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SUMMARY
Tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, represent a favorable prognostic factor in high-
grade serous ovarian cancer (HGSOC) and other tumor lineages. Here, we analyze the spatial heterogeneity
of different TIL subtypes in HGSOC. We integrated RNA sequencing, whole-genome sequencing, bulk T cell
receptor (TCR) sequencing, as well as single-cell RNA/TCR sequencing to investigate the characteristics and
differential composition of TILs across different HGSOC sites. Two immune ‘‘cold’’ patterns in ovarian cancer
are identified: (1) ovarian lesions with low infiltration of mainly dysfunctional T cells and immunosuppressive
Treg cells and (2) omental lesions infiltrated with non-tumor-specific bystander cells. Exhausted CD8 T cells
that are preferentially enriched in ovarian tumors exhibit evidence for expansion and cytotoxic activity.
Inherent tumor immune microenvironment characteristics appear to be the main contributor to the spatial
differences in TIL status. The landscape of spatial heterogeneity of TILs may inform potential strategies for
therapeutic manipulation in HGSOC.
INTRODUCTION

High-grade serous ovarian cancer (HGSOC) affects 239,000

women worldwide each year and represents the most lethal type

of gynecological cancer.1 Almost 80% of patients are diagnosed

as stage III or IV disease, andmany succumb to primary treatment

resistanceor relapsewithin 18months, leading to a 5-year survival

rate of about 30%.2 Unfortunately, the overall survival odds for

HGSOC patients have not improved markedly despite years of

extensive biological research and clinical trials and the addition

of bevacizumab and PARP inhibitors to the therapeutic armamen-

tarium. There is thus a strong need for effective new therapies

including ones that induce effective immune engagement poten-

tially through immune checkpoint blockade (ICB), such as pro-

grammed cell death (PD-1) or its ligand (PD-L1) antibodies,3 with

median response rates lower than 15%.4 The mechanism(s) un-

derlying the lack of response to ICB despite the presence and

prognostic impact of T cell infiltration remains largely unknown.
Cell Report
This is an open access article under the CC BY-N
HGSOC often presents with widespread abdominal cavity

dissemination with the omentum as the most frequent site of

metastasis.5,6 Multi-site studies, albeit controversial,7 indicate

that genomic inter-lesional heterogeneity8 is associated with

poor survival.9 The effect of spatial immunologic variation, espe-

cially in T cell infiltration, recognition, and expansion, across

various tumor foci in the ovary (primary) and distant metastatic

foci in the peritoneal cavity and their contribution to the limited

response to immune therapy in HGSOC remains unexplored.

To provide a detailed analysis of the landscape of heterogene-

ity of infiltrating T cells in primary andmetastatic lesions and their

differential characteristics in HGSOC, we performed multi-site

sampling and simultaneous RNA sequencing (RNA-seq),

whole-genome sequencing (WGS), and bulk T cell receptor

(TCR) sequencing as well as single-cell RNA-seq (scRNA-seq)

and paired TCR sequencing (scTCR-seq) in 9 patients (48 sites)

with untreated primary HGSOC. We identify two different im-

mune patterns in ovarian cancer: (1) ovarian lesions with low
s Medicine 3, 100856, December 20, 2022 ª 2022 The Author(s). 1
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infiltration of mainly dysfunctional T cells and immunosuppres-

sive Treg cells. These exhausted CD8 T cells with cytotoxic func-

tion are clonally expanded; (2) omental lesions infiltrated with

non-tumor-specific bystander cells. Decreased major histocom-

patibility complex class I (MHC class I) antigen presentation abil-

ity and failure of T cell infiltration into omental tumors may

contribute to lack of tumor-specific T cells in omental metas-

tasis. Together these observations may partly explain the poor

response of ovarian cancer to current immunotherapy

approaches.

RESULTS

Differential transcriptomic profiles acrossmultiple sites
in HGSOC
We performed WGS and RNA-seq on 48 sites from nine treat-

ment-naive pathological HGSOC patients (Table S1; Figure 1A).

Each site in the same patient had a similar proportion of tumor

(Table S1; STARMethods). Copy number variation (CNV) and so-

matic mutations of these tumors were consistent with known

HGSOC genomic patterns10 (Figures S1A and S1B) with the

exception of OV001, which, despite high-grade characteristics

on histopathology, did not have TP53 mutations and instead

with the only tumor with aNF1 aberration. High-level gene ampli-

fications present in ovarian cancer, such as CCNE1, MYC were

present in 2/9 (Figure S1B). Eight of the nine HGSOC tumors

had somatic TP53mutations, while 2/9 patients harbored germ-

line BRCA1/2mutations (Figures S1A and S1B). Importantly, the

majority of the CNV and somaticmutation events did not demon-

strate spatial genomic heterogeneity among tumor sites (Fig-

ure S1B). The detection of TP53 mutations in metastases but

not in ovarian sites of OV004 is one key exception. Manual in-

spection of sequence tracks failed to identify TP53 mutations in

ovarian sites. To characterize the relationship between multiple

sites in HGSOC, we first performed principal-component anal-

ysis (PCA) on transcriptomic profiles of primary ovarian (Ov,while

HGSOC originate in the fallopian tube, the ovary represents the

most frequent site of initial seeding consistent with the definition

of primary), omental (Om), and other metastatic lesions (Ot). PCA

demonstrated two drivers of heterogeneity, patient-specific pro-

cesseswith tumors across different sites within a given individual

tending to cluster together and tumors within different sites tend-

ing to cluster together for different patients (Figure 1B). For

example, while ovarian tumors from OV004, OV005, OV006,

and OV008 were clearly separated from omental and other sites,

ovarian tumors from OV001, OV002, OV003, and OV009 tended

to cluster closer to their metastatic sites than to other ovarian tu-

mors. Decomposition of immune cell proportions using ssGSEA
Figure 1. Differential transcriptomic profiles across multiple sites in H

(A) Overview of the study design.

(B) The PCA plot of mRNA expression.

(C) The abundance of 28 immune cell types (identified by ssGSEA) is shown acc

(D) The gene expression of six immune-related pathways in tumors of different lo

(E) Quantification of densities of CD4+ and CD8+ cells, and FAP H scores across

multiple comparisons test.

(F) Quantification of all T (CD45+CD3+), CD4+ T (CD45+CD3+CD4+), andCD8+ (CD4

samples = 8, omental samples = 5. Data represent mean ± SEM. p values were
analysis of RNA-seq data recapitulated the heterogeneity

observed in the PCAwith information content specific to patients

and also to tumor site (Figure 1C). Figure 1C also demonstrates

the robustness and the consistency of the analysis, with tumors

from the left and right ovary from the same patient clustering

together andmultiple different omental lesions from the samepa-

tient clustering together. Similar to the PCA, immune cell-based

clustering suggested that, while most ovarian tumors were in a

single cluster, OV001,OV002,OV003, andOV009ovarian tumors

tended to cluster with their metastatic sites. Interestingly, the

estimated proportions of various immune components were

low in ovarian tumors (Figure 1C). In contrast, the immune com-

ponents were markedly higher in most omental sites compared

with matched ovarian tumors; with other sites having lower im-

mune content and indeed a subset of the other metastatic sites

clustered with the ovarian tumors (Figure 1C). A panel of 159

genes selected based on 6 different characteristics of T cell

quantity or spatial distribution11were used to further characterize

the samplesdemonstrating highest T cell infiltration in omental le-

sions, with most of the ovarian tumors having low levels, indi-

cating a ‘‘desert’’ T cell phenotype (Figure 1D). In parallel, CD4+

and CD8+ T cell infiltration into the different lesions were evalu-

ated based on immunohistochemistry (IHC) staining (Figure S1C)

and flow cytometry analysis (Figure S1D). Consistent with the

transcriptional profiling data, the density of CD4+ and CD8+

T cells was much lower in ovarian lesions than in omental lesions

(Figures 1E and 1F), indicating that the ovarian lesions are im-

mune ‘‘cold’’ lesions. FAP, a marker of activated stroma, in

contrast, did not vary across lesion location (Figure 1E).

Distinct characteristics and differential composition of
TILs across different lesions in HGSOC by scRNA-seq
To further detail the landscape of infiltrated T cells and

explore the heterogeneity among different lesions, we sorted

CD45+CD3+ T cells from single-cell suspensions prepared

from 13 ovarian (Ov), 7 omental (Om), 4 other distant metastatic

(Ot) sites, and 6 PBMCs of patients OV004, OV005, OV006,

OV008, OV009, and OV010, and performed scRNA-seq and

matched scTCR-seq using the 10 3 50 platform (Figures 1A

and S2A; Table S1). After removing confounding batch effects

and patient-specific variability (see STAR Methods), a total of

227,769 CD45+CD3+ immune cells from all subjects were

available for analysis (Table S2).

Using dimension reduction of Uniform Manifold Approxima-

tion and Projection (UMAP) with a resolution of 0.2, we identified

22 stable clusters, including 7 clusters for CD4+ and 15 clusters

for CD8+ T cells, each with unique signature genes (Figures 2A,

2B, and S2B–S2E). In addition to typical CD8+ and CD4+ T cell
GSOC

ording to distinct locations.

cations.

three sites. Data represent mean ± SEM. p values were determined by Tukey’s

5+CD3+CD8+) T proportions in tumors from each sample, respectively. Ovarian

determined by Student’s t test.
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clusters, including naive,12 effector (Teff), memory (Memory),

mucosal-associated invariant T cells (MAIT) of blood and tissue,

conventional regulatory T (Treg), and dysfunctional ‘‘exhausted’’

T cells (Tex), we also identified two proliferative clusters

that highly expressed MKI67: CD8_C05-TYMS expressing mar-

kers associated with exhaustion (designated as Tex.prol) and

CD4_C04-TYMS expressing markers associated with Treg

(designated as Treg.prol) (Figures 2B, S2D, and S2E).

CD8_C03 (Tex) population showed the highest expression of

CXCL13, HAVCR2, and the co-inhibitory receptor PDCD1, as

well as increased expression of GZMB, GZMA, and GZMH,

indicating that cells in this cluster potentially have cytotoxic

activity in addition to exhaustion features. Furthermore, a

pre-dysfunctional cluster (CD8_C02, referred to as ‘‘transi-

tional’’) was defined by high expression of GZMK13 and a pro-

genitor exhaustion cluster (CD8_C07) was defined by higher

GPR18314 (a central memory marker) and lower PDCD1 (an

exhaustionmarker) than CD8_C03 (Tex). We identified additional

CD8 positive subsets, including CD8_C04 (NK-like) and

CD8_C15 (gd-like). CD8_C04 (NK-like) highly expressed

KLRD1 and NKG7, known markers of NK15/NKT16 cells, and

CD8_C15 (gd-like) highly expressed TRDV2 and TRGV9, known

markers of gd T cells17 (Figures 2B and S2E).

We next investigated the relative proportions of different

clusters between ovarian, omental, other sites, and blood

(Figures 2C, 2D, and S2F–S2I). Interestingly, the proportion

of dysfunctional cells, including CD8_C03 (Tex), CD8_C05

(Tex.prol), and CD8_C07 (Tex.prog), and immunosuppression

cluster, CD4_C02 (Treg), were significantly enriched in ovarian

tumors (Figure 2D). CD4_C03 (Tex) exhibited a trend to increase

in ovarian compared with omental or other sites. In contrast,

naive, memory, and transition state clusters were enriched in

omental sites (Figure 2D). Opal-IHC showed that T cells in

ovarian lesions were likely to be exhausted (CD8+PD-1+), while

T cells in omental lesions were more likely to be in a non-ex-

hausted state (CD8+PD-1� or CD8+GZMB�) (Figures 2E and

2F). The major cellular composition difference between ovarian

and omental lesions was again observed by flow cytometry anal-

ysis (Figures 2G, 2H, and S3A; Table S3). Treg and Tex cells were

significantly increased in ovarian sites, while central memory T

were enriched in omental lesions, and other subsets, including
Figure 2. Distinct characteristics and differential composition of TILs

(A) Uniform Manifold Approximation and Projection (UMAP) of 227,769 single CD

including 15 for CD8+ cells (including 9 tumor-infiltrating T cell clusters and 6 T

clusters and 2 T cell clusters from blood).

(B) Violin plots showing marker genes across 22 CD3+ T cell clusters.

(C) Bar plot indicating relative proportions of each cell cluster detected in blood a

metastatic (Ot).

(D) Boxplot of the relative proportions of each tumor-infiltrating T cell clusters de

(E) The co-expression of CD8 and PD-1 in the ovarian site was evaluated by op

marker image by color deconvolution, followed by pseudo-coloring. A representat

pan-CK (green). Scale bars, 20 mm. White arrow indicates CD8+ PD-1+ T cells.

(F) A representative image of CD8+ T cells in omentum samples is shown. Nuclei (b

20 mm. Cyan arrows indicate PD-1+ cells and red arrows indicate GZMB+ cells.

(G) Quantification of Treg (CD45+CD3+CD4+CD25+CD127�) and CD8+ Tex (CD4

tively. Ovarian samples = 8, omental samples = 5. Data represent mean ± SEM.

(H) Quantification of CD4+ central memory T (Tcm) (CD45+CD3+CD4+CD45RA-

from each sample, respectively. Ovarian samples = 8, omental samples = 5. Dat
naive, effector memory T, and effector memory re-expressing

CD45RA T cells (TEMRA) were comparable in these two sites (Fig-

ure S3B). Taken together, increased Tex and Treg is consistent

with primary ovarian tumors being immunosuppressed.

Patient-derived TMB is associated with skewed T cell
differentiation
Tumor mutation burden (TMB), neoantigen burden, and high

genomic instability, including deficient mismatch repair and

homologous recombination deficiency (HRD), have been associ-

ated with increased T cell infiltration and better response to

checkpoint inhibitors in some cancer types.18–20 To explore

whether heterogeneity in T cell infiltration in different tumor sites

or different patients is related to genomic aberrations, TMB,21

HRD score,22 and COSMIC mutational signature23 of each sam-

ple were assessed according to previous analysis pipelines

(Figures S4A and S4B). Concordant with a previous study in

NSCLC,24 the correlation matrix revealed that CD4_C03 (Tex)

and CD8_C03 (Tex) clusters correlated with TMB, neoantigen

burden, and HRD score, suggesting that CD4_C03 (Tex) and

CD8_C03 (Tex) may be antigen-engaged T cell subsets

(Figures S4C and S4D). However, the association of TMB,

HRD score, and COSMIC mutational signatures with CD4_C03

(Tex) and CD8_C03 (Tex) is observed at the patient level rather

than site level within individual patients (Figures S4A and S4B).

In addition, we also constructed multi-region evolutionary trees

based on somatic single-nucleotide variants and structural vari-

ants25 across tumor sites (Figure S4E). Compared with PBMC,

spatial genomic heterogeneity among tumors within individual

patients is low, especially between ovarian and omental meta-

static tumors. Thus, spatial genomic features, including TMB,

HRD scores, and COSMIC mutational signature and evolution

trajectory fail to explain the differences in T cell infiltration across

different lesion sites within patients.

Tumor-specific but exhausted CD8+ cells preferentially
infiltrate primary ovarian tumors, while non-tumor-
specific bystander cells are enriched in omentum
metastases
To further investigate functional differences of CD8+ T cell clus-

ters across locations, we first assessed transcriptional features
across different lesions in HGSOC by scRNA-seq

3+ T cells from 6 HGSOC patients, showing the formation of 22 main clusters,

cell clusters from blood), 7 for CD4+ cells (including 5 tumor-infiltrating T cell

nd solid tumor lesions, including ovarian (Ov), omental (Om), and other distant

tected in solid tumor lesions, including Ov, Om, and Ot. wilcox.test.

al multiplex IHC. AEC color signals were extracted from each digitized single-

ive image is shown. Nuclei (blue), GZMB (red), CD8 (magenta), PD-1 (cyan), and

lue), GZMB (red), CD8 (magenta), PD-1 (cyan), and pan-CK (green). Scale bars,

5+CD3+CD8+PD-1+/LAG3+) proportions in tumors from each sample, respec-

p values were determined by Student’s t test.

CCR7+), CD8+ Tcm CD45+CD3+CD8+CD45RA-CCR7+) proportions in tumors

a represent mean ± SEM. p values were determined by Student’s t test.
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of terminal exhaustion and effector memory signatures among

CD8T cell clusters by functional scores derived fromprevious re-

ports26,27 (Figures3A, 3B, andS5A). Asexpected,CD8_C03 (Tex)

and CD8_C05 (Tex.prol) had the highest terminal exhaustion

characteristic (Figure 3B), while CD8_C02 (Tex,trans), CD8_C04

(NK-like), and CD8_C06 (Teff) had features associated with

effector and memory (Figure S5A). Given that exhausted T cells

are frequently generated as a consequence of persistent antigen

exposure,28 we next tested whether CD8_C03 (Tex) and

CD8_C05 (Tex.prol) transcriptionally resemble neoantigen-reac-

tive populations using a tumor-specific signature.29 Consistent

with the concept that exhausted cells have undergone chronic

antigen stimulation, the tumor-specific signature was signifi-

cantly enriched in these two exhausted T subsets (Figure 3C).

Intra-tumoral T cells can also be CD39� bystanders that recog-

nize virus rather than tumor antigens.30,31 Bystander signatures,

including virus-specific and CD39� CD69� signatures, were

dramatically increased in CD8_C02 (Tex,trans), CD8_C04 (NK-

like), and CD8_C06 (Teff) that are enriched in omental tumors

(Figures S5B and S5C). Collectively, CD8_C03 (Tex) and

CD8_C05 (Tex.prol), which are enriched in ovarian tumors, ex-

hibited high exhaustion, tumor-specific score, and lowbystander

score, whereas CD8_C02 (Tex,trans) and CD8_C04 (NK-like),

which are enriched in omental tumors, exhibited the opposite

characteristics (Figures 3D and 3E). Overall, tumor-specific

signatures were strongly positively correlated with a terminal

exhausted signature and were negatively associated with a

bystander signature (Figures 3F and 3G). Spatially, ovarian

lesions had profoundly higher tumor-specific and terminal

exhaustion scores than omental samples (Figures 3F and 3H).

Conversely, omental lesions exhibited markedly higher by-

stander scores (Figures 3G and 3H). A heatmap of all signature

scores showed the same distribution (Figure 3I). Consistently,

flow cytometry analysis confirmed more CD8+ tumor-specific

T cells, expressing CD39+, were enriched in ovarian lesions,

whereas more CD8+ bystander T cells enriched in omental

lesions (Figures 3J and S5D).

In addition, we reconstructed CD8 T cell antigen receptor

(TCR) sequences from the scTCR-seq data. More than 70% of

cells in all the tumor subsets had matched TCR information,

with the exception of the NK-like subsets, indicating limited
Figure 3. Characterization of CD8+ tumor-infiltrating T cells in HGSOC

(A) UMAP of 94,424 single CD8+ tumor-infiltrating cells, showing the formation o

(B and C) UMAP of CD8+ tumor-infiltrating cells colored according to gene sign

CD8+ signature.

(D) Violin plots showing the sorted gene signatures scores (up, terminally CD8+

infiltrating cell clusters.

(E) Violin plots showing the sorted bystander CD8+ signature score across 9 CD

(F and G) Correlations between different gene signatures in all CD8+ tumor-infiltrat

tumor-specific CD8+ signature score, and (G) bystander signature score and tum

(H) Violin plots showing the gene signatures scores (left, terminally exhausted

bystander CD8+ signature score) in CD8+ tumor-infiltrating cells from different po

(I) Heatmap showing multi gene signatures and sample positions information at

score.

(J) Quantification of CD8+ bystander T (CD45+CD3+CD8+CD39�) and CD8+ tum

sample, respectively. Ovarian samples = 8, omental samples = 5. Data represen

(K) Potential developmental trajectory of CD8+ tumor-infiltrating cells inferred by M

(L) Density plot showing the density patterns of cells from different tumor positio

tumor site.
drop out (Figure S5E). Given that peptide-MHC complex are

recognized by specific TCRs, neoantigen and associated TCRs

should be present in the same tissue.32 Accordingly, we first

selected TCRs that had the same distribution as neoantigens

and excluded neoantigen/TCR pairs identified in only one

sample (Figures S5F and S5G). Peptide motifs in CDR3 are

important for defining antigen specificity with a single antigen

being recognized by multiple related TCRs. Consequently, clus-

tering of CDR3 sequences is characteristic of an antigen-driven

T cell response.33 Thus, we calculated the pairwise similarity of

CDR3 sequences between selected TCRs (same distribution

as neoantigens) and randomly selected TCRs (Figure S5H).

Selected CDR3 had higher similarity in each patient (Figure S5I).

Finally, we calculated the proportion of cells corresponding to

the selected and unselected TCRs in different clusters (Fig-

ure S5J). The proportion of selected cells were highest in

CD8_C03 (Tex), followed by CD8_C06 (Teff) and lower in

CD8_C02 (Tex,trans) (Figure S5K), which again supports the

contention that CD8_C03 (Tex) represent a tumor-specific clus-

ter. We also compared bulk TCR data of each sample with three

virus-specific TCR libraries (see STARMethods), with the results

showing that omentum samples contained the highest propor-

tion of virus-specific TCR (Figure S5L), further supporting their

bystander T cell features.

More importantly, pseudotime analysis showed that omental

TILs tend to be in early to mid-differentiation with continued

transit, while TILs in ovarian tumors have limited transit consis-

tent with terminally differentiated exhausted T cells (Figures 3K

and 3L). These results collectively indicated that the T cells

infiltrating ovarian lesions were characterized by tumor-specific

terminal exhaustion, while the T cells in the omentum were

non-exhausted but also non-tumor specific.

Exhausted CD8 T cells enriched in primary ovarian
tumors exhibit evidence of expansion
As noted above, we identified a proliferative CD8+ cluster

(CD8_C05 (Tex.prol)) that highly expresses proliferation mar-

ker genes, such as TUBB, STMN1, andMKI67, which is enriched

in ovarian tumors (Figures S6A and S6B). To better characterize

this cluster, we used label transfer to interrogate the ‘‘second

best’’ cluster for each proliferating cell.34 Interestingly, the
f 9 main clusters in tumor tissues.

ature scores, (B) terminally exhausted CD8+ signature, and (C) tumor-specific

signature score; down, tumor-specific signature score) across 9 CD8+ tumor-

8+ tumor-infiltrating cell clusters.

ing cells at the sample level, (F) terminally exhausted CD8+ signature score and

or-specific CD8+ signature score, each color represents a different tumor site.

CD8+ signature score, middle, tumor specific CD8+ signature score, right,

sitions, including Ov, Om, and Ot. wilcox.test.

the sample level, arranged from low to high by the terminally CD8+ signature

or-specific T (CD45+CD3+CD8+CD39+) cells proportions in tumors from each

t mean ± SEM. p values were determined by Student’s t test.

onocle2 based on gene expressions, each color represents a different cluster.

ns, including Ov, Om, and Ot along the pseudotime, each color represents a
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Figure 4. Exhausted CD8 T cells enriched in primary ovarian tumors are clonally expanded
(A) UMAP showing the label transfer result from the CD8_C05 proliferation cluster, each color represents a different cluster, as in Figure 2A.

(B) Heatmap depicting the mean cluster expression of a panel of T cell-related genes.

(C) The co-expression of GZMB, CD8, and PD-1 was evaluated by opal multiplex IHC. AEC color signals were extracted from each digitized single-marker image

by color deconvolution, followed by pseudo-coloring. A representative image is shown. Nuclei (blue), GZMB (red), CD8 (magenta), PD-1 (cyan), and pan-CK

(green). Scale bars, 20 mm. The white arrows indicate single-marker cells and the yellow arrow indicates a triple-positive cell.

(D) Correlation of exhaustion signature and effector signature in CD8_C03 (Tex) T cells with or without proliferation, each point represents a T cell, each color

represents a different proliferation state, the point size represents the clonal size of the TCR.

(E) Comparison of gene signatures between CD8_C03 (Tex) T cells with proliferation and those without proliferation with shared TCR clone type, each dot

represents a TCR clone type, dot size represents the TCR clone size.

(F) Clonal expansion levels of CD8+ T cell clusters quantified by STARTRAC-expa indices for each patient (n = 6).

(G) Fraction of proliferating T cells in CD8_C03 dysfunctional T cells (including the original CD8_C03 cluster and the CD8_C03 cluster label transferred from the

CD8_C05 cluster) stratifying cells by their dysfunctional score.
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Figure 5. Exhausted CD8 T cells are a consequence of differentiation

(A) Heatmap showing the transition of all CD8+ tumor-infiltrating cells quantified by pSTARTRAC-tran indices for each patient (n = 6).

(B–D) Developmental transition of CD8_C03(Tex) cells (B), CD8_C02 (Tex,trans) (C), and CD8_C05 (Tex.prol) (D) clusters with other CD8+ cluster cells quantified

by pSTARTRAC-tran indices for each patient (n = 6), Kruskal-Wallis test.

(E) UMAP distribution of cells bearing a selected TCR of interest (shared among CD8_C02, CD8_C03, and CD8_C05).

(legend continued on next page)
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CD8_C05 (Tex.prol) cells were majorly regrouped into CD8_C03

(Tex) or CD8_C02 (Tex,trans) (Figure 4A). Very few cells were re-

attributed to naive or effector memory CD8+ T cell populations,

suggesting that proliferating cells were transcriptionally closer

to late-differentiated T exhaustion cells. Differential expression

analyses in the regrouped CD8_C02 (Tex,trans) and CD8_C03

(Tex) cells after label transfer showed that proliferation-related

pathways, including G2 M checkpoint, mitotic spindle, DNA-

repair, oxidative phosphorylation,35 and E2F target36 pathways

were concurrently elevated in this subclass (Figure S6C).

Then we performed differential analysis of functional markers

between CD8_C02 (Tex,trans), CD8_C03 (Tex), CD8_C05

(Tex.prol), andCD8_C06 (Teff). Asexpected,CD8_C02 (Tex,trans)

showed increasedGZMK,GZMM, andGZMA, which aremarkers

of transition status (Figures 4B and S6D). Compared with

CD8_C02 (Tex,trans), CD8_C05 (Tex.prol) had modestly

increased levels of co-inhibition and co-stimulation genes

(PDCD1, LAG3, TIGIT, CTLA4, TNFRSF4/9/14/18, and ICOS)

and transcription factors (TOX, RBPJ, and IRF9) (Figures 4B and

S6D), which are necessary and sufficient to inducemajor features

of Tex cells.37 Of note, these co-inhibition, co-stimulation, and

transcription factors were most highly expressed in CD8_C03

(Tex) consistent with exhaustion status (Figures 4B and S6D).

Cytotoxic markers (GZMB, PRF1, GNLY, and GZMH) were low

in both CD8_C05 (Tex.prol) and CD8_C02 (Tex,trans), indicating

poor cytotoxic effector function. Notably, although weaker than

CD8_C06 (Teff) cells, CD8_C03 (Tex) exhibited moderate GZMB,

and PRF1 in the context of high FASLG and IFNG effector genes

(Figures 4B and S6D). Consistently, we observed the exhausted

but with cytotoxic function T cells (CD8+PD-1+GZMB+) in ovarian

samples, but not in omental samples, by using opal multiplex IHC

stains from site-matched FFPE sections, indicating the existence

of CD8_C03 (Tex) cells exclusively in ovarian lesions and having

modest cytotoxic activity (GZMB+), despite the expression of

exhaustion markers (PD-1+) (Figure 4C). Furthermore, we found

that the CD8_C03 (Tex) gene signature score was associated

with better overall survival, longer disease-specific survival, and

better predicted response to ICB in TCGA ovarian cancer pa-

tients38 (Figures S6E–S6G), which further suggests that the Tex

population in ovarian cancer may have cytolytic activity and may

contribute to response to ICB and improved outcomes.

To further explore the relationship between exhausted and

cytotoxic functions,we calculated effector andexhaustion scores

after label transfer. The positive correlation of exhaustion score

and effector score in both proliferating and non-proliferating cells

suggests that CD8 T cells in HGSOC concurrently exhibit cyto-

toxic capacity and exhaustion status (Figure 4D). Proliferating

T cells displayed lower effector and exhaustion scores, with a

clone size that was much smaller than that of non-proliferating T
(F) Cluster distribution of top 30 shared TCRs and colored by the CD8+ tumor-infi

and CD8_C05 (Tex.prol); right, shared only between CD8_C02, and CD8_C03.

(G) Visualization of the silhouette coefficient score on the UMAP of the CD8+ tumo

intracluster distance and the mean of the nearest cluster distance for each cell o

(H) UMAP showing the label transfer result from the CD8_C02-GZMK cluster, ea

(I and J) Quantification of each cluster contribution to shared clones. Each dot co

CD8_C03 (Tex), andCD8_C04 (NK-like) in all sites (I), ovarian sites (J) (left), omenta

cells. Dots highlighted in red correspond to clones that are shared with the prolif
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exhausted cells (Figure 4E). The STARTRAC-expansion index14

also showed that the CD8_C05 (Tex.prol) subclass had modest

clonal expansion,while theCD8_C03 (Tex) subclass had the high-

est degree of clonal expansion (Figure 4F). When the dysfunction

population was divided into deciles according to exhaustion

score, we found that, as exhaustion scores increase, the propor-

tion of proliferating cells first increased slightly, and then

decreased sharply (Figure 4G). The most exhausted cells

completely lost proliferative ability (Figure 4G). These results

together are consistent with the exhausted CD8 T cell subclass

developing from an early differentiation state with high prolifera-

tivecapacity.Remarkably,we found therewasahigherproportion

of proliferating cells in each interval in ovarian tumors than in

omental tumors (Figure 4G).

Exhausted CD8 T cells are a consequence of
differentiation
We performed STARTRAC-transition analysis to reveal T cell

state transitions among CD8 cells. As expected, the probability

of the same TCR being present between CD8_C02 (Tex,trans),

CD8_C03 (Tex), and CD8_C05 (Tex.prol) was markedly

higher compared with other clusters, indicating their consider-

able developmental state transitions exist across them

(Figures 5A–5D). A UMAP of representative clonal sharing

among CD8_C02 (Tex,trans), CD8_C03 (Tex), and CD8_C05

(Tex.prol) is shown in Figure 5E. To further investigate clonal

sharing among CD8_C02 (Tex,trans), CD8_C03 (Tex), and

CD8_C05 (Tex.prol), we selected the top 30 clonal TCRs shared

between CD8_C02 (Tex,trans) and CD8_C03 (Tex) clusters with

or without proliferative status (CD8_C05 (Tex.prol)), and calcu-

lated the proportion of clonotype in each subclass. Interestingly,

most of the top shared clones across the three subclasses were

most frequently expressed as CD8_C03 (Tex), especially the top

10 clones to the left of the dotted line (Figure 5F). As the prolifer-

ative cells decreased (CD8_C05 (Tex.prol)), T cells in these clone

types tend to be more in CD8_C02 (Tex,trans) status (Figure 5F,

left). In particular, the vast majority of TCR clones shared be-

tween the non-proliferating CD8_C02 (Tex,trans) and CD8_C03

(Tex) clusters were in the CD8_C02 (Tex,trans) cluster (Figure 5F,

right). On the whole, these results further support that the ex-

hausted CD8 T cells develop following proliferation and clonal

expansion. Label transfer of CD8_C02 (Tex,trans) cells showed

that many of these cells were regrouped into CD8_C03 (Tex)

(Figures 5G and 5H), supporting the concept that CD8_C02

(Tex,trans) are transiting to the CD8_C03 (Tex) subclass.

The results presented thus far are consistent with the hypoth-

esis that transition between CD8_C02 (Tex,trans) and CD8_C03

(Tex) clusters occurs while cells are proliferating. To test this

possibility, we measured the frequency of proliferative cells
ltrating cell clusters. Left, shared among CD8_C02 (Tex,trans), CD8_C03 (Tex),

r-infiltrating cells. Silhouette coefficient is calculated on the basis of the mean

f each cluster.

ch color represents a different cluster as in Figure 2A.

rresponds to a shared clone between the three clusters: CD8_C02 (Tex,trans),

l sites (J) (middle), and othermetastasis sites (J) (right) of CD8+ tumor-infiltrating

eration cluster (CD8_C05).
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among clones shared between the CD8_C02 (Tex,trans) and

CD8_C03 (Tex) clusters across different sites (Figures 5I and

5J) using CD8_C04 (NK-like) as a comparator. As shown in Fig-

ure 5I, clone sharing predominantly occurred between CD8_C02

(Tex,trans) and CD8_C03 (Tex), withmost of these shared clones

also being present in proliferating cells. Specifically, compared

with omental and other tumor sites, primary ovarian sites had a

higher frequency of state transitions driven by proliferation be-

tween CD8_C02 (Tex,trans) and CD8_C03 (Tex) (Figure 5J).

Together this suggests that terminal exhaustion T cell differenti-

ation preferentially occurs in primary ovarian sites.

CD4 Treg suppress the immune microenvironment in
primary ovarian tumor sites
For CD4+ T cells (see Figure 6A for a UMAP of CD4 T cells),

CD4_C02 (Treg) and CD4_C03 (Tex) were enriched in ovarian tu-

mors (Figures 2E and 2F), while naive, memory, and transition

functional state clusters were mainly present in omental tumors

(Figures 2E and 2F). We next assessed the expression of

tumor-specific and bystander gene signatures in the CD4+ clus-

ters (Figures 6B and 6C). Notably, tumor-specific signature was

significantly enriched in CD4_C03 (Tex), followed by a CD4_C02

(Treg) population (Figure 6B), while bystander signature was en-

riched in other naive and effector/memory clusters, including

CD4_C01/C05/C06 (Figure 6C). Similar to CD8+ T cells, CD4+

cells in primary ovarian tumors displayed the highest tumor-spe-

cific and terminal exhaustion scores (Figure 6D). Again, similar to

CD8+ T cells, CD4+ T cells in omental sites exhibited the highest

bystander score (Figure 6E). Furthermore, CD4+, similar to CD8+,

exhausted clusters expressed co-inhibitory and co-stimulatory

receptor genes, including TIGIT, HAVCR2, CTLA4, PDCD1,

and TNFRSF14 (Figure 6F). There were differences with, for

example, the co-stimulatory receptors TNFRSF4/18 and the

co-inhibitory receptor LAG3 being highly expressed in CD4

Tex cluster, while TNFRSF9was enriched in the CD8 Tex cluster

(Figure 6F). Of note, unlike CD8 Tex cells, almost all cytotoxic

makers, including GZMA, GZMB, PRF1, GZMK, GNLY, and

CCL5, were absent in CD4_C03 (Tex), indicating a lack of cyto-

toxic activity (Figure 6F).

A CD4 T cell cluster with proliferation characteristics ex-

pressedMKI67 and FOXP3 (Figures 2B and S7A). Unlike prolifer-

ative CD8_C05 (Tex.prol), label transfer of CD4_C04 (Treg.prol)

showed that these cells are exclusively related to CD4_C02

(Treg) but not exhausted CD4_C03 (Tex) cells (Figure 6G). So,
Figure 6. CD4 Treg cells are responsible for suppressing the immune

(A) UMAP of 81,385 single CD4+ T cells, showing the formation of 7 main cluster

(B and C) UMAP of CD4+ cells colored according to gene signatures scores: (B)

(D) Violin plots showing the gene signatures scores (left, terminally exhausted CD

infiltrating cells from different sites, including Ov, Om, and Ot. wilcox.test.

(E) Violin plots showing the bystander gene signatures scores in CD4+ tumor-infi

(F) Heatmap depicting the expression of a panel of T cell-related genes in CD4_C

(G) UMAP showing the label transfer result from CD4_C04 proliferation cluster,

mainly label transferred to CD4_C02.

(H) Developmental transition of CD4_C04 (Treg.prol) with other CD4+ cells quant

(I and J) Potential developmental trajectory of CD8+ tumor-infiltrating cells inferre

cluster (I) or lesions sites (J).

(K) Fraction of proliferating T cells in the CD4_C02 cluster (including the original C

cluster) stratifying cells by their Treg score.
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in addition to the lack of cytotoxicity noted above (Figure 6F),

CD4_C03 (Tex) did not exhibit proliferative capacity, which was

further supported by the relatively small clone size compared

with exhausted CD8 T cells (CD8_C03) (Figure S7B). TCR simi-

larity analysis by STARTRAC-transition showed that CD4_C04

(Treg.prol) shared TCRs with CD4_C02 (Treg) rather than

CD4_C03 (Tex) (Figures 6H and S7C). Moreover, the transition

between CD4_C02 (Treg) and CD4_C04 (Treg.prol) mainly

occurred in ovarian tumors, represented by the green line (Fig-

ure S7D). Monocle2 reconstructed a trajectory capturing the

progression of CD4 reprogramming with a root at the highest

naive state (CD4_C07) and ending with two termini (Treg

(CD4_C02 and CD4_C04) and Tex (CD4_C03)) corresponding

to two distinct reprogramming outcomes (Figure 6I). More

importantly, while the terminal differentiated T cell clusters

were enriched in ovarian tumors, early differentiated T cells

were more frequent in omental tumors (Figure 6J). Meanwhile,

we computed the Treg score for each cell in Treg cells and calcu-

lated the proportion of proliferating cells in each score interval

(Figure 6K). Within the Treg cell pool in ovarian tumors, as the

Treg score increased, the proportion of proliferating cells de-

creases sharply (Figure 6K). More importantly, the proportion

of proliferating cells in each interval is higher in ovarian tumors

than that in omental tumors (Figure 6K).

CD4 T cells can support effective anti-tumor CD8 function,

but their crosstalk within the TME is not well characterized.

To investigate molecular links underlying the intercellular

communication of CD4+ and CD8+ T cells in HGSOC,

CellphoneDB analysis39 was used to identify molecular interac-

tions between ligand-receptor pairs and major cell types to

construct cellular communication networks. We found that in-

teractions between Treg clusters, including CD4_C02 (Treg)

and CD4_C04 (Treg.prol), and CD8 dysfunctional clusters,

such as CD8_C03/05/07 rather than CD8_C01/02/04/06/09

non-dysfunctional subsets, were commonly observed (Fig-

ure S7E). We subsequently analyzed detailed reciprocal con-

nections between CD4_C02 (Treg) and all CD8 populations

and identified markedly different ligand-receptor pairs between

ovarian and omental tumors (Figure S7F). Notably, the KLRC1-

HLA-E axis, a novel checkpoint in the TME40 was exclusively

enriched in ovarian tumors, whereas ICAM1/ICAM2, which

has been characterized as a site for the cellular entry of human

rhinovirus41 and production of proinflammatory effects,42 was

enriched in omental tumors.
microenvironment in primary ovarian tumor sites

s.

tumor-specific CD8+ signature score, (C) CD39�CD69� signature score.

8+ signature score; right, tumor-specific CD8+ signature score) in CD4+ tumor-

ltrating cells from different sites, including Ov, Om, and Ot. wilcox.test.

03 and CD8_C03 clusters.

each color represents a different cluster as in Figure 2A; here, CD4_C04 was

ified by pSTARTRAC-tran indices for each patient (n = 6), Kruskal-Wallis test.

d by Monocle2 based on gene expressions, each color represents a different

D4_C02 cluster and the CD4_C02 cluster label transferred from the CD4_C04
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Inherent TME characteristics contribute to spatial
differences of TIL status
To explore mechanisms underlying differences in infiltration of

the Tex classes in tumor lesions, we performed pairwise

STARTRAC-migration analysis of CD8_02/03/05 clusters be-

tween different lesions. We did not find evidence for T cell clus-

ters in omental or other tumors preferentially migrating to ovarian

tumors or vice versa (Figure 7A). Moreover, migration of T cells

between blood and different tumor lesions was extremely low,

with no evidence for preference for different tumor sites (Fig-

ure S8A). Therefore, spatial-specific migration of individual

T cell clusters is limited or absent. We subsequently analyzed

the top 10 TCR clones per cluster in blood (Figure 7B, top) or

in tumors (ovarian and omental tumors) (Figure 7B, bottom) for

potentially transcriptional reprogramming between blood and

different tumor foci. Notably, the top 10 TCR clonotypes from

CD8_C03 (Tex) and C05 (Tex.prol) exhausted clusters were not

observed in blood, consistent with these clones expanding intra-

tumorally. Together the data argue that the preferential infiltra-

tion of CD8_C03 (Tex) and C05 (Tex.prol) in ovarian tumors is

not due to migration from blood or other tumor sites.

Intra-tumoral T cell dysfunction has recently been suggested

to be associated with reactivity to tumor antigens.13,43 Consis-

tent with this concept, TMB correlated with the proportion of

dysfunctional T cells in primary ovarian tumors (Figures S3C

and S3D), the differentiation process being associated with

neoantigen recognition. We computed the CDR3 sequence

similarity to investigate whether this differentiation process is

antigen driven (not all patients shown, Figure S8B). Shared

CDR3 sequences between transition states (CD8_C02) and ex-

hausted states (CD8_C03 (Tex) and CD8_C05 (Tex.prol)) were

significantly elevated compared with unshared CDR3 se-

quences in different patients but not in different tumor regions

(Figures 7C and S8C). This suggests that, while neoantigen

may drive differentiation toward exhausted states, this does

not explain the differences in exhausted T cells between

different tumor sites.

We next performed differential analysis of signaling pathways

between primary ovarian tumors and omental tumors on bulk

transcriptomic profiles. Compared with omental tumors, prolif-

eration-related pathways (G2 M checkpoint, mitotic spindle,

DNA-repair, oxidative phosphorylation, and E2F targets) and

interferon signaling were concurrently increased in ovarian tu-

mors (Figure S8D). Consistently, these pathways were enriched

in total (Figure 7D, left), CD8+ (Figure 7D, middle), or CD4+

T cells (Figure 7D, right) in primary ovarian tumors compared

with omental tumors, indicating that inherent TME characteris-

tics contribute to spatial differences of TIL status. Notably, pro-

liferation-related pathways, oxidative phosphorylation, and

glycolysis were all associated with T cell proliferation and

function.

In contrast, consistent with the decreased interferon signaling

in omental metastasis, MHC class I in tumor area detected by

IHC was lower in omental metastasis (Figures 7E and S8E). As

interferon increases antigen presentation44 and MHC class I,

reflecting antigen presentation ability and providing a marker of

inflamed T cell infiltration,11 the results suggested that omental

tumors have lower antigen presentation ability. Meanwhile, IHC
staining of T cells showed that both CD4 and CD8 T cells were

preferentially located in stroma rather than in omental tumors

(Figures 7F, 7G, and S8F), indicating that most of the T cells in

omental masses are excluded from contact with tumor cells.

DISCUSSION

T cells represent a major contributor to anti-tumor activity, a

concept that is supported by the observation that intra-tumoral

TILs are associated with an improved outcome in multiple dis-

eases, including ovarian cancer. The major components of the

intra-tumoral T cell compartment include naive, effector, mem-

ory, Treg, and exhausted or dysfunctional T cells.45 To explore

potential mechanisms underlying the limited response to ICB in

ovarian cancer, we used scRNA-seq and TCR sequence anal-

ysis to determine immune contexture across different tumor

sites and across different ovarian cancer patients. We supple-

mented these platforms with IHC analysis to provide spatial

analysis. Together, this study provided a detailed analysis of

the immune landscape across different lesions (Figure S9).

Importantly, we found that the immune contexture in different tu-

mor sites and in particular the two most common sites of ovarian

cancer, the ovary and the omentum, were markedly different.

Ovarian tumors were characterized by an immunosuppressive

environment consisting of Tregs and three different populations

of exhausted CD8+ T cells as well as an exhausted CD4+ T cell

population that likely acquired the exhausted phenotypes

through interaction with tumor antigens in the local ovarian

ecosystem. In contrast, TILs in omental lesions appear to consist

primarily of non-tumor-specific bystander cells with little evi-

dence for response to tumor-specific antigens. Differences in

TMB or in tissue-specific immune cell migration do not appear

to underlie the diversity of TIL lineages in ovarian and omental le-

sions. Decreased MHC class I levels and antigen presentation

could contribute to the low levels of exhausted of T cells and

the decreased differentiation of T cells in omental tumors. While

the exact underlying mechanisms remain to elucidated,

decreased MHC class I antigen presentation and interferon

signaling, oxidative phosphorylation, and failure of T cell infiltra-

tion into omental tumorsmay contribute to lack of tumor-specific

T cells in omental metastasis and thus immune evasion.46

The exhausted T cell state in ovarian tumors is likely a conse-

quence of antigen stimulation leading to effector T cells eventu-

ally becoming exhausted due to prolonged antigen stimulation.

We provide evidence for transition between the three types of ex-

hausted T cells in ovarian tumors. Furthermore, the exhausted

T cells retain a number of markers that suggest that they could

retain some degree of T cell killing activity. This may contribute

to an elevated CD8_C03 (Tex) terminal exhausted signature

score being associated with better prognosis in TCGA ovarian

cohort. This may not be unique to ovarian cancer as Zhang and

co-workers47 reported that CD8-CXCL13 and CD4-CXCL13

T cells, which are proposed to represent exhausted T cells, pre-

dict effective responses to PD-L1 blockade in breast cancer.

However, other studies suggest that dysfunctional T cells can

no longer be reversed and activated by PD-1 therapy.48

Recently, Luca et al. developed a machine learning-based

algorithm, the EcoTyper, to deconvolve cell states and
Cell Reports Medicine 3, 100856, December 20, 2022 13



Figure 7. Inherent TME characteristics contribute to spatial differences of TIL status

(A) Developmental migration of CD8+ tumor-infiltrating cells between every two of the three tumor sites quantified by pSTARTRAC-migr indices for each patient

(n = 6), Kruskal-Wallis test.

(B) Top 10 shared clones of blood and tumor (bottom) being shared with tumor and blood, respectively, for each CD8 cluster. This analysis was performed in

ovarian (Ov, left), and omental (Om, right) sites, respectively.

(C) The number of nodes of the network diagrams were counted and compared among tumor sites. Tukey’s multiple comparisons test.

(D) Enrichment plots from gene set enrichment analysis (GSEA) showing significantly differentially regulated pathways between ovarian and omental sites at the

single-cell level in all CD3+ tumor-infiltrating T cell (left), CD8+ tumor-infiltrating cells (middle), or CD4+ tumor-infiltrating cells (right). NES, normalized enrichment

score.

(E) Quantification of MHC class I H scores across three sites. Data represent mean ± SEM. p values were determined by ANOVA.

(F andG) Quantification of the ratio of densities of CD4+ (F) and CD8+ (G) cells in tumor and stromal area among tumor sites. Data represent mean ±SEM. p values

were determined by Tukey’s multiple comparisons test.
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ecotypes,49 which identified two T cell-associated carcinoma

ecotypes (CEs) across many tumor types, CE9 and CE10,

wherein CE9-T cells express activation and exhaustion markers,

similar to our CD8_C03 (Tex) cluster, and CE10-T cells that ex-

press GZMK and other naive and memory markers, similar to

our CD8_C02 (Tex,trans) cluster. In agreement with our study,

CE9-T cells, characterized by higher immunoreactivity, preferen-

tially infiltrated tumors compared with CE10-T cells and were

strongly associated with longer overall survival. In addition, char-

acteristics of T cells identified in our studies are also recapitu-

lated in a recent report, which showed that antigen presentation

gene sets, IFN gene sets, and oxidative phosphorylation are en-

riched in infiltrated compared with excluded tumor cells.50

Similar to the CD8_C03 (Tex) subset in our study, they defined

a CD8+ GZMB T subpopulation enriched in T cell-infiltrated tu-

mors that simultaneously exhibited exhaustion and cytotoxic

characteristic, such as PRF1, GZMB, LAG3, CTLA4, PDCD1,

and HAVCR2. Similar to the CD8_C02 (Tex,trans) cluster in our

study, they identified a CD8+ GZMK T cell subpopulation that

also lacks CD39 and thus likely represents a bystander popula-

tion enriched in stroma and likely tumor excluded. Interestingly

consistent with this concept, a GZMK/CD8+ ratio, which may

represent a bystander signature, was significantly associated

with shorter PFS. Both of these studies were based on single-

site sampling and thus did not observe the spatial heterogeneity

of the immune contexture in ovarian cancer that may contribute

to the limited response to immune therapy in HGSOC. Critically,

the number of ovarian cancer samples analyzed by single-cell

sequencing was limited and thus this study combined with the

recently published data provides an extended dataset that will

greatly enhance our understanding of immune contexture across

lesions in ovarian cancer and potentially contribute to develop-

ment of effective immune therapy approaches in ovarian cancer.

In line with previous reports,13,51 our data show that the

dysfunctional T cell populations in ovarian cancer do not form

a discrete cell population but rather develop from a precursor

state with proliferative capacity. As cells differentiate into an ex-

hausted state, they lose proliferative capacity. The proliferating

precursor population has evidence for replication stress, high

DNA repair capacity, and oxidative phosphorylation, properties

that have been observed in other tumor lineages.13,52

Although we used multiple complementary approaches

(including opal-IHC, flow cytometry analysis, and genomic, bulk,

and single-cell transcriptional and TCR data), these approaches

aremainlybasedoncomputational inference fromstaticmolecular

snapshots.However, thederivationof the dysfunctionalCD8T cell

state is likely the consequence of a dynamic process that occurs

during tumor development. Indeed, asall of the tumors in this anal-

ysis were late stage with extensive spread, the ‘‘molecular snap-

shot’’ likely represents an immune status that is permissive for tu-

mor growth, potentially contributing to the extensive exhaustion

states. To fully elucidate the underlying mechanism, both a dy-

namic study and an analysis of tumors at different stages of devel-

opmentwill likelybeneeded.Furthermore, thestatusof theseclus-

terswas inferred by the expression ofmarker genes rather than by

functional assays. Future studies incorporating lineage tracing,

and single-cell spatially resolved analysis will be needed to eluci-

date underlying mechanisms.
One key clinical question will be to determine how to convert

the immunosuppressive and exhausted environment to one

that favors tumor clearance. In particular it will be important to

determine whether the exhausted T cell state can be reversed

to a functional state or whether the exhausted T cells are in an

irreversible terminal state or trajectory. If this is the case, effec-

tive ovarian cancer immunotherapy may require use of modified

T cells, such as CAR-T and TCR-T, combined with ICB. The lack

of tumor reactive cells in omental tumors will likely require

different approaches to induce immune engagement like that

in ovarian tumors. Indeed, the marked difference in the immune

contexture in ovarian and omental sites may be the major reason

for failure of current immunotherapy approaches. Approaches

that are effective in ovarian tumors may not have significant ac-

tivity in omental tumors and vice versa.

Our results, including trajectory analyses, TCR sharing, and

cross-tissue comparisons, are most consistent with the final

model: (1) ovarian lesions have a tumor immunosuppressive

environment with a high proportion of exhausted T cells and

Treg. (2) The majority of tumor-specific TILs in ovarian lesions

are exhausted as a consequence, with interaction with tumor an-

tigens. (3) TILs in omental lesions were primarily tumor non-spe-

cific and non-exhausted. Moreover, the decreased MHC class I

antigen presentation and failure of T cell infiltration into tumors

may be associated with immune evasion of omental metastases.

These results deepen our understanding of the poor response to

ICB therapy in ovarian cancer while concurrently providing infor-

mation that could improve our ability to engage the immune sys-

tem in ovarian cancer.

Limitations of the study
Our study shows characteristics and differential composition of

TILs across different HGSOC sites and identifies two immune

‘‘cold’’ patterns in ovarian cancer. There are, however, limita-

tions of our study. First, lack of functionally validated using

neo-antigen peptide pools to determine the tumor specificity,

although several methods, including literature-based gene

sets, TCRs and neoantigens analysis, cross-alignment with dis-

ease-specific TCR repertoires, and CD39+ flow cytometry anal-

ysis were used in our study. Second, the samples used in our

study were all from treatment-naive patients. Examining

changes in the tumor microenvironment both before and after

immunotherapy would havemade the findings in this manuscript

much more impactful. In addition, only infiltrating T cells were

investigated in our study. Future studies need to preferentially

cover all cells in the microenvironment and perform single-cell

spatially resolved analysis to explore cellular interactions.
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Antibodies

Mouse monoclonal anti-CD8 Maxim biotechnologies Cat#MAB-0021; RRID: AB_2925214

Human Fc blocking antibody STEMCELL technologies Cat#60012; RRID: AB_2925215

Rabbit monoclonal anti-CD4 Maxim biotechnologies Cat#RMA-0620; RRID: AB_2925216

Rabbit monoclonal anti-FAP abcam Cat#ab207178; RRID: AB_2864720

Rabbit monoclonal anti-HLA A abcam Cat#ab52922; RRID: AB_881225

Rabbit recombinant monoclonal PD1 antibody abcam Cat#ab137132; RRID: AB_2894867

Rabbit polyclonal Granzyme B antibody abcam Cat#ab4059; RRID: AB_304251

Mouse polyclonal anti-CK(Pan) Maxim biotechnologies Cat#RAB-0050; RRID: AB_2925217

HRP-labeled Goat Anti-Rabbit IgG(H + L) Beyotime Biotechnology Cat#A0208; RRID: AB_2892644

HRP-labeled Goat Anti-Mouse IgG(H + L) Beyotime Biotechnology Cat#A0216; RRID: AB_2860575

Live/dead dye, Fixable Viability stain 620 BD Biosciences Cat#564996; RRID: AB_2869636

APC-H7 Mouse anti-Human CD45 BD Biosciences Cat#560178; RRID: AB_1645479

BV786 Mouse anti-Human CD3 BD Biosciences Cat#563800; RRID: AB_2744384

PE Mouse Anti-Human CD3 BD Biosciences Cat#555340; RRID: AB_395746

APC Mouse Anti-Human CD45 BD Biosciences Cat#340943; RRID: AB_400555

BB700 Mouse anti-Human CD4 BD Biosciences Cat#566392; RRID: AB_2744421

BV650 Mouse anti-Human CD8 BD Biosciences Cat#563821; RRID: AB_2744462

BB515 Mouse anti-Human CD25 BD Biosciences Cat#564467; RRID: AB_2744340

Alexa Fluor� 647 Mouse anti-Human CD127 BD Biosciences Cat#558598; RRID: AB_647113

BV510 Mouse Anti-Human CD45RA BD Biosciences Cat#563031; RRID: AB_2722499

BV421 Mouse Anti-Human CD197 (CCR7)o BD Biosciences Cat#562555; RRID: AB_2728119

BV605 Mouse Anti-Human CD279 (PD-1) BD Biosciences Cat#563245; RRID: AB_2738091

APC-R700 Mouse Anti-Human LAG-3 (CD223) BD Biosciences Cat#565774; RRID: AB_2744329

FITC Mouse Anti-Human CD39 BD Biosciences Cat#561444; RRID: AB_10896292

OpalTM 520 Reagent Pack Perkin Elmer Cat# FP1487001KT

OpalTM 540 Reagent Pack Perkin Elmer Cat# FP1494001KT

OpalTM 620 Reagent Pack Perkin Elmer Cat# FP1495001KT

OpalTM 690 Reagent Pack Perkin Elmer Cat# FP1497001KT

DAPI Perkin Elmer Cat# FP1490A

Antibody Diluent/Block (100 mL) Akoya Cat# ARD1001

Opal Polymer HRP Ms + Rb (50 mL) Perkin Elmer Cat# ARH1001EA; AB_2890927

Biological samples

High grade serous ovarian cancer samples Tongji Hospital N/A

Chemicals, peptides, and recombinant proteins

Formaldehyde solution Sigma 252549-100ML

AR9 buffer Perkin Elmer Cat# AR900250ML

Ficoll-Paque Plus medium GE Healthcare N/A

Red blood cell lysis Solarbio life science Cat# R1010

Critical commercial assays

ChromiumTM Single Cell 50 Reagent Version 2 Kit 10x Genomics Cat#100265

QIAamp DNA Mini Kit QIAGEN Cat. No./ID: 51,304

RNeasy Mini Kit QIAGEN Cat. No./ID: 74,104

(Continued on next page)
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NEBNext Poly(A) mRNA Magnetic Isolation Module Kit NEB Cat#E7490L

NEBNext Ultra RNA Library Prep Kit for Illumina NEB Cat#E7530L

Qubit dsDNA HS Kit Invitrogen Cat# Q32854

Multi Tissue Dissociation Kit 1 Miltenyi Biotec. Cat#130110201

Deposited data

Raw data This paper https://ngdc.cncb.ac.cn/gsa-human/HRA002767

TCGA bulk RNA-seq of ovarian cancer TCGA https://xenabrowser.net/datapages/

Software and algorithms

ImageJ,v1.8.0 Schneider et al.53 https://imagej.nih.gov/ij/

FlowJo, v10.6.2 BD Biosciences https://www.flowjo.com/

R N/A https:www.r-project.org

GSEA Broad Institute https://www.gsea-msigdb.org/gsea/index.jsp

Inform analysis software Akoya biosciences https://www.akoyabio.com/phenoimager/software/

inform-tissue-finder/

STAR, v2.7.3 Dobin et al.54 https://github.com/alexdobin/STAR

RSEM Li and Dewey55 https://github.com/deweylab/RSEM

BWA Li and Durbin56 http://bio-bwa.sourceforge.net/

Mutect2 Cibulskis et al.57 https://gatk.broadinstitute.org/hc/en-us/articles/

360037593851-Mutect2

Oncotator Ramos et al.58 https://github.com/broadinstitute/oncotator

Patchwork Mayrhofer et al.59 https://github.com/thomasp85/patchwork

SvABA Wala et al.60 https://github.com/walaj/svaba

R package deconstructSigs Rosenthal et al.61 https://github.com/raerose01/deconstructSigs

COSMIC Tate et al.62 https://cancer.sanger.ac.uk/cosmic

HLA-VBSeq v2 Nariai et al.63 http://nagasakilab.csml.org/hla/

NetMHCpan 4.0 Jurtz et al.64 https://services.healthtech.dtu.dk/service.

php?NetMHCpan-4.0

NetMHCIIpan 3.0 Nielsen and Andreatta65 https://services.healthtech.dtu.dk/service.

php?NetMHCIIpan-3.2

ssGSEA Hanzelmann et al.66 https://gseapy.readthedocs.io/en/latest/

IMonitor v1.4.1 Zhang et al.67 https://github.com/zhangwei2015/IMonitor

VDJdb Bagaev et al.68;

Shugay et al.69
VDJdb (cdr3.net)

McPAS-TCR Tickotsky et al.70 http://friedmanlab.weizmann.ac.il/McPAS-TCR/

TBAdb Sun et al.71 https://db.cngb.org/pird

Cell Ranger Software v3.0.2 10x Genomics https://github.com/10XGenomics/cellranger

Seurat v4, R package Satija Lab https://github.com/satijalab/seurat

R packages survival v3.2-13 Terry Therneau https://github.com/therneau/survival

R packages survminer v0.4.9 Alboukadel KASSAMBARA https://github.com/kassambara/survminer

TIDE (Tumor Immune Dysfunction and Exclusion) Jiang et al.38 https://github.com/jingxinfu/TIDEpy

STARTRAC Zhang et al.32 https://github.com/Japrin/STARTRAC

clusterProfiler v3.18.0 Yu et al.72 https://github.com/YuLab-SMU/clusterProfiler

CellPhoneDB v2.1.1 Efremova et al.39 https://github.com/ventolab/CellphoneDB

Monocle2 v2 2.4.0 Bioconductor https://www.bioconductor.org/packages/release/

bioc/html/monocle.html

GraphPad Prism v8.0.2 GraphPad Software https://www.graphpad.com/scientific-software/

prism/

e2 Cell Reports Medicine 3, 100856, December 20, 2022

Article
ll

OPEN ACCESS

https://ngdc.cncb.ac.cn/gsa-human/HRA002767
https://xenabrowser.net/datapages/
https://imagej.nih.gov/ij/
https://www.flowjo.com/
http://https:www.r-project.org
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.akoyabio.com/phenoimager/software/inform-tissue-finder/
https://www.akoyabio.com/phenoimager/software/inform-tissue-finder/
https://github.com/alexdobin/STAR
https://github.com/deweylab/RSEM
http://bio-bwa.sourceforge.net/
https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
https://github.com/broadinstitute/oncotator
https://github.com/thomasp85/patchwork
https://github.com/walaj/svaba
https://github.com/raerose01/deconstructSigs
https://cancer.sanger.ac.uk/cosmic
http://nagasakilab.csml.org/hla/
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-3.2
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-3.2
https://gseapy.readthedocs.io/en/latest/
https://github.com/zhangwei2015/IMonitor
http://cdr3.net
http://friedmanlab.weizmann.ac.il/McPAS-TCR/
https://db.cngb.org/pird
https://github.com/10XGenomics/cellranger
https://github.com/satijalab/seurat
https://github.com/therneau/survival
https://github.com/kassambara/survminer
https://github.com/jingxinfu/TIDEpy
https://github.com/Japrin/STARTRAC
https://github.com/YuLab-SMU/clusterProfiler
https://github.com/ventolab/CellphoneDB
https://www.bioconductor.org/packages/release/bioc/html/monocle.html
https://www.bioconductor.org/packages/release/bioc/html/monocle.html
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/


Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chaoyang

Sun (suncydoctor@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data have been deposited at GSA for Human (https://ngdc.cncb.ac.cn/gsa-human/) with accession number HRA002767

and are publicly available as of the date of publication.

d This paper dose not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical specimens
This study was reviewed and approved by the Institutional Review Board of Tongji Hospital, Tongji Medical College, Huazhong Uni-

versity of Science and Technology (TJ-IRB20190320). All the enrolled patients signed an informed consent form, and all the blood

samples were collected using the rest of the standard diagnostic tests, with no burden to the patients.

According to the pathological results of the intra-operative frozen section and the macroscopic view of the tumor during the oper-

ation, fresh samples were surgically resected from the above-described patients. Then we obtained the proportion of tumor area in

the whole tissue according to the HE images, and >50% of the samples were included in the analysis. Nine primary, untreated

HGSOC patients who were pathologically diagnosed were enrolled in this study. Their ages ranged from 25 to 70 years old. For pa-

tients OV001, OV002 and OV003, their tumor tissues across all sites and PBMC isolated from blood were collected for FFPE, WGS,

RNA-seq, bulk TCR-seq. For patients OV004, OV005, OV006, OV008, OV009 and OV010, their PBMC isolated from blood and tumor

tissues across all sites were obtained for above sequencing and tissue dissociation to sort and obtain CD45+ CD3+ single cell sus-

pension for scRNA-seq (Table S1). Another 8 ovarian and 5 omental samples from 5 HGSOC patients were collected for flow cytom-

etry analysis (Table S3).

METHOD DETAILS

Single cell collection
Peripheral bloodmononuclear cells (PBMCs) were isolated from fresh peripheral blood by Ficoll-Paque Plusmedium (GEHealthcare)

according to the manufacturer’s instructions. Briefly, 4 mL of fresh peripheral blood was collected during surgery in EDTA anticoag-

ulant tubes and mixed with Ca/Mg-free PBS 1:1, then gently slowly layered onto 8 mL Ficoll. After centrifugation, lymphocyte cells

remained at the medium layer between plasma and Ficoll and were carefully transferred to a new tube, red blood cell lysis (Solarbio

life science, R1010) was performed as appropriated, and then washed twice with PBS. Cell pellet was resuspended with sorting

buffer (PBS with 0.5% BSA).

Fresh tumor tissues were cut into approximately 1-mm3 pieces and single-cell suspension was obtained by Tissue Dissociation

Kits (Miltenyi, 130,110,201) together with the gentleMACSTM Dissociators and gentleMACS C tubes (Miltenyi, 130,093,237) accord-

ing to the protocols. Briefly, tissue pieces were mixed using 5 mL enzyme mix (4.7 mL RPMI1640 + 200ul enzyme H+100ul enzyme

R+25ul enzyme A) per C tube. After running the gentleMACS program h_tumor_01, incubate sample for 30 min at 37�C with contin-

uous rotation using rotator. And again run the program h_tumor_01 and incubate sample for 30 min at 37�C using rotator. Finally run

the program h_tumor_01 and collected the cell pellet to resuspend and filter through a 40 mm cell-strainer until uniform cell suspen-

sions were obtained. Then the pelleted cells were suspended in red blood cell lysis buffer and washed twice, resuspended in sorting

buffer.

Single cell sorting and scRNA library construction sequencing by 10x genomics
Based on FACS analysis, T cells (CD45+CD3+, BD Biosciences, 340,943, 555,340) were sorted into tubes containing 0.5%BSA-PBS

and stained with0.4% Trypan blue and examined by microscope. When the viability of cells was higher than 80%, use ChromiumTM

Controller and ChromiumTM Single Cell 50 Reagent Version 2 Kit (10x Genomics, Pleasanton, CA) for library construction experi-

ments. In short, GemCode Technology was used to encapsulated sorted cells, reagents and Gel Beads containing barcoded oligo-

nucleotides into nanoliter-sized GEMs. Lysis and barcoded reverse transcription of polyadenylatedmRNA from single cells were per-

formed within each GEM. Post RT-GEMs were cleaned up and cDNA were amplified. cDNA was fragmented and repaired at the end

of the fragments, and an A-tail was added to the 50 end. The adaptors were ligated to fragments which were double sided SPRI
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selected. After sample index PCR, another double sided SPRI selecting was performed. The final library was quality and quantitated

using real-time qPCR (TaqMan Probe). The final products were sequenced using the Xten-PE151 platform (BGIShenzhen, China).

TCR V(D)J sequencing
According to themanufacturer’s protocol (10x Genomics), the ChromiumSingle-Cell V(D)J Enrichment kit was used to enrich the full-

length TCR V(D)J segments from amplified cDNA from 50 libraries via PCR amplification.

Bulk DNA and RNA isolation and sequencing
Genomic DNA of peripheral blood and tissue samples were extracted using the QIAampDNAMini Kit (QIAGEN, 51,304) according to

themanufacturer’s instruction. Use theQubit dsDNAHSKit (Invitrogen, Q32854) to quantify the DNA concentrations and use agarose

gel electrophoresis to evaluate the DNA quality. The exon library was constructed using the SureSelectXT target enrichment system

for the illumine Double-End Multiplexed Sequencing Library Kit (Agilent). The samples were sequenced on the illumine Hiseq 4000

sequencer, and the paired-end read was 150 bp.

RNA of tumor samples was extracted by Rneasy Mini Kit (QIAGEN, 74,104). The concentration of RNA was quantified by the

NanoDrop instrument (Thermo) and the fragment analyzer (AATI) was used to evaluate the quality of RNA. Libraries were constructed

using NEBNext Poly(A) mRNAMagnetic Isolation Module Kit (NEB, E7490L) and NEBNext Ultra RNA Library Prep Kit (NEB, E7530L)

for illumine Paired-endMultiplexed Sequencing Library. Samples were sequenced on the illumine Hiseq 4000 sequencer with 150 bp

paired-end reads.

Bulk TCR sequencing
RNAwas extracted as described above and quantity were determined using Nanodrop. HTBI primers and Arm-PCR from iRepertoire

were used to construct the libraries including PCR1 and PCR2, inclusively and semi-quantitatively. 5 cycles were used to amplify

CDR3 fragments during the first round of PCR1, using the specific primers against each V and J genes. And in the second round,

PCR was performed using universal primers.

PCR1

RNA reverse transcription and amplification of the T-cell receptor bCDR3 using the HTBI primers (Huntsville, Alabama, America) was

carried out usingQiagen One-Step RT-PCR. The first round of PCRwas performed using 200 ng of total RNAmixedwith 4 mL random

iRepertoire primers, 5 mL 53 buffer, 1 mL dNTPmix, 0.25 mL Rnasin (40 U/mL), and 1 mL enzyme mix, with nuclease-free water added

to reach a total volume of 25 mL. After mixing and centrifugation, the reactions were transferred to a thermal cycler that carried out the

following program: one cycle of 50�C for 40 min; one cycle of 95�C for 15 min; 15 cycles of denaturation at 94�C for 30 s, annealing at

60�C for 40 min, and extension for 30 s at 72�C; 10 cycles of denaturation at 94�C for 30 s, annealing and extension at 72�C for 2 min;

and a final extension at 72�C for 10 min. The samples were then held at 4�C.
PCR2

A 2 mL sample of the PCR1 product was used as template for a second step of amplification following the addition of 5 mL communal

primers, 25 mLMultiplex MMprepared using the Multiplex PCR Kit (Hilden, Nordrhein-Westfalen, Germany), and 18 mL nuclease-free

water to reach a total volume of 50 mL. The reactions were then transferred to a thermal cycler that carried out the following program:

one cycle of 95�C for 15 min; 40 cycles of denaturation at 94�C for 30 s, annealing at 55�C for 30 s and extension at 72�C for 30 s; and

final extension at 72�C for 5min. The samples were then held at 4�C. Size selection was used to purify 250-bp PCR products onmag-

netic beads (Agencourt No. A63882, Beckman, Beverly, MA, USA). After gel purification, the PCR product was subjected to HTS us-

ing the Hiseq PE151 platform.

Immunohistochemistry
The specimens were collected within 30 min after the tumor resection and fixed in formalin for 48 h. Paraffin-embedded tissues were

subsequently cut into 4 mm slides and mounted on glass slides. Tissues were subjected to deparaffinization and then rehydrated in

100%, 90%, 70% alcohol successively. Antigen was retrieved prior to antibody staining, and then endogenous peroxidase was in-

activated by incubation in 3% H2O2 for 30 min. After 10% normal goat serum blocking non-specific sites for 1 h, 37�C, slides were

stained with primary antibody overnight at 4�C (anti-CD8 antibody, Maxim biotechnologies; anti-CD4 antibody, Maxim biotechnol-

ogies; anti-FAP, 1:250, abcam, ab207178; anti-MHC-I, 1:100, abcam, ab52922). Negative controls were treated identically, but with

normal serum. After the sections were washed with PBS twice for 5 min, the antigenic binding sites were visualized using HRP con-

jugated secondary antibody (Beyotime, A0208 and A0216). Staining is visualized using DAB. Slides were scanned fully automatic by

Shengqiang Technology slide scanning image system SQS-40P and observed by reading software. Digital images were taken from

five different fields and saved as a jpeg file. A 63 6 grid was adapted to each image and examined for nuclear keratinocyte counting73

using the digital image processing software ImageJ (v1.8.0). The mean of positive cells was calculated for each case. H-score anal-

ysis was performed on FAP andMHC-I IHC described byMelanie.11 TheH-scorewas calculated by adding up the percentage of cells

in each scoring category multiplied by the corresponding score using a semiquantitative five category grading system: 0, no staining;

1, 1%–10% staining; 2, 11%–50% staining; 3, 50-75% staining; and 4, >75% staining. Resulting in scores on a scale of 0-400. Stain-

ing score was determined separately by two experts under the same conditions, while discordant scores were reevaluated by

another expert.
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Flow cytometry analysis
Single-cell suspension obtained and stained by followingmAbs: Live/dead dye (Fixable Viability stain 620, BDBiosciences, 564,996),

anti-CD45 antibody (BD Biosciences, 560,178), anti-CD3 antibody (BD Biosciences, 563,800), anti-CD4 antibody (BD Biosciences,

566,392), anti-CD8 antibody (BD Biosciences, 563,821), anti-CD25 antibody (BD Biosciences, 564,467), anti-CD127 antibody (BD

Biosciences, 558,598), anti-CD45RA antibody (BD Biosciences, 563,031), anti-CCR7 antibody (BD Biosciences, 562,555), anti-

PD-1 antibody (BD Biosciences, 563,245), anti-LAG3 antibody (BD Biosciences, 565,774), anti-CD39 antibody (BD Biosciences,

561,444). Single cell suspensions were stained with 1 mg/sample fluorochrome-labeled antibodies for specific surface marker at

4�C for 30 min in 100 mL PBS. Stained single cell suspension of tumor tissue were processed to flow cytometry using Cytoflex

LX. The data were analysis by using FlowJo V10.6.2 software.

Opal multiplex IHC
Deparaffinization of formalin fixed paraffin embedded (FFPE) sections was done through xylenes. Rehydration was done through

decreasing graded alcohol. AR9 buffer (Perkin Elmer, AR900250ML) was used for retrieving antigens in a microwave oven and a hy-

drophobic pen was used to circle tissue sections. Before primary antibody incubation, tissue sections were blocked with blocking/

antibody diluent (Akoya antibody diluent/block, ARD1001) for 30 min at RT. The tissue sections were incubated with primary anti-

bodies for 60 min at RT. Then washed in 13TBST and incubated with secondary antibody (Perkin Elmer opal polymer HRP Ms +

Rb ARH1001EA, 30 min at RT). The HRP-conjugated secondary antibody polymer was detected using fluorescent tyramide signal

amplification using Opal dyes 520, 540, 620 and 690 (Perkin Elmer FP1487001KT, FP1494001KT, FP1495001KT, FP1497001KT) for

10 min at RT. The covalent tyramide reaction was followed by heat induced stripping of the primary/secondary antibody complex

using Perkin Elmer AR9 buffer (AR900250ML) at 100�C for 15 min preceding the next cycle (each cycle for each marker). After 4

sequential rounds of staining, sections were stained with DAPI (Perkin Elmer, FP1490A) to visualize nuclei. Five color multiplex-

stained slides were imaged using the Vectra Multispectral Imaging System version 2 (Perkin Elmer). Scanning was performed at

203(2003 final magnification). Filter cubes used for multispectral imaging were DAPI, FITC, Cy3, Texas Red and Cy5. A spectral

library containing the emitted spectral peaks of the fluorophores in this study was created using the Inform analysis software (Perkin

Elmer). Using multispectral images from single-stained slides for each marker, the spectral library was used to separate each

multispectral cube into individual components allowing for identification of the fivemarker channels of interest using Inform 2.4 image

analysis software. Anti-CD8 (MAB-0021, 6 mL volume, Maxim Biotechnology, 1:5, 60 min, opal540), anti-PD-1 (ab137132, Abcam,

1:1500, 60min, opal620), anti-GZMB (ab4059, Abcam, 1:1500, 60min, opal690) and anti-pan-cytokeratin (pan-CK) (RAB-0050, 6mL

volume, Maxim Biotechnology, 1:10, 60 min, opal520) respectively at RT sequentially.

Gene expression quantification
Raw paired-end reads are filtered to remove adapter sequence using pipeline in-house. And then align to reference genome hg19 by

STAR54 (v2.7.3) with default patameters. RSEM55 was used to quantify gene expression based on uniquely mapped reads.

GENECODE V19 is used for annotation.

Somatic mutation calling
Raw reads are pre-processed to remove adapter sequences and low-quality reads. The processed clean reads are mapped to hg19

using BWA56 with the default parameter. Picard are used to mark duplicates; GATK4 are employed for base quality correction

and realignments. Mutect257 are used for somatic SNV/Indel calling. Mutations were filtered with supported reads R4 (%2)

and coverage R10 in tumor and (normal tissue), whereas indels were filtered with supported reads R5 (%1) and coverage R10

in tumor and (normal tissue. Moreover, somatic mutations and indels were annotated by Oncotator58 with database of version

‘‘v1_ds_April052016’’. TMB is measured as the total number of somatic mutations per megabase within genome, and we used

2800Mb as the effective size for each genome.

Copy number calling and tumor purity estimation
We estimated copy number profiling over 200 bp bins using Patchwork59 with the default parameters, and then calculated the

normalized ratio of standardized, average depth between normal tissue and tumor tissue. Fifty bins are further merged into 10 kb

windows. Segmentation performed all the 10 kb windows. After that, tumor ploidy and purity were quantified using Patchwork based

on the VAF of each somatic SNV and the copy number status of each segment.

BRCA germline variants
Germline indels of BRCA1/2 were called by SvABA60 using default parameters. Germline deleterious SNVs of BRCA1/2 were

selected with annotating be pathogenic in the ClinVar database.

Mutational process
We applied the R package deconstructSigs61 to estimate the contributions of 30 mutational signatures documented by the

COSMIC62 for each sample with the default parameters. The 30 signatures are annotated as mutagenesis forms based on COMSIC.
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Somatic SV detection
We applied SvABA60 to predict somatic SVs and their breakpoints using the suggested parameters. SV with Q value less than ten is

filtered. SVs that are marked by TSI-L are omitted.

Chromothripsis
We used four criteria to infer chromothripsis proposed by Campbell74: A). the number four types of SV type (tail-to-tail, head-to-head,

head-to-tail, tail-to-head) are comparable. B). the number of segments involved in chromothripsis is more than 5. C). the copy num-

ber oscillated between 2 or 3 copy number states. D). there are interspersed LOH within affected regions.

BFB detection
We inferred BFB events by detecting fold-back inversion and telomere loss which is introduced by Campbell.75 Fold-back inversions

were detected based on three criteria: 1) the single inversions were without reciprocal support-read clusters, 2) the inversion asso-

ciated with a copy number change (q < 0.001), and 3) the two ends of the breakpoints had to be separated by 30 kb.

Neoantigen identification
The HLA type for each sample was inferred using HLA-VBSeq v263 by optimizing read alignments to HLA allele sequences and abun-

dance of reads on HLA alleles by variational Bayesian inference. MHC binding affinities are inferred as IC50 values for each peptide

sequence and patient HLA type. All mutant peptide sequences considered to be neoantigens meet a standard cut-off: the IC50 of

mutant peptide <500 nM and the IC50 of the wild peptide >500 nM. NetMHCpan4.064 predicted Peptide-MHC class I binding affinity,

while NetMHCIIpan-3.065 is applied to identify peptides that bind to MHC-II molecules. Neoantigens with at least three RNA-seq

reads contained the mutated base was considered to be expressed.

Differentially expressed genes between omen and ovary
We used a rank-sum test (Python package stats) to compare gene expression between samples of omen and ovary groups. P-values

are adjusted using FDR, and genes with FDR <0.1 are regarded as significant. GSEA is used for pathway enrichment.

Bulk RNA-seq analyses immune cell infiltration
Twenty-eight immune cell types (Figure 1C) in the tumor microenvironment are quantified by ssGSEA.66 Gene set for each cell type

was obtained from a pan-cancer research.76 The ssGSEA score represented the relative abundance of each immune cell type. Un-

supervised clustering was performed on the scores for all tumor samples with Ward distance. Feature genes (157 genes) for 6 im-

mune signaling pathway in Figure 1D is from Desbois et al., 2020.11 ssGSEA was used to quantify the scores for each pathway within

tumor samples. Samples in each group were sorted based on the sum values of scores of 6 pathways.

Bulk TCR-seq data analysis
Raw sequencing data were processed by the tool IMonitor (v1.4.1).67 Briefly, the raw paired-end (PE) reads were merged to one

sequence by the overlapped region. Low-quality sequences were filtered out. The clean sequences were aligned to reference

that including V, D and J germline sequences (www.imgt.org). Originated V, D and J genes were determined for sequences and

CDR3 regions were identified. Sequencing errors in CDR3 sequences were corrected according to the base sequencing quality

and CDR3 frequency. Nucleotide CDR3 sequences were translated to amino acid sequences. Finally, multiple diversity indexes

were calculated, and Figs were generated to display the TCR repertoire.

TCR repertoire annotated by disease associated TCR database
Disease-associated TCR sequences consisted by three published databases, including VDJdb,69,68 McPAS-TCR70 and TBAdb.71

The three databases includes 116,875 records of TCR b sequences covering 43 sorts of infectious diseases. Only high-quality re-

cords (VDJdb: Score R2; McPAS-TCR: Antigen.identification.method %2.5; TBAdb: Grade>=4) were selected for further analysis.

For each TCR sample, CDR3 amino acid sequences were compared with the CDR3s in three databases by Levinshtein distance. The

CDR3 sequence in the sample was supposed to be related to the disease if the Levinshtein distance %1 between CDR3 in sample

and CDR3 associated with a disease in database. At last, the proportion of disease-related CDR3s, the number of disease-related

CDR3s divided by total number of CDR3 in a sample, was calculated. For bulk TCR-seq sample, top 9000 CDR3 sequences ranked

by frequency.

Inferring neoantigen associated TCRs
BothMHC I andMHC II restricted neoantigens peptides were predicted from the data ofWGS. As the peptide-MHC complex (pMHC)

can be specifically recognized by TCRs, neoantigen and associated TCRs are supposed to present at the same regional tissue. Thus,

according to the location consistency between them, associated TCRs could be inferred by the distribution of neoantigens. Specif-

ically, for a patient, if the neoantigen was identified in multiple samples, the TCRs that were observed in all the same samples and

were not observed in other samples were regarded as the neoantigen associated TCRs. The neoantigens identified in only one sam-

ple were excluded. MHC I restricted neoantigens were used to find associated CD8 TCRs while MHC II restricted neoantigens were
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used for CD4 TCRs. To reduce potential error of TCR, the TCR with at least two cells was regarded as presence in the sample. Addi-

tionally, for each patient, the equal number of TCRs as control were selected randomly from all remaining TCRs that didn’t include

inferred neoantigen associated TCRs and were from at least two cells.

Pairwise similarity calculation between TCRs
Both a and b CDR3 amino acid sequences were used to calculate the CDR3 sequence was deconstructed into series of contiguous

triplet amino acids, started from the first amino acid and with stride 1. For example, the length of CDR3 with 15 amino acids could be

deconstructed into 13 triplets. The similarity is equal to the number of shared triplet amino acids divided by total number of triplets

from pair TCRs:

similarity =
2 � na + 2 � nb

Na +Nb

where, na is the number of shared triplet amino acids from aCDR3, nb is the number of shared triplet amino acids from bCDR3,Na is

the total number of triplet amino acids from pairwise a CDR3s, Nb is the total number of triplet amino acids from pairwise b CDR3s.

scRNA/TCR-seq data processing
Sequencing reads were aligned to the GRCh38 human reference genome. Seurat v4 (version 4.0.4) R package was used to analyze

the scRNA-seq data. Seurat v4 (version 4.0.4) R package was used to analyze the scRNA-seq data. Cells from all samples were

merged. Cells with % 200 or R 6,000 transcripts and cells with R 20% of reads mapping to mitochondrial genes were excluded

from the dataset. To remove the doublet cells, DoubletFinder (version 2.0.3)77 was used to detect doublet and only singlet cells

(�95% cells in each sample) were retained. Although T cells were sorted in terms of multiple makers by FACS before, there might

be a small part of non-T cells. To remove these non-T cells, cells with <3 transcripts of CD3 (CD3D + CD3E + CD3G) were removed.

Furthermore, each cell was compared with the cells of 18 clusters from ovarian cancer patients in a previous study.78 The clusters

included T cells, B cell, dendritic cell (DC), erythrocyte, fribroblast and cancer cells. For each cell, spearman’s correlation coefficients

were calculated between cell’s gene expression and the average gene expression of anyone of the 18 clusters, so each cell obtained

18 correlation coefficients. Then we calculated the maximal ratio for cell i,

ratioðiÞ =

max
j = f1;2;::;18g

�
Rði;CjÞ

�

Rði;CjC = T cell clusterÞ
where, R is spearman’s correlation coefficient, Cj is one of 18 clusters.

If the ratio >1.05, the cell was regarded as non-T cell and were removed from our data. Next, by using Seurat, the data was normal-

ized with scale factor set to 10,000, the top 2000 highly variable genes identified was used for data integration, and the data was

scaled using ‘ScaleData’ function. To eliminate potential batch effects (on sample level), we utilized canonical correlation analysis

(CCA) by the Seurat function IntegrateData,79 to get a shared low-dimension space (Figure S2B). The Seurat FindNeighbors function

(with 30 PCs) was used to calculate the shared nearest neighbor graph based on the calculated Euclidean distance, and FindClusters

function with a resolution of 0.2 was used to cluster our data using the Louvain algorithm. The RunUMAP function was used to display

the clustered data using the UMAP dimensional reduction.

Signature gene sets
Terminally exhausted CD8+ signature, T effector memory signature, CD39�CD69� signature, and tumor specific CD8+ signature was

got from previous studies.26,27,29 These gene sets were used as modules for the AddModuleScore function in Seurat.

Proliferation state definition
The average expression of known proliferation-related genes (ZWINT, E2F1, FEN1, FOXM1, H2AFZ, HMGB2, MCM2, MCM3,

MCM4, MCM5, MCM6, MKI67, MYBL2, PCNA, PLK1, CCND1, AURKA, BUB1, TOP2A, TYMS, DEK, CCNB1 and CCNE1) was

defined as the proliferation score.80

Identification of signature genes and TCGA data analysis
We identified differentially expressed genes (DE-Gs) based on the FindAllMarkers function of seurat by using wilcox test.79 The DE-

Gs with FDR<0.01 and log2(FC) > 1 were selected as the signature genes of CD8_C03 terminal exhausted cluster. The TCGA bulk

RNA-seq and clinical data were obtained from UCSC Xena (https://xenabrowser.net/datapages/). The mean value of the expression

(log2(tpm+0.001)) of the CD8_C03 signature genes (CD8A, CXCL13, DUSP4, LAG3, GZMB, CCL5, CCL3, CCL4, NKG7) was calcu-

lated as the signature score. Kaplan-Meier survival curves were used to show the survival differences between different groups (high

group, greater than or equal to the median signature score, vs. low group, less than the median signature score). The R packages

survival v3.2-13 and survminer v0.4.9 were used to perform all survival analyses. TIDE (Tumor Immune Dysfunction and Exclusion)

was used to predict the immunotherapy responses as described in a previous study.38
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TCR analysis
TCR-seq data for each sample were processed using Cell Ranger software (v3.0.2), with the command ‘‘cellranger vdj’’ using the

human reference genome GRCh38. To integrate TCR results with the gene expression data, the TCR-based analysis was performed

only for cells that were identified as T cells. T cells with TCR information were used to perform the STARTRAC analysis as we pre-

viously described.14

Gene set enrichment analysis
Different gene expression between T cells from ovarian (Ov) and T cells from omental (Om) were calculated based on the

FindAllMarkers function of seurat by using wilcox test. Sorted (by log fold change) different expression gene list was used to perform

the gene set enrichment analysis (GSEA) by using clusterProfiler (version3.18.0) package.

Ligand-receptor expression analysis
To analyze cell-cell interactions between clusters of interest, CellPhoneDB39 (v2.1.1) was used to identify significant ligand-receptor

pair in our data.We randomly selected 10%cells per cluster to perform the analysis. Potential ligand-receptor interactions were iden-

tified based on specific expression of a ligand by one T cell cluster and the corresponding receptor by another. The ligand-receptor

expression analysis of cells from different lesion sites were performed separately.

Trajectory analysis
To compute pseudotime alignment of our transcriptomes, Monocle2 (v2 2.4.0) was used by using the first 30 PCs of the integrated

matrix to preform preprocessing and UMAP reduction. DDRTree algorithm was then used to reconstruct the tree embedding.

Software versions
Data were collected using Cell Ranger software (10x Genomics) v3.0.2 and analyzed using R v.4.0.3, and the following packages and

versions in R for analysis: Seurat v4.0.4, clustree v0.4.3, and cluster v2.1.2 two-dimensional gene expression maps, were generated

using coordinates from the UMAP algorithm using the R package uwot v0.1.10 implementation. Figs were produced using the

following packages and versions in R: ggplot v3.3.5, ComplexHeatmap v2.8.0, ggchicket v0.5.2, patchwork v1.1.1, circlize

v0.4.13, ggtern v3.3.5, ggpubr v0.4.0, igraph v1.2.7, and RColorBrewer v1.1-2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Python (v3.6) package sklearn is used to fit Gaussian Mixture Models (GMMs). p values based on two groups are computed using

python package stats. Plots aremainly based onmatplotlib and seaborn. Paired t test was used to compare differences between two

matched groups (Figure 7D). Two-sided Student’s t test or wilcox.test was used to compare differences between two groups of dis-

ease stage. If the multiple groups data followed a normal distribution, we used ANOVA test for multiple comparisons. IHC staining

data was plotted and multiple compared by Tukey’s test using GraphPad Prism 8.0.2 software. Data are presented as means ± SEM

and p < 0.05 was considered significant. Correlation between groups was determined by Pearson correlation test. ANOVA was used

to compare differences among multiple groups.
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