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Background: The development of heart failure (HF) remains a common complication 
following an acute myocardial infarction (AMI), and is associated with substantial adverse 
outcomes. However, the specific predictive biomarkers and candidate therapeutic 
targets for post-infarction HF have not been fully established. We sought to perform a 
weighted gene co-expression network analysis (WGCNA) to identify key modules, hub 
genes, and possible regulatory targets involved in the development of HF following AMI.

Methods: Genes exhibiting the most (top 50%) variation in expression levels across 
samples in a GSE59867 dataset were imported to the WGCNA. Gene Ontology and 
pathway enrichment analyses were performed on genes identified in the key module 
by Metascape. Gene regulatory networks were constructed using the microarray probe 
reannotation and bioinformatics database. Hub genes were screened out from the key 
module and validated using other datasets.

Results: A total of 10,265 most varied genes and six modules were identified between 
AMI patients who developed HF within 6 months of follow-up and those who did not. 
Specifically, the blue module was found to be the most significantly related to the 
development of post-infarction HF. Functional enrichment analysis revealed that the blue 
module was primarily associated with the inflammatory response, immune system, and 
apoptosis. Seven transcriptional factors, including SPI1, ZBTB7A, IRF8, PPARG, P65, 
KLF4, and Fos, were identified as potential regulators of the expression of genes identified 
in the blue module. Further, non-coding RNAs, including miR-142-3p and LINC00537, 
were identified as having close interactions with genes from the blue module. A total of 
six hub genes (BCL3, HCK, PPIF, S100A9, SERPINA1, and TBC1D9B) were identified 
and validated for their predictive value in identifying future HFs.
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Conclusions: By using the WGCNA, we provide new insights into the underlying 
molecular mechanism and molecular markers correlated with HF development following 
an AMI, which may serve to improve risk stratification, therapeutic decisions, and 
prognosis prediction in AMI patients.

Keywords: acute myocardial infarction, heart failure, weighted gene co-expression network, key module, 
transcriptional factor, non-coding RNA, hub gene

INTRODUCTION
Acute myocardial infarction (AMI) is characterized by myocardial 
necrosis resulting from exposure to prolonged ischemia after 
occlusion of a coronary artery (Anderson and Morrow, 2017). With 
advances in interventional cardiology techniques, technologies, 
and pharmaceutical therapies, all-cause mortality has decreased 
during the acute phase of AMI over the past few decades 
(Anderson and Morrow, 2017). However, due to an increase in 
the number of patients surviving in hospitals after an AMI, and an 
increasingly aging global population, the incidence of heart failure 
(HF) is continuing to increase (Anderson and Morrow, 2017). 
The development of HF following an AMI has become a major 
public health concern because these patients exhibit the high rates 
of hospitalization and poor survival rates, comparable to that of 
cancer (Anderson and Morrow, 2017; Giustino et al., 2018).

The progression to HF after AMI is multifactorial and 
influenced by the extent of myocardial damage at the time of the 
index events as well as by the process of left ventricular remodeling 
(Maciejak et al., 2015; Giustino et al., 2018). A more comprehensive 
understanding of the mechanisms involved in development of HF 
following AMI will allow us to identify patients at risk and tailor 
individualized management regimens for each patient, ultimately 
reducing the socio-economic burden of HF. Several biomarkers 
are known to be associated with cardiac remodeling and the 
development of HF. For example, B-type natriuretic peptide and 
N-terminal pro-brain natriuretic peptide have been reported to 
exhibit strong prognostic values in patients with acute coronary 
syndromes in terms of the development of HF (Haeck et al., 2010). 
Inflammation biomarkers, leukocyte count, and neutrophil to 
lymphocyte ratio were independently predictive of HF and adverse 
events following an AMI (Seropian et al., 2016; Niu et al., 2018). 
However, robust early predictive methods for the development of 
HF following an AMI remain elusive.

Transcriptional profiling is an effective approach to provide 
biological insight and rapid, unbiased screening of nearly whole 
transcriptomes to reveal the most promising biomarkers for 
recognizing risk carriers. Moreover, some studies have identified 
the genes involved in AMI progression by using gene expression 
profiles (Qian et al., 2018). However, the previous studies were 
mostly concerned with differentially expressed genes (DEGs) and 
did not consider clusters of highly correlated genes, which may be 
responsible for specific clinical features of interests. Weighted gene 
co-expression network analysis (WGCNA) is a bioinformatics 
application for exploring the relationships between different 
gene sets (modules), or between gene sets and clinical features 
(Langfelder and Horvath, 2008). The WGCNA describes the 

correlation patterns between genes across microarray samples and 
provides straightforward biologically functional interpretations 
of gene network modules (Langfelder and Horvath, 2008). 
Currently, the WGCNA has been successfully used to construct 
gene co-expression networks in various diseases, most notably in 
different cancers, and identify centrally connected hub genes as 
promising biomarkers or therapeutic targets (Chen et al., 2016; Li 
et al., 2019b; Wang et al., 2019). Additionally, the use of WGCNA 
can provide novel insights into which functional regulators may 
be driving transcriptional signatures in the development of AMI, 
such as transcription factors (TFs) (Chen et al., 2016), microRNAs 
(miRNAs) (Li et al., 2019b), and long non-coding RNAs (lncRNAs) 
(Wang et al., 2019). To date, there are few studies identifying 
the biomarkers that are functionally implicated in ventricular 
remodeling and with the ability to predict HF development 
following an AMI using the WGCNA algorithm.

In the present study, the WGCNA was constructed based on 
data from the discovery dataset GSE59867 obtained from the 
Gene Expression Omnibus (GEO) database. Key gene modules 
associated with the development of HF after AMI were identified, 
and the biological functions and pathways of genes in the key 
modules were analyzed. Hub genes in the key module were detected 
using other datasets from the GEO database, namely the validation 
dataset GSE42955. The diagnostic performance of the identified 
hub genes for HF development after AMI was evaluated by receiver 
operating characteristic (ROC) curve analysis of dataset GSE1869. 
Information on gene expression patterns associated with AMI during 
a follow-up of 6 months was also revealed. Furthermore, since TFs, 
miRNAs, and lncRNAs play important regulatory roles in human 
diseases, detailed analyses of these regulators will allow us to better 
understand the molecular mechanisms underlying post-infarction 
HF. We constructed TF-gene regulation networks, miRNA-target 
regulatory networks, and lncRNA–mRNA co-expression patterns 
for the key module. Based on the bioinformatic analyses, our study 
is expected to provide novel insights into the pathogenesis and 
progression of AMI, and identify distinct biomarkers that correlate 
with HF development.

MATERIAls AND METHODs

Data sources
A workflow for this study was presented in Figure 1. The datasets of 
GSE59867, GSE1869, and GSE42955 were obtained from the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/). In the GSE59867 
dataset (Maciejak et al., 2015), details on the development of 
HF during the 6-month follow-up were recorded for 65 samples 
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obtained from 17 patients with AMI. The transcriptional profiling of 
peripheral blood mononuclear cells (PBMCs) in these 17 patients, 
which were performed at admission, discharge (4–6 days), 1 month, 
and 6 months after AMI, were selected for further analysis. There 
were no significant differences observed in the baseline demographic 
and clinical characteristics between HF (n = 9) and non-HF (n = 
8) patients. This data were sequenced using the GPL6244 platform 
[Affymetrix Human Gene 1.0 ST Array, transcript (gene) version]. 
The GSE1869 dataset included 10 patients with HF post-AMI and 
6 non-HF patients, and was performed using the platform GPL96 
(Affymetrix U133A microarray) (Kittleson et al., 2005). The 
GSE42955 dataset included 12 patients with HF post-AMI and 5 
non-HF patients, and was performed using the platform GPL6244 
(Molina-Navarro et al., 2013).

Probe Reannotation
The lncRNA expression data were obtained by reannotating 
the probes strategy according to previous studies (Zhang et al., 
2012; Wang et al., 2017). Briefly, probe sets were mapped to 
RefSeq transcript IDs and/or Ensembl gene IDs based on the 
latest version of the NetAffx Annotation File (HuGene-1_0-st-v1 
Probeset Annotations, CSV Format, Release 36). To make the 
screened lncRNAs be more reliable (Zhang et al., 2012; Wang 
et al., 2017), only probe sets that were labeled “NR” in the Refseq 
database and annotated with the non-coding RNA titles in the 
Ensembl database were retained, which resulted in 514 annotated 
lncRNA genes. If more than one probe corresponded to one gene, 

the expression value of that gene was computed by determining 
the median expression value of all its corresponding probes.

Data Preprocessing
The data from the gene expression profiling analysis were 
preprocessed using Robust Multichip Average algorithm in the affy 
package within Bioconductor (http://www.bioconductor.org) in the 
R 3.3.1 software (R Foundation for Statistical Computing, Vienna, 
Austria). After correcting for background, and performing quantile 
normalization and log2-transformation, the data set containing 
20,530 genes was further processed, and the 10,265 genes exhibiting 
the top 50% in high expression variance (minimize the loss of 
statistical information) were selected for the WGCNA (Li et al., 
2017a).

Construction of WGCNA
The R package, WGCNA, was used to perform the weighted 
correlation network analysis (Langfelder and Horvath, 2008). 
Firstly, the gene co-expression similarity between genes m and n 
was defined as Smn = |cor(m, n)|. A power function was then applied 
to correlate adjacency of genes: amn = power (Smn, β) = |Smn|β. Scale 
independence and mean connectivity were then tested using a 
gradient method (the power value ranging from 1 to 20). When the 
degree of independence was determined to be above 0.80 (Langfelder 
and Horvath, 2008), an appropriate power value was screened out 
to obtain a scale-free network. Finally, the adjacency matrix was 
transformed into a topological overlap matrix, and modules were 

FIGURE 1 | Flow chart of data preparation, processing, analysis, and validation.
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detected by hierarchical average linkage clustering analysis for the 
gene dendrogram. Additionally, we extracted the corresponding 
gene information for each module for further analysis.

selection of Key Modules Corresponding 
to Clinical Traits
After the modules were identified, the module eigengene (ME) 
was summarized by the first principal component of the module 
expression levels. Module–trait relationships were estimated using 
the correlation between MEs and clinical traits, which allowed 
efficient identification of the relevant modules. To evaluate the 
correlation strength, we calculated the module significance (MS), 
which is defined as the average absolute gene significance (GS) of 
all the genes involved in the module. The GS is measured as the 
log10 transformation of the P value (lgP) in the linear regression 
between gene expression and clinical information. In the 
WGCNA, modules with the highest MS score among all modules 
are usually defined as the key module and selected for further 
analysis (Langfelder and Horvath, 2008; Wright et al., 2015).

Functional Enrichment Analysis of the Key 
Module
To understand the biological meaning of the key module, the gene 
information was loaded into Metascape (http://metascape.org) 
for Gene Ontology (GO) enrichment analysis (Zhou et al., 2019). 
Pathway enrichment analysis was carried out with the following 
ontology sources: Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Pathway and Molecular Signatures Database (MSigDB) 
Hallmark Gene Sets (Zhou et al., 2019). Terms with a P value 
<0.05, a minimum count of 3, and an enrichment factor >1.5 were 
collected and grouped into clusters based on their membership 
similarities (Kappa scores >0.3) (Zhou et al., 2019). The most 
statistically significant term within a cluster was chosen to represent 
the cluster. If more than 20 terms for GO or pathway annotations 
were identified, the top 20 terms were chosen for visualization.

Identification of TFs in the Key Module
Enrichr (http://amp.pharm.mssm.edu/Enrichr/) is a comprehensive 
web-based tool that contains 180,184 annotated gene sets from 102 
gene set libraries (Kuleshov et al., 2016). The gene information for the 
key module was imported into the Enrichr to obtain the interaction 
between transcription factors (TFs) and their target genes. To reduce 
the chance of identifying false-positives, we extracted TFs with 
consensus target genes existing in ChEA, ENCODE gene-set library, 
and position weight matrices from TRANSFAC and JASPAR. We 
then used the Cytoscape 3.4.0 software (Cytoscape Consortium, San 
Diego, CA, USA) to visualize the TF-target gene regulatory networks.

Identification of miRNAs in the Key 
Module
Two different miRNA target-predicting algorithms within the 
Enrichr tool, including TargetScan (Agarwal et al., 2015) and 
miRTarBase (Chou et al., 2018), were employed to screen potential 
miRNAs that regulate the genes in key modules. The TargetScan 
predicts biological targets of miRNAs by searching for the 

presence of mRNA sites that match the seed region of each miRNA 
(Agarwal et al., 2015). The miRTarBase is a curated database which 
has accumulated more than 50,000 miRNA–target interactions 
which are validated experimentally by reporter assay, western blot, 
microarray, and next-generation sequencing experiments (Chou 
et al., 2018). The common identified miRNAs were then used to 
construct miRNA–mRNA pairs. The regulatory association was 
displayed by the Cytoscape software.

Identification of lncRNAs in the Key 
Module
Hub genes that are highly interconnected with nodes in a module 
have been shown to be functionally significant. Module membership 
(MM) represents how close a gene’s expression conforms to the 
characteristics of the module. The MM was calculated as correlation 
between individual gene expression values and ME. In this study, 
lncRNAs with highly intramodular connectivity (MM ≥ median) 
were retained to form connections of lncRNAs and mRNAs 
(Lunnon et al., 2012). The Pearson correlation coefficients (r) for 
the RNAs in the key module were calculated again to construct 
the lncRNA–mRNA co-expression network. Finally, the significant 
lncRNA–mRNA pairs (|r| ≥ median and P < 0.05) were visualized 
using the Cytoscape software.

Identification of Candidate Hub Genes in 
the Key Module
Candidate hub genes were screened out using module 
connectivity, measured by MM ≥ median and clinical trait 
relationships, measured by GS ≥ median (Lunnon et al., 2012). To 
identify experimentally validated interactions in the key module, 
we uploaded all genes identified in the key module to the Search 
Tool for the Retrieval of Interacting Genes (STRING) database. 
Only protein–protein interactions (PPI) based on experiments 
with a combined score 0.4 were selected as significant. The 
subnetworks of PPI were then constructed with the plug-in 
MCODE in the Cytoscape (degree cut-off ≥2, node score cut-
off ≥0.2, K-core ≥2, and max depth = 100). Genes identified in 
the MCODE subnetworks and exhibiting high MM and high GS 
in the co-expression network were chosen as the candidates for 
further analysis and validation.

Identification of Real Hub Genes
The independent datasets GSE1869 and GSE42955 from the 
GEO database were extracted, and data were preprocessed 
by correcting for background and performing quantile 
normalization and log2-transformation. Another WGCNA using 
dataset GSE42955 were performed to validate the candidate hub 
genes. In the validation set GSE42955, a total of 11,653 genes 
exhibiting the top 50% in high expression variance were used for 
the WGCNA. The module with the maximal MS score among all 
modules was selected as the most relevant module in GSE42955. 
Genes with MM ≥ median and GS ≥ median in the relevant 
module were mapped to the candidate hub genes.

In GSE1869, the area under the curve (AUC) of the ROC was 
calculated to evaluate the diagnostic accuracy of the candidate 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1214

http://metascape.org
http://amp.pharm.mssm.edu/Enrichr/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of Critical Genes by WGCNANiu et al.

5

hub genes mapped to genes in GSE42955. The AUC is the value 
of the Wilcoxon–Mann–Whitney statistic, and 95% confidence 
interval (CI) for AUC was computed using the standard normal 
distribution (Gengsheng and Hotilovac, 2008). Genes with 
the AUC ≥0.80 (P < 0.05) in ROC curve analysis represented 
clinically relevant genes and were defined as the real hub genes.

REsUlTs

Construction of Weighted Gene 
Co-Expression Network
After preprocessing of the GSE59867 dataset, the microarray 
quality was evaluated by sample clustering according to the 
distance between different samples observed in Pearson’s 
correlation matrices. No outliers were detected in the clusters, 
and therefore 65 samples were used to construct a hierarchical 
clustering tree (dendrogram) (Supplementary Figure S1A). 
Next, a power of β = 12 was selected as the soft-threshold to 
ensure a scale-free network (Supplementary Figures S1B, C). 
As a result, 10,265 genes were grouped into a total of six modules 
using the average linkage hierarchical clustering algorithm.

As shown in Supplementary Figure S2, 2,933 genes to the 
blue module, 889 genes to the brown module, 170 genes to the 
green module, 4,753 genes to the turquoise module, and 332 
genes to the yellow module. The genes that were not grouped into 
a module were included in the grey module, which was removed 
during the subsequent analysis.

Construction of Module–Trait 
Relationships and Detection of Key 
Modules
The WGCNA was then used to correlate each module with all 
available clinical information (time points following AMI and HF 
progression) in the GSE59867 dataset by calculating the MS for each 
module–trait correlation (Figures 2A, B). After screening for strong 
correlations between all modules and HF progression, we found that 
the blue module had the highest MS value among all the selected 
modules. The ME in the blue module also exhibited a higher 
correlation with HF progression than other modules (R2 = 0.42 and 
P < 0.001). Additionally, we found that genes in the blue module were 
significantly affected on the first day of AMI (day of admission).

Interaction-based relationships for the five modules were 
illustrated in Figure 2C. The results revealed that the five 
modules were primarily divided into two clusters according to 
their ME correlation. Similar results were demonstrated using 
a heatmap, which showed the adjacencies in the eigengene 
network, suggesting a high level of independence among the 
modules. Therefore, the blue module was considered to be the 
key module, and was, therefore, chosen for further analysis.

Functional Enrichment Analysis of Genes 
in the Blue Module
To evaluate the affected functions for the genes clustered in 
the blue module, we performed GO and pathway analyses. We 

determined that these enriched pathways were closely connected 
with each other. The enriched results for the significant functions 
and pathways were presented in Figures 3A, B.

TF Regulatory Network
To determine whether TFs may be responsible for the observed 
altered gene expression in the blue module, we inspected four 
data sources available in Enrichr, namely ENCODE, ChEA, 
TRANSFAC, and JASPAR. A total of 31 TFs were identified 
and seven among them were found to be present in the blue 
module, including Spi-1 proto-oncogene (SPI1) which had 20 
target genes identified, zinc finger and BTB domain containing 
7A (ZBTB7A) with 76 target genes, interferon regulatory factor 
8 (IRF8) with 9 target genes, peroxisome proliferator activated 
receptor gamma (PPARG) with 27 target genes, P65 with 44 
target genes, Kruppel like factor 4 (KLF4) with 29 target genes, 
and Fos proto-oncogene AP-1 transcription factor subunit (Fos) 
with 6 target genes. The TF-target gene regulatory network was 
displayed in Figure 4.

miRNA-Target Regulatory Network
By using the TargetScan and miRTarBase databases, we were 
able to identify the 26 most common miRNAs responsible 
for regulating the target genes in the blue module (Figure 5). 
The greatest number of genes were regulated by miR-142-3p 
(degree = 47). Thus, these results indicated that miR-142-3p may 
serve a role in HF progression.

lncRNA–mRNA Co-Expression Network
The blue module contained 2,892 mRNAs and 41 lncRNAs. 
We extracted 13 lncRNAs with high MM (> 0.60) to calculate 
the |r| for each interaction pair, which included apoptosis 
associated transcript in bladder cancer (AATBC), ADAMTSL4 
antisense RNA 1 (ADAMTSL4-AS1), EPB41L4A antisense RNA 1 
(EPB41L4A-AS1), growth arrest specific 5 (GAS5), long intergenic 
non-protein coding RNA 00537 (LINC00537), long intergenic 
non-protein coding RNA 00852 (LINC00852), long intergenic 
non-protein coding RNA 00893 (LINC00893), long intergenic non-
protein coding RNA 1000 (LINC01000), LOC254896, MIA-RAB4B 
readthrough (NMD candidate) (MIA-RAB4B), MIR4697 host 
gene (MIR4697HG), msh homeobox 2 pseudogene 1 (MSX2P1), 
and small nucleolar RNA host gene 12 (SNHG12). The gene pairs 
with |r| higher than 0.60 (P < 0.05) were retained to construct 
the lncRNA-mRNA co-expression network. As shown in Figure 
6, the 13 lncRNAs were found to be functional associated with 
more than one gene. LINC00537 was found to be strongly 
connected (|r| range from 0.60 to 0.82) with the highest degree of 
connectivity (760) in the co-expression network.

selection of Candidate Hub Genes
To identify intramodular hub genes, we plotted the MM against 
the GS for traits that correlated with MEs. Under the condition 
of higher-than-median MM [≥0.60 (range 0.10–0.96)] and GS 
(≥ 0.24), 707 genes in the blue module were retained for further 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1214

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of Critical Genes by WGCNANiu et al.

6

analysis (Figure 7A). The PPI network were constructed in the 
STRING database, which included a total of 2,520 nodes and 
18,133 interaction pairs. Meanwhile, MCODE analysis was 
performed on the PPI network and an additional 899 genes, 

with high connective degrees, were filtered out (Figure 7B). 
A total of 211 candidate genes, identified both in the MCODE 
subnetworks and co-expression network, were included as 
potential intramodular hub genes (Figure 7B).

FIGURE 2 | Identification of the key modules associated with the development of HF after AMI. (A) Heatmap depicting the correlation between module 
eigengenes and clinical traits of AMI. (B) Distribution of module significance and errors in the modules associated with the development of HF after AMI. 
(C) Hierarchical clustering dendrogram showing the module eigengenes and a heatmap of the adjacencies in the eigengene network (labeled according to by 
their module color names).
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Identification of Real Hub Genes
In the GSE42955 dataset, 16 samples were used to construct a 
hierarchical clustering tree (dendrogram) (Supplementary 
Figure S3A). Next, a power of β = 14 was selected as the soft-
threshold to ensure a scale-free network (Supplementary 
Figures S3B, C). The 11,653 genes were grouped into a total of 
five modules using the average linkage hierarchical clustering 
algorithm. As shown in Supplementary Figure S4, 2,355 genes 
to the blue module, 1,183 genes to the brown module, 5,817 genes 
to the turquoise module, and 1,165 genes to the yellow module. 
After screening for strong correlations between all modules 
and HF progression, we found that the brown module had the 
highest MS and ME values among all the selected modules 
(Figures 7C, D). Under the condition of higher-than-median 
MM [≥0.60 (range 0.30–0.96)] and GS (≥ 0.49), 300 genes in the 
brown module were retained for further analysis (Figure 7E). 
All candidate hub genes were mapped to the 300 genes in the 
GSE42955 datasets, and 11 genes of these candidate hub genes 
were validated (Figure 7F).

To further test the value of the candidate hub genes as 
prognostic biomarkers of HF, ROC curves were performed 
and the AUC (95% CIs) were calculated (Figure 8). The 
results indicated that six genes exhibited a high predictive 
accuracy for the development of HF after AMI, including B-cell 
leukemia/lymphoma 3 (BCL3), hematopoietic cell kinase (HCK), 
peptidylprolyl isomerase F (PPIF), S100 calcium binding protein 
A9 (S100A9), serpin family A member 1 (SERPINA1), and TBC1 
domain family member 9B (TBC1D9B). Hence, these six genes 
were regarded as the real hub genes in the WGCNA.

DIsCUssION
In the present study, we applied the WGCNA to identify biologically 
relevant transcripts significantly altered upon experiencing 
an AMI and throughout the subsequent clinical follow-up. 
We further identified the key modules and regulators of gene 
expression that were unique to patients who developed HF after 

FIGURE 3 | Functional enrichment analysis of the blue module genes. (A) Gene Ontology analysis of genes in the blue module. (B) KEGG pathway enrichment 
analysis of genes in the blue module.
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FIGURE 4 | Transcription factor regulatory network for the genes in the blue module. Red diamonds represent the transcription factors, and green nodes represent the genes.
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AMI, and evaluated the usefulness of hub genes as prognostic 
biomarkers associated with post-infarction HF.

Compared with the previous studies, our investigation provides 
new insights into the pathogenesis of HF following AMI. Chen et 
al. analyzed DEGs between the AMI group and the healthy control 
group using the dataset GSE48060 (Chen et al., 2016). They revealed 
that TBX21 and PRF1 may be potential candidates for diagnostic 
biomarker in AMI. Similarly, Zhang et al. used the dataset 
GSE48060 to screen potential biomarkers for AMI development 
(Zhang et al., 2017b). Huan et al. analyzed coronary heart disease-
related genes by constructing co-expression networks (Huan et al., 
2013). In contrast, our study identified the key genes between 
AMI patients who developed HF within 6 months of follow-up 
and those who did not. Pang et al. constructed a comprehensive 
transcriptome profile using RNA-seq and miRNA-seq data of 
16 patients with HF and 8 non-failing individuals (Pang et  al., 
2016). Their results provided deep insights into the critical roles 
of lncRNAs in the pathology of HF. However, the genes identified 

by Pang et al. came from patients with HF including ischemic and 
non-ischemic causes, which have been shown to be heterogeneous 
in terms of clinical presentation and prognosis (Zimmer et al., 
2019). Our study identified the key genes in HF post-AMI, and 
determined the role the key genes as early prognostic biomarkers.

Transcriptional profiling has recently become a promising 
tool to investigate the specific molecular mechanisms underlying 
cardiovascular diseases, and to identify accurate biomarkers for 
disease progression (Vausort et al., 2014). Transcriptomic analysis 
of cardiac tissues would more accurately describe the etiology and 
pathophysiology of HF. However, biopsies may not always be a feasible 
option for patients with AMI. Peripheral blood cells are therefore 
an attractive alternative to cardiac biopsies. Numerous studies have 
demonstrated that PBMCs play important roles in the systemic and 
local inflammation associated with pathological remodeling after 
AMI (Epelman et al., 2015; Zimmer et al., 2019). Moreover, gene 
expression profiles of PBMCs and cardiomyocytes share common 
features in response to aldosterone treatment in hypertensive rats 

FIGURE 5 | MicroRNA-target regulatory network for the blue module. Blue triangles represent the microRNAs, and green nodes represent the genes. The node size 
indicates the degree in the network.
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(Gerling et al., 2013), suggesting that transcriptional signatures 
of PBMCs may serve as early sentinels predictive of pathological 
remodeling. In addition to being non-invasive and convenient, the 
use of blood as a surrogate tissue has proven valuable in effectively 
revealing gene signatures for the development of diagnostic and 
prognostic biomarkers in coronary artery disease (Wingrove et al., 
2008) and chronic HF (Cappuzzello et al., 2009).

AMI is the primary contributor of HF and loss of life among 
cardiovascular diseases (Anderson and Morrow, 2017). It is 
of clinical importance to identify factors associated with the 
molecular predisposition for developing HF to identify AMI 
patients requiring special care and treatment (Anderson and 
Morrow, 2017). In the WGCNA, we identified five unique gene 
modules based on gene expression profiling in PBMCs. The blue 
module was found to be most significantly related to the HF status 
in patients with AMI. The gene changes within the blue module 
were strongly induced on the first day of AMI, upon admission to 
the health care facility. These results suggested that the extent of 
myocardial damage during the acute phase is closely associated 
with the stable heart function progressing into HF (Epelman 
et al., 2015; Zimmer et al., 2019). The identified transcripts present 
during the first day of AMI can serve as a tool contributing to 
early diagnosis of the development of HF after AMI.

To comprehensively investigate the functions and pathways 
affected by genes in the blue module, a functional enrichment 
analysis was performed. We found that the genes in the blue module 
were significantly enriched in immunity and inflammation-related 
biological processes. These results were in accordance with previous 
reports which showed that the DEGs identified between HF and 
non-HF groups were highly associated with inflammatory-immune 
responses (Qian et al., 2018). Furthermore, our pathway analysis 
revealed that most annotated transcripts were associated with 
pathways related to inflammatory responses, the immune system, 

signal transduction, and apoptosis. Consistent with previous 
studies (Zhang et al., 2013), we also demonstrated that IL-6-JAK-
STAT3 signaling played an important role in the pathogenesis 
of AMI. Multiple studies have suggested that high levels of pro-
inflammatory cytokines like TNFα and IL-6 can contribute 
toward cardiac dysfunction and failure (Schumacher and Naga 
Prasad, 2018). The excessive apoptosis of myocardial cells has been 
demonstrated to induce the development of cardiac dysfunction 
after AMI (Zimmer et al., 2019). Therefore, these altered genes in 
the blue module are likely linked with the more severe initial injury 
to the myocardium which culminates in later stages of HF.

TFs are regulators of gene expression that are closely associated 
with the development and progression of post-infarction HF. In 
the current study, we assessed the effect of TFs on the expression 
of genes within the blue module, and identified seven TFs 
including SPI1, ZBTB7A, IRF8, PPARG, P65, KLF4, and Fos as 
significantly associated with these genes. Similarly, Qiao’s study 
also reported that SPI1, ZBTB7A, and IRF8 play crucial roles 
in the development of dilated cardiomyopathy and ischemic 
cardiomyopathy by regulating inflammation- and apoptosis-
related genes (Qiao et al., 2017). The SPI1 gene encodes an ETS-
domain TF that is involved in the differentiation or activation 
of macrophages and dendritic cells (Yashiro et al., 2019). 
Additionally, a recent study (Fischer et al., 2019) demonstrated 
that SPI1 shapes the neutrophil epigenome by positively, and 
negatively regulating distinct immune-associated gene sets, 
thereby protecting the host from undergoing uncontrolled 
activation of immune responses. Further, an RNA sequencing 
study examining cardiac hypertrophy demonstrated that SPI1 
was significantly up-regulated in the pathogenesis of adverse 
myocardial remodeling (Song et al., 2012). ZBTB7A is a POZ-
domain-containing protein that directly binds to many genomic 
regulatory sites and regulates transcription both by controlling 
chromatin structure and through recruiting TFs to genomic 
promoters and enhancers (Ramos Pittol et al., 2018). ZBTB7A 
has been reported to activate the transcription of nuclear factor 
kappa B (NF-κB)-induced genes by enhancing DNA accessibility 
in chromatin (Ramos Pittol et al., 2018). IRF8 is a TF from the 
interferon regulatory factor (IRF) family that is induced by 
interferon in a variety of cell types, such as macrophages and T 
cells (Jiang et al., 2014). IRF8 acts as a transcriptional activator 
or repressor through the formation of different DNA-binding 
heterocomplexes with multiple partners, including members of 
the IRF family (IRF1, IRF2, and IRF4) and non-IRF transcription 
factors (SPI1 and ZBTB17) (Jiang et al., 2014). Single-cell RNA 
sequencing analysis of the non-myocyte cellular landscape 
revealed that IRF8 is linked to chronic inflammation in the mouse 
heart (Skelly et al., 2018). Besides regulation of innate immune 
responses, IRF8 has been implicated as a tumor suppressor gene 
in certain cancers (Jiang et al., 2014). A study by Jiang et al. (2014) 
found that the expression level of IRF8 was down-regulated in 
the hearts of patients with dilated/hypertrophic cardiomyopathy. 
Moreover, the cardiac-specific overexpression of IRF8 in mice 
was found to be protective against aortic banding-induced 
cardiac hypertrophy. The authors provide mechanistic data to 
demonstrate that IRF8 interacts with nuclear factor of activated 
T cells 1 (NFATC1) to prevent nuclear translocation of the latter, 

FIGURE 6 | lncRNA-mRNA co-expression network for the blue module. 
Purple squares represent the lncRNA, and green nodes represent the genes.
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FIGURE 7 | Identification and validation of candidate hub genes. (A) Scatterplot of gene significance versus module membership for the development 
of HF after AMI in the blue module. (B) Common genes between the co-expression network (GSE59867) and the MCODE sub-module of PPI network. 
(C) Heatmap depicting the correlation between module eigengenes and HF progression in the GSE42955 dataset. (D) Distribution of module significance 
and errors in the modules associated with the development of HF after AMI in the GSE42955 dataset. (E) Scatterplot of gene significance versus 
module membership for the development of HF after AMI in the brown module (GSE42955). (F) Common hub genes between the co-expression network 
(GSE42955) and the candidate hub genes.
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and thus inhibits the hypertrophic response. PPARG is a member 
of the peroxisome proliferator-activated receptor subfamily of 
nuclear receptors (Mistry and Cresci, 2010). Once activated by 
a ligand, PPARG binds to its cognate DNA regulatory element 
as a heterodimer with retinoid X receptors and modulates 
conformation of the nuclear receptor complex resulting in 
the association of co-activators, release of co-repressors, and 
increased transcriptional activation of target genes (Mistry and 
Cresci, 2010). PPARG has been implicated in the pathology of 
numerous diseases including obesity, diabetes, atherosclerosis, 
and cancer (Mistry and Cresci, 2010). PPARG has also been 
shown to exert cardioprotective properties by suppressing 

inflammation, oxidative stress and apoptosis, and improving 
glucose and lipid metabolism (Mirza et al., 2019). Furthermore, 
when hypercholesterolemic rabbits were pretreated with the 
PPARG agonist rosiglitazone prior to ischemia/reperfusion or 
AMI, there was a significant decrease in the number of apoptotic 
cardiomyocytes and size of myocardial infarct observed (Liu et 
al., 2004). In a HF rat model, the PPARG agonist, pioglitazone, 
has also been shown to prevent myocardial fibrosis and HF 
development through the suppression of the Wnt-β-catenin 
signaling pathway (Kamimura et al., 2016). NF-κB is a homo- 
or heterodimeric complex formed by NFKB1/P105 or NFKB2/
P52 bound to either REL, P65/RELA, or RELB (Sorriento and 

FIGURE 8 | Identification of real hub genes. ROC curve analysis of the candidate hub genes in the GSE1869 dataset.
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Iaccarino, 2019). The heterodimeric P65-NFKB1 complex is 
the most abundant form of NF-κB. Inappropriate activation 
of NF-κB initiates the inflammatory cascade and apoptosis-
associated genes, which contributes to progressive cardiac 
dysfunction (Sorriento and Iaccarino, 2019). KLF4 can act 
both as activator and as repressor that binds the 5′-CACCC-
3′ core sequence (Liao et al., 2010). KLF4-deficiency impairs 
mitochondrial homeostasis and leads to HF development 
(Liao et al., 2010). Fos can dimerize with proteins of the JUN 
family, thereby forming the TF complex AP-1. Activation of AP-1 
has been shown to be a central component in TGFβ-mediated 
cardiac fibrosis (Gabriel-Costa, 2018). Collectively, our results 
revealed that the seven TFs formed a connected regulatory 
network with genes in the blue module, thus suggesting that 
the changes in these TF activities may have important roles in 
the occurrence and progression of post-infarction HF.

Although more than 90% of all mammalian genomes are 
positively transcribed, less than 2% are subsequently translated 
into proteins and a large proportion are transcribed as non-
protein-coding RNAs (Djebali et al., 2012; Yang et al., 2014). 
Non-coding RNAs are known to regulate gene expression 
through diverse mechanisms, such as chromatin remodeling, 
post-transcriptional regulation, and translational control 
(Djebali et al., 2012). Among the non-coding RNAs, miRNAs 
and lncRNAs have been investigated in patients with AMI. 
A recent study by Li et al. integrated multiple microarray 
data sets including GSE48060, GSE66360, GSE97320, and 
GSE19339 to identify miRNAs in patients with AMI and in 
control subjects (Li et al., 2019b). Four miRNAs, namely, 
let-7d, let-7b, miR-124-3, and miR-9-1, were predicted to be 
involved in the pathogenesis of AMI. However, these four 
miRNAs were not detected in our study. This discrepancy 
may be attributed to different inclusion criteria for patient 
selection. Our study found that miR-142-3p regulated a large 
portion of the genes in the blue module that contributed to 
the development of HF after AMI. Up-regulating miR-142-3p 
has been reported to ameliorate myocardial ischemic injury 
(Su et al., 2019) and attenuate cardiac hypertrophy (Liu et 
al., 2018a). Recently, Vausort et al. quantified the expression 
levels of five lncRNAs in patients with AMI using quantitative 
polymerase chain reaction (Vausort et al., 2014). The results 
showed that the levels of specific lncRNAs including aHIF, 
ANRIL, KCNQ10T1, MALAT1, and MIAT in PBMCs were 
differentially expressed following AMI and may assist in the 
prediction of cardiac outcomes. However, the selection of 
these five lncRNAs was subjective. Therefore, an unbiased 
transcriptional profiling approach would be more informative 
in identifying many other lncRNAs regulated following AMI, 
and potentially in discriminating HF development. In our 
study, through transcriptomics-based screening, we found that 
the 13 identified lncRNAs exhibited close interactions with 
genes in the blue module. Studies have revealed that AATBC 
(Zhao et al., 2015), ADAMTSL4-AS1 (Annunziato et al., 2019), 
EPB41L4A-AS1 (Liao et al., 2019), MIA-RAB4B (Thean et al., 
2017), MIR4697HG (Zhang et al., 2017a), GAS5 (Ni et al., 2019), 
SNHG12 (Tamang et al., 2019), MSX2P1 (Qiao et al., 2018), 
and LINC00852 (Liu et al., 2018b) are related to tumorigenesis 

and tumor progression in multiple cancers, such as bladder, 
breast, colorectal, and ovarian. Apart from the nine lncRNAs 
identified in biological experiments, LOC254896 (Singh et al., 
2018), LINC01000 (Mitchell et al., 2017), LINC00893 (Li et al., 
2019a), and LINC00537 (Li et al., 2017b) were also reported 
to be significantly differentially expressed between diseased 
and normal tissues in some transcriptional profiling analyses. 
Considering their reproducibility across platforms and cohorts, 
the three transcripts may not be technical artifacts, but rather 
surrogates of the underlying biology. To date, there are few 
studies on AMI showing the functional role of the miRNAs 
and lncRNAs identified in the present WGCNA. Functionally 
related genes often exhibit similar expression patterns under 
diverse conditions in DNA microarray experiments (Segal et 
al., 2003). Thus, analysis of gene co-expression relationships 
has been considered to be a useful method for exploring the 
functions of many genes for which information is currently 
unavailable (Wang et al., 2019). By constructing the miRNA-
target regulatory network and lncRNA-mRNA co-expression 
network, the biological functions of the non-coding RNAs 
can be inferred from the GO and KEGG pathway enrichment 
analyses of the known genes in the module. Therefore, the 
functional annotation of the blue module detected by the 
WGCNA provided us with a first step toward uncovering 
functions of the miRNAs and lncRNAs in AMI on a global 
scale. Additional work will be required to delineate regulatory 
functions for these non-coding RNAs in the pathological 
remodeling after AMI.

Our study identified 211 transcripts significantly affected in 
HF patients, of which six of the most promising, namely, BCL3, 
HCK, PPIF, S100A9, SERPINA1, and TBC1D9B, were analyzed 
further. The IκB family member, BCL3, was initially identified 
as a proto-oncogene (Kreisel et al., 2011). Numerous studies 
have demonstrated that BCL3 not only inhibits the nuclear 
translocation of the NFκB p50 subunit in the cytoplasm, but 
also contributes to the regulation of NFκB target genes in the 
nucleus (Gordon et al., 2011). BCL3 expression has been shown 
to negatively regulate inflammatory responses through limiting 
emergency granulopoiesis (Kreisel et al., 2011). Increased 
expression of NFκB p50 promotes cardiac remodeling and 
deterioration of cardiac function following AMI (Frantz et al., 
2006). Moreover, BCL3 was shown to synergize with PPARG 
coactivator 1α (PGC-1α) to activate estrogen-related receptor α 
(ERRα) (Yang et al., 2009). The deactivation of the PGC-1α/ERRα 
axis are implicated as important mechanisms in the transition 
from compensated cardiac hypertrophy to HF (Schilling and 
Kelly, 2011). HCK is a non-receptor tyrosine kinase and plays 
an important role in the regulation of innate immune responses, 
phagocytosis, cell survival and proliferation, and cell adhesion 
and migration (Kovács et al., 2014). HCK has also been described 
as the key regulator of phagocytosis in macrophages (Tao et al., 
2015). When the phagocytosis of apoptotic cardiomyocytes is 
defective, a persistent proinflammatory state chronically exists in 
the setting of ischemic injury, thereby predisposing the patients 
to impaired cardiac function (Tao et al., 2015). PPIF locates in 
the inner mitochondrial membrane and is involved in regulation 
of the mitochondrial permeability transition pore (mPTP). The 
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immunosuppressive agent cyclosporin A exhibited significant 
cardioprotective effects against ischemic injury through 
inhibiting mPTP formation via binding with PPIF (Zhang et 
al., 2019). S100A9 is a calcium- and zinc-binding protein and 
is constitutively expressed in neutrophils, dendritic cells, and 
monocytes. S100A9 deficiency leads to an exacerbated release 
of cytokines in dendritic cells following stimulation of toll-like 
receptors (Averill et al., 2011). Additionally, S100A9 has been 
shown to exert a protective role in preventing exaggerated tissue 
damage by scavenging oxidants (Gomes et al., 2013). SERPINA1 
is the most abundant serine protease inhibitor in human blood 
and exerts anti-inflammatory and immune-modulatory effects. 
Genetic SERPINA1 deficiency was associated with increased 
cardiovascular risk (Curjuric et al., 2018). TBC1D9B, a GTPase-
activating protein for Rab family protein, positively regulated 
autophagic flux by interacting with LC3B (Liao et al., 2018). 
Taken together, we found that BCL3, HCK, PPIF, S100A9, 
and SERPINA1 may have important roles in the development 
of HF through regulating local and systemic inflammation. 
Furthermore, the ROC analysis has indicated that the six 
identified hub genes are likely to be good biomarkers with high 
sensitivity and specificity for HF prognosis in patients with 
AMI. Further studies and experimental verification are needed 
to determine clinical usefulness of the six hub genes as a non-
invasive test for prognosis of HF development.

This study is significant in that it identifies several key 
genes involved in HF development in post-AMI patients via 
comprehensive bioinformatics methods. To our knowledge, 
this was the first study to identify key lncRNAs associated 
with the development of post-infarction HF through the use 
of probe re-annotation and the WGCNA algorithm. These 
findings may serve to clarify the pathophysiology of cardiac 
remodeling and to identify blood biomarkers in patients at 
high risk for the development of HF following AMI. However, 
mRNA levels and protein expression of the identified genes, 
including 7 TFs, 26 miRNAs, 13 lncRNAs, and 6 hub genes 
were not confirmed via further experiments. Additionally, 
the probe re-annotation in microarrays is not capable of 
identifying all lncRNAs, and thus a deep RNA sequencing 
experiment that encompasses cardiac coding (mRNA) and 
non-coding (miRNA and lncRNA) transcriptomes will 
provide a more detailed understanding of the myocardial 
transcriptome landscape in HF after AMI.

CONClUsIONs
Our study used the WGCNA to construct a gene co-expression 
network, and to identify and validate the key modules and 
hub genes associated with the development of HF after 
AMI. Six hub genes, including BCL3, HCK, PPIF, S100A9, 
SERPINA1, and TBC1D9B that differentiated on admission 
after myocardial infarction the HF patients from the non-HF 
ones, can serve as early prognostic biomarkers of post-AMI 
patients. Moreover, seven TFs (SPI1, ZBTB7A, IRF8, PPARG, 
P65, KLF4, and Fos), as well as miR-142-3p, and LINC00537 
were predicted to regulate the key genes that contributed to 

the pathophysiological consequences of AMI. Although our 
investigation is of a preliminary nature, this study provides new 
insights into the pathogenesis of HF following AMI and may, 
therefore, have significant implications for potential therapeutic 
targets of AMI.
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