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The COVID-19 pandemic has proved to be one of the most disruptive public health emergencies in recent
memory. Among non-pharmaceutical interventions, social distancing and lockdown measures are some
of the most common tools employed by governments around the world to combat the disease. While
mathematical models of COVID-19 are ubiquitous, few have leveraged network theory in a general
way to explain the mechanics of social distancing. In this paper, we build on existing network models
for heterogeneous, clustered networks with random link activation/deletion dynamics to put forth real-
istic mechanisms of social distancing using piecewise constant activation/deletion rates. We find our
models are capable of rich qualitative behavior, and offer meaningful insight with relatively few interven-
tion parameters. In particular, we find that the severity of social distancing interventions and when they
begin have more impact than how long it takes for the interventions to take full effect.

� 2022 Published by Elsevier Ltd.
1. Introduction

The global COVID-19 pandemic has upended modern life an
placed an enormous epidemiological, economic, and social burden
on the world’s resources. The gravity of events has brought the
need for epidemiological modeling into sharp focus. As the pan-
demic spread around the world in the absence of a vaccine, non-
pharmaceutical interventions including social distancing, quaran-
tine, and lockdown measures proliferated, and bringing these
interventions into modeling efforts has remained paramount.

In recent years, network-based models of epidemic spread have
become an increasingly popular paradigm (Pastor-Satorras et al.,
2015; Kiss et al., 2017), and network science generally has been
recognized for its potential to contribute solutions to the current
crisis (Eubank et al., 2020). Most network models represent indi-
viduals as nodes in a network, and their contacts as edges connect-
ing the nodes. Moreover, many models assume that the network is
static–that the edges between nodes don’t change over time–and
thus the epidemic spreads from node to node across these edges.
Among static network models, pairwise models (Keeling, 1999;
Eames and Keeling, 2002) are both frequently used and well-
studied. Pairwise models track not only the number of nodes in a
given state, but pairs, triples, and higher order motifs as well
(Fig. 1). An advantage of pairwise models is that in their full form,
they exactly model (in expectation) the continuous time Markov
chain formulation of epidemic spread on a network (Taylor et al.,
2012).

Pairwise models have been successfully applied to a number of
disease natural histories and different network types. Two impor-
tant network features that play a role in the theory of pairwise
models are degree heterogeneity and clustering. The degree of a
node in a network is the number of edges to which it is connected,
and the degree distribution is the probability distribution of select-
ing a random node with a given degree. The degree distribution
plays a fundamental role in many network models, and is particu-
larly powerful when described as a probability generating function.
The clustering coefficient is the ratio of triangles to connected tri-
ples in the network. While clustering is an important component of
network structure, it has not widely been incorporated to pairwise
models. We acknowledge two major benefits of degree heteroge-
neous, clustered models. First, including both or either as modeling
consideration affects epidemic dynamics in a nontrivial way
(House and Keeling, 2011; Keeling, 1999) and second, both have
been shown to be features of realistic contact networks (Read
et al., 2008).

Though static networks model some forms of complexity well,
an important aspect of real-world contact networks is that some
connections change in response to disease dynamics or public
health measures. By relaxing the static network assumption,
dynamic or ‘‘adaptive” network models (Gross and Sayama,
2009) can capture both the dynamics of the network and the epi-
demic dynamics on the network. A number of models have been
recently proposed that describe a variety of network dynamic pro-
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Fig. 1. Diagrams of network structures whose evolution is modeled by the pairwise model: (a) node in state A, (b) pair in state A� B, (c) triple in state A� B� C.
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cesses. Gross et al. (2006) introduced a model of edge rewiring,
where susceptible individuals break connections with infectious
individuals and reconnect to susceptible individuals at random. A
related model of adaptive dynamics is ‘‘relational exchange”
(Scarpino et al., 2016), where an node in contact with an infectious
node are rewired to a susceptible node. Another model for network
dynamics is random link addition/deletion (Kiss et al., 2012) where
individuals break and form new contacts and constant rates. Their
approach is notable for its intuitiveness as a simple dynamic
model, and also its use of probability generating functions as a tool
to describe network dynamics. A related model is link addition/
deletion on a fixed network (Tunc et al., 2013; Shkarayev et al.,
2014), where individuals can temporarily deactivate contacts with
infectious individuals, and reactivate them when their contact is
not infectious. While much of the focus of the adaptive network lit-
erature has been involved in analyzing the resulting dynamical
systems, particularly for SIS-type diseases, some works have
focused on the role of network dynamics in controlling or mitigat-
ing epidemic spread (Youssef and Scoglio, 2013; Sélley et al., 2015).

Network models in general offer a compromise between two
other common modeling techniques: compartment models and
agent-based simulations. They are able to capture more complex
contact structure than simple compartment models, while offering
analytical tractability that many agent-based simulations lack.
Despite this, models of non-pharmaceutical interventions have
tended to favor simulation or compartment models (Ahmed
et al., 2018; Davey et al., 2008). In the early stages of the COVID-
19 pandemic, complex individual-based simulations offered major
insights about the effectiveness of non-pharmaceutical interven-
tions (Ferguson et al., 2020). However, the high computational cost
can make investigating the impacts of intervention policies with a
large number of parameters a challenging endeavor. Network
models, especially those with a relatively small number of equa-
tions, can offer broad insights at reduced cost. While some models
of social distancing have incorporated contact network structure as
a major consideration (Valdez et al., 2012; Glass et al., 2006), dif-
ferential equation network models of such interventions are
uncommon. And while other authors have investigated similar
pressing questions posed by the COVID-19 pandemic (Lauro et al.
(2021), for one), many model social distancing through a time-
varying transmission rate. Adaptive network models have the
potential to model social distancing directly, and can offer a new
perspective on questions surrounding social distancing and other
non-pharmaceutical interventions made pressing by the COVID-
19 pandemic.

In this paper, we develop simple, novel mechanisms to incorpo-
rate social distancing into a network model of epidemic spread,
using COVID-19 as the central case study to investigate the impact
of a range of interventions. The goal of this paper is to model the
2

effects of social distancing that can be understood on a social level,
as well as an epidemiological level. Using network dynamics, we
develop social distancing schemes by adding and deleting edges
from the network at specified rates. The resulting social distancing
schemes can be concretely understood as reducing (and eventually
increasing) the average number of contacts of nodes in the net-
work, rather than the more abstract alternative of reducing (and
eventually increasing) the transmission rate. Our approach offers
potential fruitful avenues of model calibration–with increasing
availability of mobile phone mobility data, modeling social dis-
tancing policies directly through network dynamics may yield
fruitful and flexible real-world models. This paper offers an early
theoretical step in such a formulation.

First, we develop a pairwise SEIR model with random link acti-
vation/deletion dynamics–that is edges are added and deleted at
constant rates independent of the epidemic dynamics on the net-
work. Furthermore, the model incorporates degree heterogeneity
and clustering, which offers increased realism over simpler net-
work or compartment models. To apply the model, we use bipar-
tite mixing networks to generate large heterogeneous, clustered
contact networks coupled with disease dynamics given by epi-
demiological parameters estimated for COVID-19. Next, we
develop two mechanisms of social distancing using piecewise con-
stant link activation and deletion rates. The first is a single inter-
vention event, where the average number of contacts decreases,
is held constant, and then recovers; the second allows for multiple
interventions which restart depending on the prevalence of the
disease. While we investigate the implications of these policies
for COVID-19 on a specific type of heterogeneous, clustered net-
work, both the adaptive network model and the social distancing
schemes are more generally applicable to a variety of networks
and epidemiological parameters. Finally, we consider the public
health implications of the latter model, finding that certain inter-
vention parameters are more important than others in achieving
an effective reduction in overall infections.
2. Model

To begin construction of the full model, we consider SEIR
dynamics on a static network. Pairwise equations for an SEIR epi-
demic can be found in Keeling et al. (1997) and Rand (1999). Model
variables include the expected number of susceptible, exposed,
infectious, and recovered nodes (½S�; ½E�; ½I� and ½R� respectively) as
well as the expected number of pairs in each state. For example,
½SS� is the expected number of connected pairs of susceptible
nodes, while ½SI� is the expected number of connected pairs of sus-
ceptible and infectious nodes. The expected number of connected
triples is also considered (½SSI�; ½ESI�; ½ISI�), though differential equa-
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tions for these variables are not written. The full SEIR pairwise
model is

_½S� ¼ �b½SI�; ð1Þ
_½E� ¼ b½SI� � g½E�; ð2Þ
_½I� ¼ g½E� � c½I�; ð3Þ
_½SS� ¼ �2b½SSI�; ð4Þ
_½SE� ¼ b½SSI� � b½ESI� � g½SE�; ð5Þ
_½SI� ¼ g½SE� � b½SI� � b½ISI� � c½SI�; ð6Þ
_½EE� ¼ 2b½ESI� � 2g½EE�; ð7Þ
_½EI� ¼ b½ISI� þ b½SI� þ g½EE� � ðcþ gÞ½EI�; ð8Þ
_½II� ¼ 2g½EI� � 2c½II�; ð9Þ

where b is the transmission rate, c is the recovery rate, and g is the
rate at which exposed individuals become infectious. The nodes and
edges also obey conservation equations

N ¼ ½S� þ ½E� þ ½I� þ ½R� ð10Þ
and

hkiN ¼ ½SS� þ ½EE� þ ½II� þ ½RR�
þ 2 ½SE� þ ½SI� þ ½SR� þ ½EI� þ ½ER� þ ½IR�ð Þ ð11Þ

where N is the number of nodes and hki is the average degree of the
network. We note that with the conservation equations, we do not
need terms of the type ½AR� to determine the evolution of ½S�; ½E�; ½I�,
and ½R�.

The full model requires dynamical equations for triples of the
form ½ASI� and higher order motifs as well, leading to a system that
is prohibitively large for computations. To make the model tract-
able, we approximate the expected number of triples ½ASI� in terms
of pairs and individual nodes, thus closing the system (1)-(9). An
approximation of this kind is referred to as a triple closure. For tri-
ples of the type A� S� I, using the techniques of House and
Keeling (2011), we begin with a general triple closure
approximation

½ASI� � ½AS�½SI�

X
k

ðk2 � kÞ½Sk�

X
k

k½Sk�
 !2 1� /þ /

Nhki½AI�X
k

k½Ak�
 ! X

k

k½Ik�
 !

0
BBBB@

1
CCCCA;

ð12Þ
where ½Ak� is the expected number of nodes in state A with degree k
and / is the clustering coefficient of the network. Tracking ½Ak� for
any of the disease states A requires a significantly larger system
of equations, so finding a workaround is a worthwhile goal. To sim-

plify (12), we approximate
P

kðk2 � kÞ½Ak� ¼ hk2 � ki½A� andP
kk½Ak� ¼ hki½A� for any disease state A, where pk is the proportion

of nodes with degree k; hki ¼PN�1
k¼0 kpk is the average degree, and

hk2 � ki ¼PN�1
k¼0 ðk2 � kÞpk. The resulting triple closure is

½ASI� � hk2 � ki
hki2

½AS�½SI�
½S� 1� /þ /

N
hki

½AI�
½A�½I�

� �
: ð13Þ

To the authors knowledge, this closure is novel; however it
bears great similarity to a triple closure given in Keeling (1999),

which replaces hk2 � ki=hki2 with ðhki � 1Þ=hki. The two are equiv-

alent if hk2i ¼ hki2, as is the case with homogeneous networks. For
heterogeneous networks, we propose (13) is an improvement, and
we will use (13) to close the system (1)-(9).

While we will use a simplified approximation to (12) we note
for interested readers that House and Keeling (2011) offer an
3

approach to use (12) exactly. They use the probability generating
function of the degree distribution gðxÞ ¼Pkpkx

k and new dynam-
ical variables such as h, the probability that an edge has not trans-
mitted the infection and Y, the sum

P
kk½Ik� to develop an SIR model

for heterogeneous, clustered networks. In the Supplementary
Material, we develop an analogous heterogeneous, clustered SEIR
model complete with link activation and deletion. However, the
added complexity of the model is not necessary for the primary
investigations of this paper, and we continue developing the SEIR
model using the triple closure (13).

With the static model closed, we now incorporate the effects of
network dynamics. Kiss et al. (2012) introduced a simple model of
network dynamics, termed random link activation/deletion
(RLAD). In this model, independent of epidemic dynamics nonexis-
tent edges are added to the network (or activated) at a constant
rate a and existing edges are removed from the network (or
deleted) at a constant ratex. Ignoring epidemic spread and looking
at the effects of activation/deletion only, the equation for edges of
type ½AA� is

½ _AA� ¼ a ½A�ð½A� � 1Þ � ½AA�ð Þ �x½AA� ð14Þ
and for type ½AB� we have

½ _AB� ¼ a ½A�½B� � ½AB�ð Þ �x½AB�: ð15Þ
Next, we have to consider the effect of activation/deletion on the

now time-dependent network quantities: degree distribution

moment terms hkiðtÞ; hk2 � kiðtÞ and the clustering coefficient /ðtÞ.
Following the example of Kiss et al. (2012), dynamical equations
for the first two can be easily derived by finding the partial differen-
tial equation for the degree distribution generating function

gðx; tÞ ¼
XN�1

k¼0

pkðtÞxk: ð16Þ

The Kolmogorov equations describe the evolution of pkðtÞ, the
proportion of degree k nodes at time t:

_pk ¼ a N � kð Þpk�1 � aðN � 1� kÞ þxkð Þpk þxðkþ 1Þpkþ1: ð17Þ
With some straightforward algebra, we derive a partial differen-

tial equation for the degree distribution generating function:

@g
@t

¼ ðx� 1Þ aðN � 1Þg � ðaxþxÞ @g
@x

� �
: ð18Þ

The network quantities hki and hk2 � ki can be computed from

the generating function as hki ¼ gxð1; tÞ and hk2 � ki ¼ gxxð1; tÞ.
Then, from (18) we derive the dynamical equations:

h _ki ¼ aðN � 1Þ � ðaþxÞhki; ð19Þ
h _k2 � ki ¼ 2aðN � 2Þhki � 2ðaþxÞhk2 � ki: ð20Þ

The clustering coefficient is defined as the ratio of triangles to
connected triples in the network. To compute _/, we start with
the Kolmogorov equations for qkðtÞ, the probability that there are
k triangles in the network at time t:

_qk ¼ aðL� 3ðk� 1ÞÞqk�1 � ðaðL� 3kÞ þ 3xkÞqk þ 3xðkþ 1Þqkþ1

ð21Þ

where L ¼ Nhk2 � ki=2 is the number of connected triples. From this
we derive the differential equation for the expected number of tri-
angles hTi as

h _Ti ¼ aL� 3ðaþxÞhTi: ð22Þ
We note that writing (22) as h _Ti ¼ aðL� 3TÞ � 3xhTi offers a

heuristic interpretation of the evolution of triangles: there are
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L� 3T connected triples in the network that can form into trian-
gles, and there are 3T triangles (triple counted) that can be
destroyed by edge removal. From (22), we compute the equation
for the clustering coefficient /ðtÞ:

_/ ¼ 3a� aþxþ 2aðN � 2Þ hki
hk2 � ki

 !
/: ð23Þ

In Figs. 2, we show the results of these equations compared to
simulations, and find that they are in excellent agreement. How-
ever, we note that there are circumstances where this agreement
is not so good. For sparse networks (low average degree), the
agreement is not as strong as compared to networks with higher
average degree. Moreover, for intervention schemes that involve
changing values of a and x, such as those described in Section 3,
the model equations are less accurate (see Supplementary Material
for examples).

Finally, we have a full set of equations for a pairwise SEIR for a
heterogeneous, clustered network with random link activation and
deletion:
Fig. 2. Comparison of the model to simulation. 100 trials were run on a unipartite contac
N ¼ 500;M ¼ 125; k ¼ 3, and thus l ¼ 12. Initial network parameters are hkið0Þ �
½E�0 ¼ ½I�0 ¼ 10; ½S�0 ¼ 480; ½R�0 ¼ 0. Epidemiological and network dynamic parameters are
shown in light gray with the mean in black. Model results are (a) ½I�ðtÞ, red circles; (b) ½

4

_½S� ¼ �b½SI�; ð24Þ
_½E� ¼ b½SI� � g½E�; ð25Þ
_½I� ¼ g½E� � c½I�; ð26Þ
_½SS� ¼ �2b½SSI� þ a½S�ð½S� � 1Þ � ðaþxÞ½SS�; ð27Þ
_½SE� ¼ b½SSI� � b½ESI� � g½SE� þ a½S�½E� � ðaþxÞ½SE�; ð28Þ
_½SI� ¼ g½SE� � b½SI� � b½ISI� � c½SI� þ a½S�½I� � ðaþxÞ½SI�; ð29Þ
_½EE� ¼ 2b½ESI� � 2g½EE� þ a½E�ð½E� � 1Þ � ðaþxÞ½EE�; ð30Þ
_½EI� ¼ b½ISI� þ b½SI� þ g½EE� � ðcþ gÞ½EI� þ a½E�½S� � ðaþxÞ½EI�; ð31Þ
_½II� ¼ 2g½EI� � 2c½II� þ a½I�ð½I� � 1Þ � ðaþxÞ½II�; ð32Þ

h _ki ¼ aðN � 1Þ � ðaþxÞhki; ð33Þ
h _k2 � ki ¼ 2aðN � 2Þhki � 2ðaþxÞhk2 � ki; ð34Þ

_/ ¼ 3a� aþxþ 2aðN � 2Þ hki
hk2 � ki

 !
/; ð35Þ

where
t network generated from a bipartite network with Poisson degree distributions and
34; hk2 � kið0Þ � 1466, and /ð0Þ ¼ 0:323. Initial conditions for node states are
b ¼ 0:006;g ¼ 0:2; c ¼ 1=10;a � 1:4� 10�4;x ¼ 0:0067. Individual simulations are
R�ðtÞ, green circles; and (c) hkiðtÞ, (d) hk2 � kiðtÞ, (e) /ðtÞ, blue circles.
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½SSI� ¼ hk2 � ki
hki2

½SS�½SI�
½S� 1� /þ /

N
hki

½SI�
½S�½I�

� �
; ð36Þ

½ESI� ¼ hk2 � ki
hki2

½SE�½SI�
½S� 1� /þ /

N
hki

½EI�
½E�½I�

� �
; ð37Þ

½ISI� ¼ hk2 � ki
hki2

½SI�2
½S� 1� /þ /

N
hki

½II�
½I�2

 !
: ð38Þ

To demonstrate the validity of this model, we test it against
numerical simulations (Fig. 2) on a heterogeneous, clustered net-
work—the construction of which is described in Section 2.1.
Clearly, the model (24)-(35) is in excellent agreement with the
simulations.

2.1. Network and Epidemiological Parameters

The goal of this paper is to investigate social distancing policies
through random link activation/deletion dynamics, which are con-
trolled by the activation and deletion rates a and x. Moreover, in
Fig. 3. Example contact network (b) and its degree distribution (c) generated from a
locations are Poisson (as described in Section 2.1) with N ¼ 200;M ¼ 50, an.d k ¼ 2.

5

building intervention schemes in Section 3 new parameters are
introduced. In order to consistently compare the efficacy of inter-
vention schemes, network and epidemiological parameters are
held the same across schemes. As such, we restrict our attention
to a particular heterogeneous, clustered network and epidemiolog-
ical parameters that are plausible for COVID-19. For completeness,
other network types and epidemiological parameters are consid-
ered in the electronic supplementary material.

A consistent challenge of network models is constructing realis-
tic contact networks. In particular, degree heterogeneity and sig-
nificant clustering are observed in real world social networks
(Read et al., 2008). To construct such a contact network, we con-
sider a bipartite mixing network (Eubank et al., 2004) with N indi-
viduals and M mixing locations (Fig. 3a). Two individuals are in
contact if they both connect to the same mixing location, so we
form a contact network as the unipartite projection of the bipartite
mixing network (Fig. 3b). To introduce degree heterogeneity, we
construct a bipartite mixing network where both individuals and
mixing locations have Poisson degree distributions Newman
bipartite mixing network (a). Degree distributions for the individuals and mixing
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et al. (2001). The average individual degree k and average mixing
location degree l are related by

Nk ¼ Ml; ð39Þ
so only N;M, and k are needed to characterize this network. Using
generating function techniques (Newman et al., 2001), we compute

hki ¼ N
M

k2; ð40Þ

hk2 � ki ¼ N
M

� �2

k3ðkþ 1Þ; ð41Þ

/ ¼ 1
kþ 1

; ð42Þ

for the unipartite contact network, which exhibits both degree
heterogeneity (Fig. 3b) and clustering. Unless otherwise specified,
the networks in this article are generated using
N ¼ 10;000;M ¼ 2;500, and k ¼ 4. We acknowledge that though
we use a bipartite mixing network to generate a heterogeneous,
clustered unipartite contact network, our network dynamics are
limited to the contact network. Mobility networks (Chang et al.,
2021) have been used to great effect for COVID-19, and suggest a
fruitful path forward for bipartite network dynamics.

Numerous recent studies have estimated important epidemio-
logical quantities for the spread of Sars-CoV-2, including the length
of the incubation period, the length of the infectious period, and
the basic reproduction number R0. We choose the plausible esti-
mates in line with recent studies: average incubation period of
5 days (Linton et al., 2020; Zhang et al., 2020), average infectious
period of 10 days (You et al., 2020), and R0 ¼ 2:4 (Li et al., 2020;
Anastassopoulou et al., 2020). To incorporate these into the model,
we note that 1=g and 1=c are the average lengths of the incubation
and infectious periods respectively, and thus g ¼ 0:2; c ¼ 0:1. We
do not derive R0 for the model (24)-(35), but instead consider the
basic reproduction number for a heterogeneous, clustered popula-
tion from Miller (2009), which is given as the series

R0 ¼ hk2 � ki
hki

b
bþ c

� /
hk2 � ki

hki
b

bþ c

� �2

þ . . . ð43Þ

Ignoring higher order terms, we can compute b from (43) when
R0 ¼ 2:4 With these parameters, we plausibly model the spread of
COVID-19 through a moderately sized heterogeneous, clustered
population in the following sections, while introducing various
social distancing interventions to mitigate or control the epidemic.

3. Analysis

Social distancing and lockdown measures have been used to
curb the spread of infectious diseases throughout history, and are
some of the most ubiquitous non-pharmaceutical interventions
in the current COVID-19 pandemic. Many compartment-based
models that incorporate social distancing do so in a phenomeno-
logical manner through the transmission rate, but adaptive net-
work models present an opportunity to describe a social
distancing mechanism in a fundamental way. A simple model of
such interventions can be naturally characterized by the link acti-
vation/deletion process. During periods of social distancing and
lockdown, individual contacts break; during periods of relaxation
of the measures, individual contacts form. In this section, we
develop two social distancing schemes (Fig. 4) based on the preva-
lence ½I�ðtÞ. Other models of social distancing may be based on
other epidemiological indicators and have different goals–for
instance, keeping the effective reproduction number Re below
one, or mitigating transmissions by highly-connected individuals.
However, the schemes presented here are in response to preva-
lence alone, seeking to model social distancing policies that
6

respond to solely to case numbers. Both social distancing schemes
begin when the prevalence ½I�ðtÞ reaches some specified threshold
level. For the simple intervention scheme, contacts break as the
intervention is implemented, then contacts stay fixed as the inter-
vention is in place, and finally contacts form until they reach their
pre-intervention levels. The prevalence-dependent scheme unfolds
similarly, but with two notable differences. First, after the inter-
vention, contacts do not start forming again until the prevalence
has dropped below the threshold. Second, any time the prevalence
reaches the threshold again, the intervention restarts. This allows
for multiple implementations of a social distancing intervention
throughout the course of the epidemic.

Critically, we do not treat these schemes as a mere modeling
exercise, but are interested in the impact of each intervention
scheme at the end of the epidemic. We develop two simple met-
rics to evaluate the effectiveness of the simple and prevalence-
dependent interventions. First, we consider each intervention’s
ability to reduce the cumulative number of infections, known
as the final size of the epidemic. Second, we also consider how
many infections occur above the threshold value for prevalence.
These two measures reflect two different yet crucial public
health goals, and do not necessarily agree on which interven-
tions are the most effective. Both must be considered to get a
complete picture of an intervention’s impact. In this section,
we derive these two metrics mathematically, and describe the
simple and prevalence-dependent interventions while assessing
their overall effects.

3.1. Evaluation Metrics

The first measure of intervention effectiveness we introduce is
the Relative Change in the Final Size (RCFS). The final size of an epi-
demic is the cumulative number of infections that occur over the
course of the epidemic. In terms of the model, the final size can
be found as the limiting value of the recovered individuals ½R�:
lim
t!1

½R�ðtÞ ¼ R1:

We compare the final size of the epidemic with no intervention
R1 to the final size where an intervention has been implemented

Rint
1 . We then define the RCFS as

RCFS ¼ Rint
1 � R1
R1

: ð44Þ

An effective intervention will lead to a decrease in final size, so
an RCFS near 0 is unsuccessful, while an RCFS near �1 is extraordi-
narily successful. However, it is important to note that for brief,
intense intervention schemes, it is possible that the final size actu-
ally increases. In this case, the network parameters change quickly,
before significant disease spread, so the epidemic unfolds on a fun-
damentally different static network.

While the relative change in the final size provides an overall
measure of the effectiveness of interventions, reducing cumulative
infections alone is not the only public health goal that an interven-
tion scheme might seek to accomplish. In some schemes, a large
number of infections occur above the threshold despite a large
reduction in the final size of the epidemic. This can be particularly
pernicious if the threshold represents some fixed resource such as
healthcare capacity, where a large number of infections above the
threshold could lead to higher mortality and other negative out-
comes. To account for this, we compute the Cumulative Infections
Above Threshold (CIAT). Infections are above threshold whenever
½I�ðtÞ � qN P 0, and thus the CIAT can be defined by

CIAT ¼
Z 1

0
max ½I�ðtÞ � qN;0f gdt: ð45Þ



Fig. 4. Schematic of the Simple and Prevalence-Dependent Interventions. Both interventions are triggered by a threshold condition, and proceed through the described
intervention until the epidemic ends and the impacts of the interventions can be evaluated.
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For computation purposes, we can characterize (45) summing
the integrals over time periods when ½I�ðtÞ � qN P 0. Let
t1; t2; . . .be the sequence of times when ½I� ¼ qN. Assuming ½_I�– 0
at any time in the sequence, the continuity of ½I�ðtÞ implies that
the prevalence is above the threshold on the intervals ½t2i�1; t2i�
for i ¼ 1;2;3; . . .Thus, the CIAT is

CIAT ¼
X
i

Z t2i

t2i�1

½I�ðtÞ � qNdt: ð46Þ

We note that the units of CIAT are person-time–for a metric
with units of population, we compute the Average Infections Above
Threshold (AIAT):

AIAT ¼ CIATX
i

t2i � t2i�1
ð47Þ

Using the relation ½ _R� ¼ c½I�, Eq. (47) becomes

AIAT ¼

X
i

½R�ðt2iÞ � ½R�ðt2i�1Þ

c
X
i

t2i � t2i�1
� qN; ð48Þ

which is convenient for computations.

3.2. Simple Intervention

For a simple model of social distancing, we consider a scheme
that unfolds in three successive phases, each with variable length.
The effects of the intervention scheme on the contact network are
characterized through the average number of contacts hkiðtÞ. The
intensity of the intervention can be thought of as how severely
the average number of contacts are reduced, so we introduce a
severity parameter p 2 ½0;1Þ. The top panel of Fig. 5 shows how
the hki changes over time as the result of the intervention. In the
first phase, as social distancing measures are put into place, the
average number of contacts decreases from its pre-intervention
level hki0 to phki0. In the second phase, with the measures fully
in place, the average number of contacts remains constant at
phki. In the third phase, social distancing measures are relaxed
7

and the average number of contacts increases to its pre-
intervention level hki0.

To achieve this effect in the evolution of the average number of
contacts, we consider link activation rate aðtÞ and deletion rate
xðtÞ functions that are piecewise constant. These rate functions
can be seen in the bottom two panels of Fig. 5. Since contacts are
only broken in the first phase, xðtÞ ¼ x� in the first phase and 0
otherwise. Since contacts are only formed in the third phase,
aðtÞ ¼ a� in the third phase and 0 otherwise. As the dynamical
equation for hki (33) is a first-order linear ODE, the resulting curve
for hkiðtÞwill be piecewise exponential, and the values of a� andx�

are easily computed for a given p. Other than p, four other param-
eters characterize the simple intervention: the lengths of the three
phases LI; LH , and LR, and the threshold proportion of the population
q 2 ½0;1Þ to initiate the intervention. The full simple intervention
scheme can be described as follows:

� No intervention: the epidemic spreads unabated until ½I�
increases through qN (a ¼ x ¼ 0).

� Intervention Phase (length LI): intervention occurs, edges are
removed at a constant rate (a ¼ 0;x ¼ x�).

� Holding Phase (length LH): intervention holds, edges are neither
removed nor added (a ¼ x ¼ 0).

� Relaxation Phase (length LR): interventions are relaxed, edges
are added at a constant rate (a ¼ a�;x ¼ 0Þ.

To emphasize the value of using activation and deletion rates to
model social distancing, we compare the social distancing model
under consideration to two alternate approaches. First, we con-
sider the static network equivalent of the model (24)(35), which
requires only (24)-(32) and a ¼ x ¼ 0. Second, we consider the
standard SEIR model with homogeneous mixing. To model social
distancing in each case, we allow for the transmission rate b to
be time-varying, and in particular we vary it proportionally to
hkiðtÞ for the adaptive model. That is to say, if we let bad denote
the constant transmission rate in the adaptive network model,
the time-varying transmission rate for the alternative models is

bðtÞ ¼ badhkiðtÞ
hkið0Þ . Fig. 6 compares and contrasts the social distancing

mechanisms as hk2 � kið0Þ varies. In Fig. 6a, where



Fig. 5. Simple Intervention. Once the intervention begins, edges are deleted at ratex� for LI days until the average number of contacts hki drops to phki0. For the next LH days,
no changes are made to the nework. Then, edges are added at rate a� for LR days, until the average number of contacts hki increases to back to hki0.
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hk2 � kið0Þ ¼ hkið0Þ2 � hkið0Þ, all three models are relatively simi-

lar. However, as hk2 � kið0Þ (corresponding to greater variation in
degree), the alternative models qualitatively diverge from the
adaptive network model. This suggests that not only is incorporat-
ing network structure into the model essential, but also that con-
trolling social distancing through an adaptive process instead of
merely a time-varying transmission rate is important for increas-
ingly heterogeneous networks.

As the simple intervention scheme requires five ‘‘intervention”
parameters, p; q; LI; LH , and LR, exploring the full impact of the inter-
ventions is difficult. To better see the effects, we consider an exam-
ple scheme where we fix two parameter values in each and allow
the other three to vary. To focus on the impact of the severity
parameter p and the lengths of the intervention and relaxation
phases LI and LR, we set LH ¼ 15 and q ¼ 0:01 for the remainder
of this section. Thus, the intervention begins when infections reach
one percent of the population, and the holding phase is fixed at
15 days for all interventions. The other three parameters are
allowed to vary. This allows for both abrupt and gradual imple-
mentations of interventions and relaxation of measures, and differ-
ent levels of intervention intensity. Fig. 7 shows the prevalence of
some example intervention schemes, showing rich qualitative
behavior. To assess the effectiveness of the simple intervention
we plot the RCFS and the AIAT for a large number of parameter
combinations. We allow the lengths of both the intervention and
relaxation periods LI and LR to vary from 2 to 180 days, and con-
sider three different intensities p ¼ 0:125;0:25;0:5. The results
are shown in Fig. 8.

A significant common feature of the plots in Fig. 8a is a qualita-
tive boundary (solid white) that divides ðLI; LRÞ space into two dis-
tinct classes of the resulting infection curve (for p ¼ 0:125, this
occurs outside the boundaries of the plot). To the right of the
boundary, infection curves are characterized by a single ‘‘uniform
spike,” defined by an prevalence curve ½I�ðtÞ with two inflection
points and a single local maximum (Fig. 9a). To the left of the
boundary, infection curves take the form of either a single ‘‘non-
uniform spike” (Fig. 9b), with more than two inflection points
8

but only one local maximum, or multiple spikes (Fig. 9c), with
more than two inflection points and multiple local maxima. For
p ¼ 0:125 and p ¼ 0:25, only multiple spikes occur to the left of
the boundary. For small LI , the first spike is small and the second
spike is large, and occasionally the final size of the epidemic sur-
passes the static case due to network alterations. As LI approaches
the qualitative boundary, the second spike becomes shorter and
occurs later until negligible. This phenomenon can also be seen
in Fig. 8b: as LI increases, the AIAT decreases until the second spike
drops below the threshold qN, at which point the AIAT increases as
the first spike grows taller. For p ¼ 0:5 on the other hand, both
nonuniform spikes and multiple spikes are possible to the left of
the boundary. Multiple spikes occur in the region of ðLI; LRÞ space
enclosed by the dashed white curve, while a single nonuniform
spike occurs elsewhere left of the qualitative boundary.

A few other observations warrant comment. First, the length of
the intervention LI appears to be more important in determining
epidemic’s final size compared to LR. This is intuitive, as the most
significant changes to network structure occur during the interven-
tion phase. Second, as p increases, the qualitative boundary shifts
generally left. This means that for less severe interventions, single
uniform spikes will occur for smaller LI values. This observation
carries weight for repeated interventions, explored in Section 3.3,
as single uniform spikes are heavily penalized by the AIAT. Third,
nonuniform spikes occur for p ¼ 0:5, but not for p ¼ 0:125 or
p ¼ 0:25. We hypothesize that there may exist some threshold p�

where nonuniform spikes don’t occur below p�, but do above p�.
3.3. Prevalence-Dependent Intervention

While the simple intervention scheme provides a simple yet
general model of social distancing, its implementation lacks a
degree of realism. Interventions are put into place only once, and
the epidemic continues, often with infections spiking after mea-
sures begin to relax. In reality, we would expect public health mea-
sures to be responsive to rising prevalence. Moreover, continued
interventions might be triggered by some indicator, such as case



Fig. 6. Comparison of infection curves ½I�ðtÞ for alternate models of social distancing. The models compared are the adaptive network model (solid, orange), the static network
model with time-varying transmission rate (black, dashed) and homogeneous mixing model with time varying transmission rate (black, dotted). The simple intervention
process is given by p ¼ 0:125; q ¼ 0:01; LI ¼ 30; LH ¼ 15; LR ¼ 150. In each panel, hk2 � kið0Þ is varied, as well as b in order to result in R0 ¼ 2:4. In (a) we have
hk2 � kið0Þ ¼ 4032 and b ¼ 0:004, in (b) we have hk2 � kið0Þ ¼ 5120 and b ¼ 0:0031, and in (c) we have hk2 � kið0Þ ¼ 7680 and b ¼ 0:002. Initial conditions for the state
variables are Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1; ½SS� ¼ 639784; ½SE� ¼ 60; ½SI� ¼ 48; ½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters are g ¼ 0:2; c ¼ 0:1, and starting network
parameters are N ¼ 10;000; hkið0Þ ¼ 64;/ð0Þ ¼ 0:2.

Fig. 7. Example infection curves ½I�ðtÞ for the simple intervention with q ¼ 0:01. The other intervention parameters are (a) p ¼ 0:125; LI ¼ 30; LR ¼ 90, (b)
p ¼ 0:25; LI ¼ 60; LR ¼ 60, and (c) p ¼ 0:5; LI ¼ 15; LR ¼ 150. Solid orange curves are ½I�ðtÞ under the intervention, while dashed orange curves are ½I�ðtÞ without any
intervention. Gray dashed lines denote the starts of the intervention, holding, and relaxation periods. Initial conditions for the state variables are
Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1; ½SS� ¼ 639784; ½SE� ¼ 60; ½SI� ¼ 48; ½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters are b ¼ 0:0031;g ¼ 0:2; c ¼ 0:1, and starting network
parameters are N ¼ 10;000; hkið0Þ ¼ 64; hk2 � ki ¼ 5120;/ð0Þ ¼ 0:2.
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numbers, deaths, hospital capacity, etc. . .In this section, we adapt
the intervention scheme from Section 3.2 so that it may be reim-
plemented when a prevalence-based condition is satisfied, forming
the prevalence-dependent intervention. We begin with two more
realistic assumptions about how a public health response might
unfold. First, interventions are reimplemented any time the preva-
lence increases through some threshold. Second, the relaxation
phase of an intervention doesn’t begin until the prevalence has
dropped below the threshold. We incorporate these assumptions
into a new prevalence-dependent intervention scheme. The
scheme is determined by four parameters: q; p; LI , and LR. As before,
interventions begin when ½I� reaches qN; p is the severity of the
intervention, and LI and LR are now the maximum lengths of the
intervention and relaxation periods, which determine x� and a�

as in Section 3.2. We can define the new scheme as follows:

� As ½I� increases through qN, a new intervention is implemented.
� Intervention Phase: Once an intervention is implemented, edges
are deleted at rate x ¼ x� until hki ¼ phki0.
9

� Holding Phase: At the end of the intervention period, a holding
period begins (a ¼ x ¼ 0) until the prevalence has dropped
below the threshold qN. If the prevalence drops below the
threshold during the intervention period, the holding period
has length 0.

� Relaxation Phase: Edges are added at rate a ¼ a� until hki ¼ hki0,
or a new intervention is implemented.

It worth noting that compared to the simple intervention in
Section 3.2, the intervention, holding, and relaxation phases can
all be of variable length. For instance, if the average number of con-
tacts hki has not rebounded to hki0 by the time a new implementa-
tion begins, the resulting relaxation period is shorter than LR.
Moreover, in the subsequent intervention phase, edges delete until
hki ¼ phki0 and the phase is shorter than LI . In sum, whilex� and a�

are fixed, the average number of contacts is never less than phki0
and the effective lengths of different intervention and relaxation
phases may vary. An example implementation of the prevalence-
dependent scheme is shown in Fig. 10, which shows both holding



Fig. 8. Plots of the RCFS (a) and AIAT (b) for the LH ¼ 15 and q ¼ 0:01. For intensities p ¼ 0:125;0:25, and 0:5, the intervention period and relaxation period lengths LI and LR
vary from 2 to 180 days. In (a), the solid white curve denotes the qualitative boundary, to the right of which uniform spikes occur. The dashed white line in the third panel
denotes the boundary of the region where two spikes occur. Initial conditions for the state variables are Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1; ½SS� ¼ 639784;
½SE� ¼ 60; ½SI� ¼ 48; ½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters are b ¼ 0:0031;g ¼ 0:2; c ¼ 0:1, and starting network parameters are N ¼ 10;000; hkið0Þ ¼ 64;
hk2 � ki ¼ 5120;/ð0Þ ¼ 0:2.

Fig. 9. Types of infection curves with the simple intervention: (a) uniform spike, (b) non-uniform spike, (c) multiple spikes. Black dots denote inflection points.
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periods of nonzero length as well as intervention and relaxation
periods that are shorter than LI and LR respectively.

A notable feature of the prevalence-dependent intervention is
its ability to generate infection curves with multiple spikes as
the epidemic progresses. Examples of this behavior are shown in
Fig. 11. To fully explore the intervention, we again consider the
RCFS for a variety of parameter combinations. Fig. 12 shows the
RCFS for different thresholds (q ¼ 0:005;0:01;0:02) and intensities
(p ¼ 0:125; 0:25;0:5) as LI and LR both vary from 2 to 180 days.
Though not shown, as with the simple intervention each case has
10
a qualitative boundary, to the right of which infection curves are
single, uniform spikes. The most significant departure from the
simple intervention though is to the left of the qualitative bound-
ary. In the simple case, infection curves from this region took the
form of either two spikes or a single nonuniform spike. With the
prevalence-dependent intervention, the infection curve behavior
is richer.

The region is characterized by ‘‘waves” in the RCFS, particularly
for lower values of p. The boundaries of these waves can be
described by the number of spikes that occur over the course of



Fig. 10. Prevalence-Dependent Intervention. The intervention begins when ½I� ¼ qN, and edges are deleted at a constant rate x� until hki decreases to phki0, at which point
there is no change to the network until ½I� drops below the threshold qN. Then, edges are added at a constant rate a� until hki returns to hki0 or ½I� increases through the
threshold qN, at which point the intervention begins again.

Fig. 11. Example infection curves ½I�ðtÞ for the prevalence-dependent intervention. Parameters shown are (a) q ¼ 0:005; p ¼ 0:125; LI ¼ 60; LR ¼ 60, (b)
q ¼ 0:01;p ¼ 0:5; LI ¼ 15; LR ¼ 60, (c) q ¼ 0:02;p ¼ 0:25; LI ¼ 30; LR ¼ 120. Solid orange curves are ½I�ðtÞ under the intervention, while dashed orange curves are ½I�ðtÞ without
any intervention. Dashed gray lines denote times when ½I� ¼ qN. Initial conditions for the state variables are Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1; ½SS� ¼ 639784; ½SE� ¼ 60; ½SI� ¼ 48;
½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters are b ¼ 0:0031;g ¼ 0:2; c ¼ 0:1, and starting network parameters are N ¼ 10;000; hkið0Þ ¼ 64; hk2 � ki ¼ 5120;/ð0Þ ¼ 0:2.
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the epidemic. Holding LR fixed and increasing LI through one of
these contours helps explain the behavior of the infection curve
in this region (Fig. 13). At the crest, the final spike peaks just below
the threshold qN (Fig. 13a). As LI increases, the final spike occurs
later and peaks lower (Fig. 13a) and the RCFS decreases until the
spike vanishes. Then, the penultimate spike becomes the new final
spike, peaking just below the threshold (Fig. 13a) and the RCFS
jumps up as a new wave crests. This underscores a potential limi-
tation of a threshold-based intervention: if a spike does not reach
the threshold and no intervention occurs, the spike occurs over a
11
longer period of time and more infections accumulate than if the
spike had triggered an intervention. A practical implication of this
observation is that any spike in infections should not go unad-
dressed by interventions if the goal is to reduce the number of
cumulative infections. We also consider the AIAT for the same
parameter combinations (Fig. 14), though the conclusions by this
metric are less complex. For any combination of p and q, increasing
LI leads to a larger AIAT. This suggests that when considering inter-
ventions with the same RCFS, more abrupt interventions (smaller
LI) are preferable. However, an interesting observation is that the



Fig. 12. Relative change in final size (RCFS) for the prevalence-dependent intervention. Each plot represents a choice of p and q, with LI and LR on the axes, ranging from 2 for
180. Initial conditions for the state variables are Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1; ½SS� ¼ 639784; ½SE� ¼ 60; ½SI� ¼ 48; ½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters are
b ¼ 0:0031;g ¼ 0:2; c ¼ 0:1, and starting network parameters are N ¼ 10;000; hkið0Þ ¼ 64; hk2 � ki ¼ 5120;/ð0Þ ¼ 0:2.

Fig. 13. Progression of the infection curve ½I�ðtÞ as LI increases, showing the shrinking of the final spike and the penultimate spike dropping below the threshold qN.
Parameters are q ¼ 0:01;p ¼ 0:25; LR ¼ 90 and LI ¼ 70 (a), 78 (b), 92 (c). Solid orange curves are ½I�ðtÞ under the intervention, while dashed orange curves are ½I�ðtÞwithout any
intervention. Dashed gray lines denote times when ½I� ¼ qN. Initial conditions for the state variables are Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1; ½SS� ¼ 639784;
½SE� ¼ 60; ½SI� ¼ 48; ½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters are b ¼ 0:0031;g ¼ 0:2; c ¼ 0:1, and starting network parameters are N ¼ 10;000; hkið0Þ ¼ 64;
hk2 � ki ¼ 5120;/ð0Þ ¼ 0:2.
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AIAT increases rapidly as the epidemic changes from three to two
spikes.

While Figs. 12 and 14 show the overall behavior of the
prevalence-dependent intervention, by considering fixed values
of LI and LR and allowing p and q to vary, we get a more pointed
perspective on the effectiveness of this type of intervention.
Fig. 15 shows increasingly gradual interventions from left to right
with plots of the RCFS and AIAT as p and q vary on the axes. Nota-
bly, regardless of LI , low values of p and q are able to produce inter-
ventions that both greatly decrease the final size of the epidemic,
and the average infections above threshold. An important factor
in this decrease in the final size is the time at which the measure-
ments of the RCFS and AIAT are taken. In Fig. 15, the epidemic is
allowed to run for three years before both are measured. Measur-
ing earlier results in a larger portion of p; q space that greatly
decreases the RCFS, while measuring later results in a smaller por-
tion. This may have important control impacts. For instance, if a
vaccine is expected to be designed, produced, and distributed,
the estimated time frame for that to occur can influence which
levels of p and q can produce highly effective interventions.
Regardless, the region of highly effective interventions appears
mostly the same for the different values of LI . This suggests that
for sufficiently low thresholds (q) and sufficiently severe decreases
in contacts (p), the length over which the decrease in contacts
Fig. 14. Average infections above threshold (AIAT) for the prevalence-dependent interve
from 2 for 180. Initial conditions for the state variables are Sð0Þ ¼ 9998; ½E�ð0Þ ¼ ½I�ð0Þ ¼ 1
are b ¼ 0:0031;g ¼ 0:2; c ¼ 0:1, and starting network parameters are N ¼ 10;000; hkið0Þ
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occurs (LI) does not play an important role in the effectiveness of
interventions. However, as q or p increases, LI has a more pro-
nounced impact. In particular, for low values of p and large values
of q, a longer, more gradual intervention can lead to more average
infections above threshold. Moreover, a stark change in both effec-
tiveness metrics occurs for large values of p, (around p ¼ 0:5 for
LI ¼ 15 and LI ¼ 30). This suggests that if an intervention doesn’t
reduce average contacts sufficiently, a highly effective intervention
isn’t possible, regardless of the other parameter values.
4. Discussion

In this paper, we have developed a new SEIR model on a net-
work with random link activation/deletion dynamics. Using piece-
wise constant activation and deletion rate functions, we propose
two simple mechanisms for social distancing interventions. The
simple intervention models a single intervention event, where con-
tacts are decreased over a period of time, stay constant, and then
return to pre-intervention levels. The prevalence-dependent inter-
vention expands the simple case to more complex scenarios, where
interventions can be reintroduced in the face of rising prevalence.
Using the unipartite projection of a bipartite network, and epi-
demiological parameters representative of COVID-19, we examine
ntion. Each plot represents a choice of p and q, with LI and LR on the axes, ranging
; ½SS� ¼ 639784; ½SE� ¼ 60; ½SI� ¼ 48; ½EE� ¼ ½EI� ¼ ½II� ¼ 0. Epidemiological parameters
¼ 64; hk2 � ki ¼ 5120;/ð0Þ ¼ 0:2.



Fig. 15. Plots of the RCFS (a) and AIAT (b) for the prevalence-dependent intervention with LI ¼ 15;30;60 and LR ¼ 90 as p varies from 0 to 1 and q varies from 0 to 0:03. Both
RCFS and AIAT are measured after the epidemic has run for 3 years. Notably, both measures indicate highly-effective interventions for small values of p and q.
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the effectiveness of a wide range of potential social distancing poli-
cies on relatively large heterogeneous, clustered networks.

Both intervention schemes are shown to capture a wide variety
of behaviors in the prevalence ‘‘curve,” which has received consid-
erable attention in both academic studies and public health mes-
saging. The simple intervention manifests curves with one or two
spikes, while the curves for prevalence-dependent intervention
can have many more. Moreover, the behavior of the prevalence
curve is consistent across a number of parameters and can be
described qualitatively with success. This is despite the simplicity
of social distancing mechanism introduced by the piecewise con-
stant activation and deletion rates aðtÞ andxðtÞ, which take on val-
ues a� orx� respectively, or zero. We have not considered the cases
where the values of a� andx� may change over time, or where aðtÞ
and xðtÞ are not piecewise constant. As such, our model has natu-
ral extensions that may capture an even richer variety of qualita-
tive behaviors.

Furthermore, the mechanisms proposed in this paper offer
insights into what makes for a successful intervention. We have
used two metrics as simplified public health goals to evaluate
the effectiveness of interventions: the relative change in final size
(RCFS) and the average infections above threshold (AIAT). For the
more realistic prevalence-dependent intervention scheme, we find
that the most effective interventions come when the threshold
number of infections is low and the intervention severely
decreases average contacts. When these conditions are met, the
relative change in the final size is greatly decreased and the length
over which the intervention is implemented has little impact on
the effectiveness. However, even small increases in the threshold
value can greatly impact the effectiveness of interventions over a
fixed period of time. As well, if interventions do not sufficiently
14
reduce contacts (around fifty percent), they are rendered signifi-
cantly less effective by both measures.

While this is a first foray into the use of adaptive networks to
model social distancing for an SEIR disease, we acknowledge some
limitations of our model. First, there is a trade-off between com-
plexity of the disease natural history model and the number of
equations of the pairwise model; age-structured models or other
more complex compartmental models are popular for COVID-19,
but added compartments require tracking an increasing number
of edge types. However, even simple extensions (such as the inclu-
sion of an asymptomatic infectious state) present interesting
opportunities. Second, while the random link activation/deletion
process is simple to implement, it has some unrealistic features.
In particular, in the t ! 1 limit, one can show from the degree dis-
tribution generating function that the resulting network
approaches an Erd}os-Rényi random graph, with vanishing cluster-
ing and an approximately Poisson degree distribution. One mani-
festation of this property is a rapidly declining clustering
coefficient over time. While the piecewise constant activation
and deletion rates mitigate this to an extent, the network resulting
from these social distancing policies is fundamentally different
than the initial network state. To overcome this limitation, future
investigations might involve new processes for network dynamics,
such as activation/deletion on a fixed network or network dynam-
ics on an underlying bipartite mixing network. Finally, the choice
of triple closure in this paper incorporates network structure only

through the parameters hki; hk2 � ki, and / for the entire network.
The real-world effect of social distancing measures may affect
high-degree nodes differently than low-degree nodes, and thus
modeling a social distancing scheme for the entire degree distribu-
tion may be more realistic and flexible.
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