subtype
(p = 0.02) (Figure 5C). A difference in CNV deletion was
observed between Immune Activated subtype and non-
Immune Class (p = 0.013) (Figure 5D). There were significant
differences in the amplification and deletion of genes between the
non-Immune Class and the Immune Class. The significantly
amplified genomic regions in both subtypes included 8q24.21
(with the highest G score), 8q24.3, 3q26.2, 19q12, 3q29.
Meanwhile, the genomic regions with a significant deletion in
both subtypes included 5q12.1, 19p13.3. The amplification of
19q12, 3q27.1, and 8q24.22 was frequently associated with the
non-Immune Class, and the deletion of 18q23 was more
frequently occurring in this class (Figures 5E–G). However,
the non-Immune Class did not differ from the Immune Class
in TMB (p = 0.55) (Figure 5B) and not from the Immune-
activated subtype in CNVs amplification (p = 0.77). In addition,
no significant difference of top 20 genes in TCGA OV somatic
SNPs among the three groups was found (Figure 5H), which
agrees with the TMB results (Figure 5B).

3.4 Different Tumor Immune
Microenvironments Among Subtypes
We analyzed the tumor immune microenvironments in each
subgroup with CIBERSORT. We found that the most common
immune cell type was CD4 memory resting T cells, followed by
M2 macrophages and M0 macrophages (Figure 6A). We further
estimated the proportions of the specific 22 immune cells in
different groups from the NMF analysis (Figure 6B).

The proportions of the main immune cells were different among
the non-Immune Class, the Immune-suppressed subtype, and the
Immune-activated subtype. Compared with the Immune-suppressed
subtype, we found higher proportions of CD4memory resting T cells
in the Immune-activated subtype (p = 0.025). Compared with the
non-Immune Class, we found higher proportions of D8 T cells in the
Immune-activated subtype (p = 0.0096). The Immune-activated
subtype had a higher proportion of M1 macrophages than the
Immune-suppressed subtype (p = 0.013) and the non-Immune
Class (p = 0.021), and increased proportions of M2 macrophages
than the Immune-suppressed subtype (p = 0.011) and the non-
Immune Class (p = 0.00038) (Figures 6C–F).

3.5 External Validation of the Mutation
Genes
To further validate the mutation genes at the mRNA level,
qRT-PCR was used in on 18 OV tissues, 5 normal tissues, and 4
OV cells lines. The results indicated that the mRNA expression
of RYR2, FAT3, MDN1 and RYR1 was significantly down-
regulated in OV compared with normal tissues. The mRNA
expression of MUC16, FLG, MYH4, HMCN1, FCGBP, LRP1B,
LRP2 and AHNAK2 level tended to increase in the OV
compared with the normal tissues but without statistical
significance. The mRNA expression of TP53, TTN, FLG2,
KMT2C, S1 and MACF1 level tended to decrease in the OV
compared with the normal tissues but without statistical
significance. The mRNA expression of USH2A was not
detected in OV tissues. The expressions of genes in OV and
normal tissues are shown in Figure 7.

The expressions of the mutation genes were validated by qRT-
PCR in four OV cells (SKOV3, A2780, ES2 and CAOV3). The
results showed that TTN, MUC16, MYH4, FAT3, KMT2C,
LRP1B, RYR1, S1 and AHNAK2 were highly expressed in
SKOV3 cell lines. TP53, FLG2, RYR2, FLG, HMCN1 and
FCGBP were highly expressed in A2780 cell lines. CSMD3 and
MDN1 were highly expressed in ES2 cell lines. LRP2 andMACF1
were highly expressed in CAOV3 cell lines. USH2A mRNA
expression was not detected in all OV cells (Figure 8).

3.6 Validation of the Immune
Microenvironment Analysis of TCGA OV
Samples in ICGC
We used a total of 81 samples from ICGC OV-AU data as a
validation set to confirm our results of the TCGA OV tumor
microenvironment analyses.

The total ICGC OV-AU expression profiles were clustered
into five groups by NMF. Then, we estimated the optimal K
and found that the cophenetic value changed the most when K
varied from 5 to 6 (Figure 9A). Therefore, the optimal rank of
5 was chosen for NMF decomposition (Figure 9B) with 13
samples in factor-1, 34 samples in factor-2, 13 samples in
factor-3, 15 samples in factor-4, and six samples in factor-5,
where factor-2 was considered to be the Immune factor.

ESTIMATE analysis, including all samples, was conducted
and integrated with the NMF results to estimate Immune Factor
(Figure 9C). We classified the validation set into an Immune
Class with 54 samples and a non-Immune Class with 27 samples.
Consistent with the TCGAOV analysis results, the Immune Class
contained almost all Immune Factors and higher Immune Scores
than the non-Immune Class (Figure 9D). The Immune Class was
further grouped into the Immune-activate subtype with 26
samples and Immune-suppressed subtype with 28 samples by
NTP analysis (Figure 9E).

To identify the immune microenvironment of OV samples in
ICGC, we calculated the proportions of 22 immune cells in OV
samples from ICGC. The most common immune cell type was
M2 macrophages, followed by memory CD4 resting T cells
(Figure 9G). We calculated the proportions of the specific 22
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FIGURE 7 | The mRNA expression level of the genes in OV (n = 18) and normal ovarian tissues (n = 5) (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 8 | The mRNA expression level of the genes in OV ovarian cells (SKOV3, A2780, ES2 and CAOV3) (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 9 | Validation of the immune microenvironment analysis of TCGA OV samples using ICGC. (A) The cophenetic values varied with K = 2 to 15 in NMF
analysis. (B) The consensus map of NMF analysis results from the dimensional reduction of original matrices and consensus analysis among modules. (C) The heat map
of the NMF clustering results and ESTIMATE analysis results of OV. (D) All the samples were classified as Immune Class and non-Immune Class using NMFConsensus
analysis. (E) ICGC OV-AU dataset was divided into the immune-suppressed subtype, the immune-activated subtype, and the non-Immune Class using NTP
analysis. (F) The proportions of specific 22 immune cells in each group from NMF analysis. (G) The proportions of specific 22 immune cells in the non-Immune Class, the
Immune-suppressed subtype, and the Immune-activated subtype. (H) The differential proportions of memory CD4 resting T cells among the non-Immune Class, the
Immune-suppressed subtype, and the Immune-activated subtype.
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FIGURE 10 | Validation the immune microenvironment analysis of TCGA OV samples with the gene symbol expression profiles from ArrayExpress. (A) The
cophenetic values varied with K = 2 to 15 in NMF analysis. (B) The consensus map of NMF analysis results from the dimensional reduction of original matrices and
consensus analysis amongmodules. (C) The heat map of the NMF clustering results and ESTIMATE analysis results of OV. (D) All the samples were classified as Immune
Class and non-Immune Class using NMFConsensus analysis. (E) ArrayExpress gene symbol expression profiles were divided into the immune-suppressed
subtype, the immune-activated subtype, and the non-Immune Class using NTP analysis. (F) The proportions of specific 22 immune cells in each group from NMF
analysis. (G) The proportions of specific 22 immune cells in the non-Immune Class, the Immune-suppressed subtype, and the Immune-activated subtype. (H) The
differential proportions of memory CD4 resting T cells among the non-Immune Class, the Immune-suppressed subtype, and the Immune-activated subtype.
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immune cells in each subgroup from (Figure 9F). The Immune-
activated subtype had higher proportions of memory CD4 resting
T cells than the Immune-suppressed subtype (p = 0.038) and the
non-Immune Class (p = 0.00029) (Figure 9H), which is
consistent with the results from TCGA OV analysis.

3.7 Validation of the Immune
Microenvironment Analysis of TCGA OV
Samples in ArrayExpress
The ArrayExpress gene symbol expression profiles were further
used to validate our TCGA OV tumor microenvironment
analysis results. We estimated the optimal K and found that
the cophenetic value changed the most when K varied from 4 to 5
by NMF (Figure 10A). Therefore, the optimal rank of 4 was
chosen for NMF decomposition, and 65 samples in factor-1, 62
samples in factor-2, 69 samples in factor-3, and 69 samples in
factor-4 were identified by NMF analysis of 264 samples
(Figure 10B), where factor-1 was considered to be the
Immune factor. ESTIMATE analysis was conducted integrated
with the NMF results to estimate Immune Factor (Figure 10C).
We grouped 170 samples in the Immune Class and 95 samples in
the non-Immune Class by NMFconsensus analysis. The Immune
Class contained almost all Immune Factors and higher Immune
Scores of the Immune Class than those of non-Immune Class
(Figure 10D), which agrees with the results from TCGA OV
analysis.

The 170 samples in the Immune Class were further grouped
into 92 samples as the Immune-activate subtype and 78 samples
as the Immune-suppressed subtype (Figure 10E).

We calculated the proportions of 22 immune cells in OV
samples for the ArrayExpress gene symbol expression profiles to
identify the immune microenvironments. The most common
immune cell type was memory CD4 resting T cells, followed by
CD8 T cells (Figure 10G). We calculated the proportions of the
specific 22 immune cells in each group from NMF analysis
(Figure 10F). The Immune-suppressed subtype had higher
proportions of M0 macrophages than the Immune-activated
subtype (p = 0.000013) and the non-Immune Class (p =
0.0000057) (Figure 10H), consistent with the results from
TCGA OV analysis.

4 DISCUSSION

The current study aimed to comprehensively analyze the
heterogeneous OV immune microenvironment subtypes
underlying total immune genes. For this purpose, we analyzed
361 samples based on the TCGA OV dataset. We validated them
using two external datasets, 81 samples from the ICGC OV
dataset and 264 samples from the ArrayExpress OV dataset.
We found the optimal rank as 4 in NMF analysis with the training
set containing 361 samples in TCGA OV data. We obtained four
factors: factor-1 had 74 samples, factor-2 had 80 samples, factor-3
had 69 samples, and factor-4 had 138 samples. Factor-2 was
considered an Immune factor. We further grouped samples into
two immune-related classes, among which the Immune Class had

244 samples and the non-Immune Class had 117 samples. The
Immune Class was further divided into two subtypes by NTP
analysis, of which the Immune-activate subtype had 121 samples,
and the Immune-suppressed subtype had 123 samples. We
identified 740 DEGs by comparing the two classes. The
functional enrichment analysis of the 740 DEGs showed that
immune-related, cancer-related, inflammation-related biological
functions and pathways were enriched. There were significant
differences in the amplification and deletion of genes between the
Immune Class and non-Immune Class. The immune-activated
subtype had increased proportions of memory CD4 resting
T cells, CD8 T cells than the non-Immune Class, M1
macrophages, and M2 macrophages than the Immune-
suppressed subtype and the non-Immune Class.

The Metascape database found the top 150 Immune Genes
enriched in many immune-related GO items; the most significant
enrichment item was the negative regulation of the humoral
immune response. This result was consistent with cancer
mediating immunosuppression and also suggested that our
classification was accurate. Several studies demonstrated the
biological function of humoral immunity in OV. A recent
study found that CD19+ B cells within the total tumor were
associated with better overall survival in high-grade serous OV
than without CD19+ B cells. Tumor B-cell-derived IgA in the OV
microenvironment induced OV cell death by redirecting myeloid
cells against extracellular oncogenic drivers (Biswas et al., 2021).
Most B cells presented in lymphoid structures in the stroma of
high-grade serous OV metastases. They could improve the
cytotoxic immune response to tumor cells through the
secretion of cytokines and chemokines, which helped recruit
and support antigen-presenting cells. Besides,
immunoglobulins IgGs produced by B cells could target tumor
antigens and form immune complexes that were helpful to
activate antigen-presenting cells in the TME (Montfort et al.,
2017). Thus, these results suggested that immunobiological
pathways might be responsible for OV progression, and
immunotherapy is a promising treatment strategy.

There were also many significant cancer-related GO
enrichment elements in the top 150 Immune Genes, including
integrin-mediated cell adhesion, histone H3-K9 modification,
double-strand break repair by homologous recombination.
Integrin plays an extensive role in cancer progression (Gu
et al., 2017; Hou et al., 2020). In OV, it was reported that
integrin is associated with proliferation, migration, invasion,
chemoresistance, stemness, TIME, etc (Wu et al., 2020; Yan
et al., 2021; Yin et al., 2021). The integrin-mediated adhesion
was considered part of the metastasis. The methylation of histone
H3K9 has been implicated in the development of various cancers
due to its involvement in the transcriptional inactivation of
chromatin and the induction of expression of cancer
suppressor genes (Casciello et al., 2015). Homologous
recombination is a key pathway involved in repairing DNA
double-strand breaks. Konstantinopoulos et al. (2015) reported
that around 50% of epithelial ovarian cancers are deficient in
DNA repair via homologous recombination. New studies
revealed that deficient DNA repair via homologous
recombination is associated with immunotherapy response
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(Mouw et al., 2017). In the Keynote-162 (NCT02657889) phase
I/II trial, 62 platinum-resistant recurrent OV patients were
treated with pembrolizumab plus the inhibitor niraparib. The
study reached an ORR (primary endpoint of the study) of 25%
and a disease-control rate (DCR) of 68% (Konstantinopoulos
et al., 2019). Therefore, the immune genes in OV might play
various biological functions rather than immunity, indicating that
cross-talks existed in immunobiological and other biological
pathways.

Through the GO enrichment analysis of DEGs by comparing
the Immune Class with the non-Immune Class, we found that
many biological functions were highly enriched in immune-
related processes, including immune response, immune
response regulation, cell-cell signaling, leukocyte migration,
signal transduction, cellular defense response, and adaptive
immune response. Besides, KEGG enrichment analysis showed
that the DEGs were significantly enriched in the hematopoietic
cell lineage, the cytokine-cytokine receptor interaction, the
primary immunodeficiency, and allograft rejection. These
results indicated that DEGs played a potential role in
regulating the TIME and greatly supported that the TIME was
involved in OV malignant progression, consistent with previous
studies (Westergaard et al., 2020; Shen et al., 2021). Moreover, it
provided supporting evidence that both the Immune Class and
the non-Immune Class existed in the OV immune
microenvironment and differed significantly in their biological
functions.

Inflammation is a hallmark of cancer, and the inflammatory
state of premalignancy promotes tumor progression by various
immune cells (Hanahan and Weinberg, 2011). In the present
study, we performed GO analysis and identified inflammatory
response as the most significant GO enrichment term of DEGs.
KEGG pathway analysis showed that DEGs were significantly
enriched in Staphylococcus aureus infection, phagosomes,
asthma, viral myocarditis, and malaria. Numerous studies
have shown that systemic inflammatory response markers,
such as the neutrophil to lymphocyte ratio, and the platelet
to lymphocyte ratio, could provide useful prognostic
information among patients with OV (Zhang et al., 2017;
Kwon et al., 2018; Yoshida et al., 2019). Interestingly, we
also found that extracellular matrix organization and cell
adhesion were enriched in GO analysis, and ECM-receptor
interaction and cell adhesion molecules were enriched in
KEGG analysis. These terms reflected the cross-talks that
existed between inflammation and angiogenesis (Szewczyk
et al., 2019) and between inflammation and metastasis
(DiGiacomo and Gilkes, 2018). Angiogenesis is a common
and critical biomarker of the inflammation-to-cancer
transition in cancers. The infiltrated immune cells and their
secreted cytokines were partly responsible for the
inflammation-to-cancer transition. Furthermore,
inflammation-to-cancer cytokines and angiogenesis genes
might serve as predictors of survival and immune therapy
response (Chen et al., 2019). Accordingly, it is suggested that
the combination therapies of immunotherapy with anti-
inflammatory therapy and anti-angiogenesis therapy might
be possible and efficient.

In GSEA analysis, we discovered the NOD-like receptor
signaling pathway, the Toll-like receptor signaling pathway,
and many immune cells and immune response associated
pathways significantly enriched in the Immune Class. A recent
study demonstrates that activation of Toll-like receptor 8 reversed
the immunosuppression function of regulatory T cells (Tregs)
among TME by regulating glucose metabolism of Tregs in OV
(Xu et al., 2021). Toll-like receptor 4 signaling pathway promoted
OV cell proliferation and metastasis by activating osteopontin
(Xu et al., 2017). Thus, it provided new insights for OV treatment
and predictive prognosis.

The CNV-based risk score is an independent and discriminatory
biomarker for the survival of OV patients (Graf et al., 2021). We also
explored the CNV differences between the Immune Class and non-
Immune Class. The amplification of 8q24.21 was detected in both
Immune-activated and Immune-suppressed subtypes. The
amplification of MYC, one of the genes located on 8q24.21,
increased the sensitivity of OV cells to PARP inhibitors (Papp
et al., 2018). TP53 was the most common mutated gene among
all OV samples, and there was no difference among the three
subtypes, likely due to the mutations in the TP53 gene in a high
proportion (70%) of OV. This observation was consistent with a
previous study (Cancer Genome Atlas Research, 2011). These results
suggested the CNVs of the Immune Class might be closely associated
with immunobiological pathways, further providing new targets for
immunotherapy.

Notably, it has been previously reported that high levels of various
immune cells are infiltrated into the TME of OV (Wang et al., 2018).
Our independent analysis consistently discovered the immune cells
expressed in tumors, especially memory CD4 resting T cells,
macrophages M0, and macrophages M2. Memory CD4 resting
T cells expression was associated with the prognosis in patients
with OV (An and Yang, 2020). Lampert et al. (Lampert et al., 2020)
found thatmemoryCD4 resting T cells increased after treatmentwith
a checkpoint 1 inhibitor of the cell cycle, perhaps due to the adaptive
immune response activation. M0 macrophages conferred favorable
OS, whereas the M2 macrophages were correlated with a poor OS in
OV (Liu et al., 2020). M2 Macrophages inhibited apoptosis and
increased the proliferation, invasion, and migration of OV cells (Yi
et al., 2020). Recently, one study revealed that M2 macrophages
controlled the vascular barrier by regulating the VCAM1/RAC1/
ROS/p-PYK2/p-VE-cad axis. According to our results, the immune
cells in the TIME played critical roles in OV progression, indicating
the possibility of immunotherapy for OV.

Additionally, we also validated the aforementioned immune
microenvironment analysis of TCGA OV samples in ICGC and
ArrayExpress. All the results were as expected, suggesting that our
results provided an accurate and repeatable classification of OV
samples, as well as the potential targets for immunotherapy and
biomarkers to predict outcomes.

OV is an aggressive malignancy that is still one of the most lethal
gynecological cancers worldwide (Sung et al., 2021). The advanced
stage was diagnosed in seventy-five percent of OV patients (Ferlay
et al., 2015). The etiology of OV is unclear, and themajor challenge in
the clinical management of OV is the lack of effective treatment
options. OV is currently stratified into different subtypes based on
clinical and pathological characteristics. In contrast, the OS of
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different subtypes varies, indicating that biological heterogeneity still
exists within each subtype. Therefore, it is necessary to investigate the
underlying molecular subtypes according to specific gene patterns to
evaluate and improve individualized medical decisions for OV
patients. Taking advantage of the development of bioinformatics
in recent years, especially the high-throughput sequencing
technology, it is possible to systematically research the underlying
mechanism of OV at the genome level.

OV is considered to be immunogenic, however, several clinical
studies did not show a promising benefit for immunotherapy in OV
recently (Moore et al., 2021; Pujade-Lauraine et al., 2021). Despite
someOVpatients show response to immunotherapy, there remains a
subset of patients with PD-L1 expressionwho do not respond. Several
markers have been found to be related to the efficacy of
immunotherapy, such as TMB, PD-1, PD-L1, homologous repair
deficient and proficient, TME and TILs (Conway et al., 2018; Keenan
et al., 2019; Pellegrino et al., 2020; Plesca et al., 2020; Paijens et al.,
2021). These factors were also been found in the present study. There
are still lots of problems about the complex network of the
immunogenicity of the cancer and the TIME needs to be further
investigated, for example, how the immune system accesses the
tumor, how the immune cells perform the killing functions, which
is the ideal markers for response to immunotherapy. The present
study improved understanding of immune interactions of OV
and TIME.

We also performed external validation with the OV tissues and
cells. The qRT-PCR results showed that the mRNA expression
levels of FAT3, a putative tumor suppressor gene which codes for
an atypical cadherin, were down-regulated in OV tissues. A study
showed that FAT3 was enriched with strong mutations in
metastases lesions in OV patients (Ojasalu et al., 2020). A
recent study showed that the lung cancer patients with co-
mutation of FAT3 and LRP1B had significantly prolonged
immunotherapy PFS, which indicated that co-mutation of
FAT3 and LRP1B is a promising biomarker to predict the
efficacy of immunotherapy (Zhu et al., 2021).

However, our studymay have some limitations. First, although
three independent datasets were involved in the present study,
more samples are still needed for comprehensive analysis to
combat bias. Secondly, more clinical data should be included
to analyze the immune signature and clinical characteristics
comprehensively. Thirdly, more experimental evidence is
needed to explain the molecular mechanisms and biological
significance of our immunogenomic analysis.

In conclusion, we clustered the OV patients into three
subtypes. The three subtypes of OV patients showed distinct
gene signatures and TIME status, and the classification was

efficient and repeatable. Moreover, novel functional genes and
pathways that might contribute to the TME of OV were
identified. Thus, the current study provided potential clues
for further research on the molecular mechanisms and
immunotherapy strategies of OV.
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GLOSSARY

ANOVA analysis of Variance

BP biological process

CNVs copy number variations

CTLA-4 cytotoxic T-lymphocyte antigen-4

DAVID Database for Annotation, Visualization and Integrated Discovery

DCR disease-control rate

DEGs differentially expressed genes

DMEM Dulbecco’s modified Eagle medium

ESTIMATE Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data

FBS fetal bovine serum

FC fold-change

GO gene ontology

GSEA gene set enrichment analysis

HGNC Human Genome Organization’s Gene Nomenclature Committee

HR hazard ratio

ICGC International Cancer Genome Consortium

KEGG Kyoto Encyclopedia of Genes and Genomes

LM22 22 immune cell subtypes

MAF mutation annotation format

NMF Non-negative Matrix Factorization

NTP nearest template prediction

ORR objective response rate

OS overall survival

OV ovarian cancer

OV-AU Australian Ovarian Cancer Study cohort

PCA principal component analysis

PD-1 programmed cell death protein 1

PFS progression-free survival

qRT-PCR Quantitative Real-Time PCR

RMA Robust Multi-array Average

SD standard deviation

SNPs single nucleotide polymorphisms

TCGA the Cancer Genome Atlas Program

TILs tumor-infiltrating lymphocytes

TIME tumor immune microenvironment

TMB tumor mutation burden

TME tumor microenvironment
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