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The goal of this study is to identify the quantitative electroencephalographic (qEEG)
signature of early childhood malnutrition [protein-energy malnutrition (PEM)]. To this
end, archival digital EEG recordings of 108 participants in the Barbados Nutrition Study
(BNS) were recovered and cleaned of artifacts (46 children who suffered an episode
of PEM limited to the first year of life) and 62 healthy controls). The participants of
the still ongoing BNS were initially enrolled in 1973, and EEGs for both groups were
recorded in 1977–1978 (at 5–11 years). Scalp and source EEG Z-spectra (to correct
for age effects) were obtained by comparison with the normative Cuban Human Brain
Mapping database. Differences between both groups in the z spectra (for all electrode
locations and frequency bins) were assessed by t-tests with thresholds corrected for
multiple comparisons by permutation tests. Four clusters of differences were found: (a)
increased theta activity (3.91–5.86 Hz) in electrodes T4, O2, Pz and in the sources of the
supplementary motor area (SMA); b) decreased alpha1 (8.59–8.98 Hz) in Fronto-central
electrodes and sources of widespread bilateral prefrontal are; (c) increased alpha2
(11.33–12.50 Hz) in Temporo-parietal electrodes as well as in sources in Central-parietal
areas of the right hemisphere; and (d) increased beta (13.67–18.36 Hz), in T4, T5
and P4 electrodes and decreased in the sources of bilateral occipital-temporal areas.
Multivariate Item Response Theory of EEGs scored visually by experts revealed a
neurophysiological latent variable which indicated excessive paroxysmal and focal
abnormality activity in the PEM group. A robust biomarker construction procedure based
on elastic-net regressions and 1000-cross-validations was used to: (i) select stable
variables and (ii) calculate the area under ROC curves (AUC). qEEG differentiate between
the two nutrition groups (PEM vs. Control) performing as well as visual inspection
of the EEG scored by experts (AUC = 0.83). Since PEM is a global public health
problem with lifelong neurodevelopmental consequences, our finding of consistent
differences between PEM and controls, both in qualitative and quantitative EEG analysis,
suggest that this technology may be a source of scalable and affordable biomarkers for
assessing the long-term brain impact of early PEM.

Keywords: EEG, qEEG, quantitative EEG, tomography qEEGt, protein energy malnutrition PEM,
neurodevelopment
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INTRODUCTION1

Malnutrition remains a persistent problem worldwide that affects
up to 22.9% of children in developing countries (UNICEF
et al., 2017). Protein-energy malnutrition (PEM), is defined as
insufficient protein consumption and/or caloric intake and is
the most prevalent form of malnutrition, affecting an estimated
155 million children globally—even in industrialized nations
such as the United States (Global Health Observatory [GHO],
2016). Nearly half of all deaths of children under the age
of 5 is attributable to undernutrition (UNICEF et al., 2017).
An increasing number of malnourished children now survive
to adulthood thanks to improved public health measures.
However, since PEM can have long-term effects on cognition and
behavior (Grantham-McGregor et al., 2007) as well as on brain
development, this has created a new social problem (Bakken,
2016). Early PEM exposure during a critical period of brain
development (from the second trimester of pregnancy to age 2),
has been shown to produce permanent brain related changes,
whereas exposure at later ages is considered reversible (Dickerson
et al., 1967). Thus, timely, population-based identification
of children at risk for developmental problems after early
PEM could be the basis for global personalized intervention
programs.

Although advanced neuroimaging techniques such as MRI
or PET may be used to identify a neural signature of early
PEM, they are costly and have the disadvantage of low
throughput. Consequently, these techniques are not feasible
for the development of scalable screening programs in any
country, much less in developing countries where PEM is
most prevalent. Quantitative electroencephalography (qEEG) is
an alternative technology that can be utilized to determine
biomarkers suitable for global health applications. qEEG is
currently one of the most non-invasive, inexpensive, efficient
and useful techniques for assessing brain development and
dysfunction. qEEG is based on analysis of the resting state
EEG power spectrum (Hernandez-Gonzalez et al., 2011) which
is either averaged over broad frequency bands (John et al.,
1977) or in narrower bins (Szava et al., 1994) to yield a set of
features. These features are then transformed toward Gaussianity
and converted to z scores, based on age dependent means
and standard deviations. qEEG thus provides the topographic
distribution of EEG spectra abnormality at the scalp. An
important advancement in this methodology is tomographic
qEEG (qEEGt), which utilize features derived from the spectra
of cortical current source densities, rather than those derived
from the surface EEG electrodes. The surface EEG is the
reflection on the scalp, via volume conduction, of deep sources
which are located in actual brain structures. Bosch-Bayard
et al. (2001) qEEGt has been validated in population based

1This paper is dedicated to the memories of Sir Dr. Frank C. Ramsey and E.
Roy John. Ramsey was the former Director of the Nutrition Centre of Barbados,
who, with Prof. Galler, established the Barbados Nutrition Study, followed the
BNS children for most of their lives and contributed to the elimination of
malnutrition from Barbados. John created the Brain Research Laboratories at NYU,
was a pioneer in quantitative EEG analysis and worked closely with the Cuban
Neuroscience Center.

multimodal neuroimaging studies (Hernandez-Gonzalez et al.,
2011) and has been shown to be more accurate than qEEG in
detecting brain dysfunction in newborns during quiet sleep, as
determined by the area under the receiving operating curves
(ROC) (Bosch-Bayard et al., 2012). There are currently no
published studies that have fully examined either qEEG or
qEEGt in malnourished children. However, there are several
earlier studies using visual inspection of the EEG (Stoch and
Smythe, 1967; Baraitser and Evans, 1969) which found marked
differences (e.g., slower theta, less alpha) in malnourished
children compared to controls. These EEG patterns were later
confirmed by computerized studies of the EEG spectrum
(Bartel et al., 1979; Robinson et al., 1995), using different
methodologies (quiet sleep and photic stimulation versus awake
condition, no stimulation). Note that these results are for scalp
computerized EEG results only. Therefore, in this paper we
also calculate scalp measures for comparison with these prior
studies.

In the current study, we have carried out a complete
qEEG/qEEGt analysis to document the long-term effects of
early childhood PEM on brain function. We used archival
EEG data collected in childhood, at ages 5–11 years, derived
from the Barbados Nutrition Study (BNS), a longitudinal study
that has followed individuals who suffered from moderate-
severe PEM limited to the first year of life, as well as a
rigorously selected matched set of healthy controls, for nearly
50 years (Ramsey, 1979). Both groups have been followed
over the life span and their offspring have also been studied.
Significant problems in cognitive and behavioral function, soft
neurological signs and health outcomes have been documented
in childhood, adolescence and middle adulthood following
a history of PEM (Peter et al., 2016; Waber et al., 2016).
Using these EEG data, we have been afforded a unique
opportunity to evaluate the sensitivity of both qEEG and
qEEGt analysis. This will provide the basis for determining
potential biomarkers of early childhood malnutrition. At the
same time, we also carried out analyses of the visual inspection
of the EEG to identify the predictive value of our quantitative
analyses as compared with traditional visual EEG clinical
evaluation.

MATERIALS AND METHODS

Study Site
The current study was conducted in Barbados, a Caribbean
country whose population is approximately 280,000 at present.
The demographic makeup is 92% African/Caribbean origin, 4%
Caucasian and 4% individuals of Asian, Lebanese and Syrian
descent. In 1970, the infant mortality rate was 46 per 1,000 live
births. Today it stands at 7.8 and Barbados is ranked as 52 on
the Human Development Index (United Nations Development
Programme United Nations Development Programme [UNDP],
2016). Whereas moderate-severe cases of infant malnutrition
were of significant concern when this study was undertaken
in the 1970’s, infant malnutrition is now virtually eliminated
from the island due to its improved economy and the impact
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of island-wide nutrition-related education (Ramsey, 1979; Galler
et al., 1984).

Description of Sample
Participants consisted of children born between 1967 and 1972
who were diagnosed with PEM in the first year of life (n = 129,
52 females, 77 males) and a matched healthy control group
(n = 129, 52 females, 77 males). Inclusion criteria were, as
follows: (UNICEF et al., 2017) birth weight > 2500 g; (Global
Health Observatory [GHO], 2016) Apgar score > 8 at birth;
(Grantham-McGregor et al., 2007) no birth complications; and
(Bakken, 2016) no encephalopathic events in childhood. The
PEM group experienced a single episode of Grade II or III
PEM in the first year of life based on clinical diagnosis at
the time of admission to the Queen Elizabeth Hospital (Galler
et al., 1983a; Gomez et al., 2000). The control group were
classmates of the index group who met the same inclusion
criteria as the PEM group but lacked a history of malnutrition.
Three healthy classmates were identified as possible matches
for each index child based on age (±3 months), gender and
handedness. Final selection was based on parental consent
and access to birth and preschool health records. In later
waves of data collection, children with histories of kwashiorkor
(n = 54) were also included, but EEG data was not collected
in this group (Galler et al., 1987a,b,c). All PEM children were
enrolled in a national program (NIP- Nutrition Intervention
Program)- that provided subsidized food, maternal nutrition
education, regular home visits, a pre-school nursery, health
monitoring and medical care from hospital discharge until
12 years of age (Ramsey, 1979), ensuring that no child had
further episodes of malnutrition. The BNS participants and
their children have now been followed for 45+ years and
seven waves of data collection have been conducted (see
Supplementary Figure S1). The original participants or first
generation (G1), are the subjects of this report and were 5–
11 years of age at the time. Written informed consent was
obtained from all participants. Approval for this study was
granted by the Ethics Committee of the Ministry of Health,
Barbados, the Judge Baker Children’s Centre Human Research
Review Committee (Assurance No. FWA 00001811) and the
Massachusetts General Hospital IRB (2015P000329/MGH).
Participants were compensated for their time and travel to and
from the BNS research center.

EEG Data Acquisition
The EEGs were recorded in 1977–1978 by trained staff at
the Barbados Nutrition Centre, who were blind to the child’s
nutritional history. Children were accompanied to the center
by their mothers, primary caretakers or a relative, who were
instructed not to administer any medication in the days before
the test. A designated room was used for the EEG testing. During
the experiment, the child rested on a comfortable armchair, and
was given instructions to close their eyes but not to sleep. The
custom-designed digital electrophysiological data acquisition and
analysis system (DEDAAS) used for testing was provided by Prof.
E. Roy John from NYU Brain Research Labs (Thatcher and John,
1977) (Figure 1).

The DEDAAS device consisted of 24 solid-state EEG
amplifiers with the following characteristics: precise fixed
differential gain (Ad in the order of 104), low noise (in the order of
tens of µV), high common-mode rejection ratios (CMRR greater
than 80 dB), sharp 60-Hz (notch-filter); high-input impedance
(Zin higher than 10 M� per electrode); and an antialiasing
low-pass filter (LPF) with a cut-off frequency was at 25 Hz,
with a roll-off steeper than -18 dB/octave. The output of the
amplifiers was fed through an 12 bit A/D converter with a
sampling frequency (fs) of 100 Hz. into a PDP-11 minicomputer
that both calibrated the amplifiers and checked the electrode
impedance automatically. Simultaneous monopolar recordings
were obtained of the 10/20 International Electrode System (Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6,
FZ, CZ, and PZ), all referenced to linked earlobes. Data was
stored on digital tape. Frequency and voltage limits specified
for every channel were constantly monitored, permitting the
computer automatically to reject data contaminated by eye or
body movement, or by high electrode impedance.

EEG Sample and Preprocessing
Two hundred and fifty eight digital resting state EEG recordings
were initially collected and 137 of these were recovered by LP and
RI in September 2016. The remaining records were considered to
be lost, or no longer accessible due to file corruption. To facilitate
the recognition of each EEG recording, they were labeled using
a 7-digit code (group-serial number of the subject in the BNS-
the initial letters of the surname and names). The raw EEG was
divided in epochs of 256 samples.

AT-C and RI converted the raw EEG records to EEGLAB
format. Two expert neurophysiologists (AC-R and TV-A) carried
out visual inspection of the recovered EEG data, using tools
pertaining to both time and frequency domains. Somnolence
and/or different sleep stages were found in 29 children. The
criteria to identify somnolence were drop-out and slowing
of alpha frequency and/or sleep phase one (vertex spikes) or
phase two (spindles and K complexes in central regions). These
participants were excluded from this study leaving 108 usable
recordings (PEM Group: 17 females and 29 males; Control
Group: 28 females and 34 males).

Despite the built-in automatic artifact rejection procedures
of DEDDAS, some recordings displayed ocular and muscular
artifacts, mainly those in the frontal leads, Fp1 and Fp2. These
were eliminated using the AAR plug-in from the EEGLAB 13.6.5b
toolbox (Gomez-Herrero et al., 2006; De Clercq et al., 2006).
An example of the difference between the data before and after
cleaning is showed in Figure 2. This figure also illustrates the
quality of the recovered archival EEGs.

The overall flowchart of EEG processing is shown in Figure 3.

Qualitative EEG Analysis
Data collection, evaluation and visual inspection of the EEG
recordings were carried out under blind conditions, conforming
to the guidelines for resting state EEG analysis from the
International Federation of Clinical Neurophysiology IFCN2.

2www.ifcn.info/
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FIGURE 1 | System used for the EEG data acquisition process in Barbados. Zin, input impedance of the EEG channels (per electrode); Zelectrode, contact impedance
between the electrode and the scalp; EOG, ECG, electrooculography, electrocardiography; LEDs, light emitting diodes; LPF, low-pass (antialiasing) filter; HPF,
high-pass filter; Mx, multiplexor; ADC, analog-to-digital converter; S/H, sample and hold; CMRR, common mode rejection ratio; Ad , differential gain of the channels;
fs, sampling frequency; fc, cut-off frequency of the low-pass (antialiasing) filter; fo, central frequency of the notch filter.

EEG recordings were considered normal if they contained
adequate organization of background activity (according to age),
a well-defined spatial differentiation, rhythmic alpha activity and
the absence of slow or paroxysmal wave activity. Slow EEG
activity was defined as the presence of persistent non-rhythmic
theta-delta slow waves. Paroxysmal activity was defined as
spikes, sharp waves and polyspike-slow wave complexes. EEGs
representing both types of abnormalities were included in the
Slow and Paroxysmal category. We used the a global scoring scale
(GTE) to quantify the group differences in the observed EEG
abnormalities (Jonkman, 1989; De Weerd et al., 1990). Originally
designed to evaluate the predictive power of the EEG in dementia,
this scale was modified (by TV-A and AC-R) for use in the current

study and adjusted for the participant age (see the modified
scale in the Supplementary Material S1). The original scale
consisted of 5 items: frequency of rhythmic background activity,
diffuse slow activity, paroxysmal activity, focal abnormality, sharp
wave activity, and a total score summarizing all 5 items. All
EEG items were evaluated such that higher scores reflected
greater abnormality. We used multivariate item response theory
(MIRT) (Chalmers, 2012) to select the most informative items
and identify their optimal linear combination obtained by a
non-linear factor analysis to produce an overall score. This
overall score reflected a latent variable which we refer to as
“neurophysiological status” NS). It is known that latent variables
identified by MIRT are independent of the evaluator and robust

FIGURE 2 | Recovered EEG recordings. The left figure shows the EEG raw data. The right one shows the same EEG data segment after cleaning.
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FIGURE 3 | Flow of the EEG analysis. Processing steps from raw EEG to statistical results.

against chance fluctuations in score recording (Fox, 2010). In a
preliminary analysis, each item was examined separately to assess
how reliably its response alternatives were distinguished. Next,
the latent variable was integrated into a mixed effects model.
By using this procedure implemented in the MIRT package in
R (Møller, 1986), it was possible to account for the variability
inherent to each examiner by including it as a random effect when
testing for differences between control and PEM groups.

Quantitative EEG Analysis (qEEG and
qEEGt)
(1) The two feature sets extracted from the BNS data were, as
follows:

(a) qEEG topography, or simply qEEG, the array of EEG
scalp (electrode) spectra. The scalp EEG cross-spectrum
was estimated using Bartlett’s method (Mazziotta et al.,
2001) by averaging the cross-periodograms of at least 20
consecutive and non-overlapping epochs of 256 samples
each (i.e., 2.55 s), ignoring any discontinuity in the
recovered records. This procedure yielded cross-spectra
for a set of 48 frequency bins ranging from 0.78 to
19.14 Hz with a resolution of 0.39 Hz. Global differences
in scale among EEG data were handled using geometric
power correction (Hernández et al., 1994). For qEEG only,
the diagonal elements of the cross-spectra were retained,
which yielded a final set of 912 scalp spectral features (19
channels∗48 frequencies).

(b) tomographic qEEG or simply qEEGt, the set of EEG
spectra for all 3244 sources defined in the brain cortex
(excluding basal ganglia). The volumetric sources were
estimated from the EEG cross-spectra by the VARETA
(Variable Resolution Electromagnetic Tomography)
electrophysiological source imaging method. This is a

discrete spline EEG inverse solution. It is based on a
forward model that incorporates anatomical constraints
using the template of ICBM (probabilistic brain atlas)
created by the Montreal Neurological Institute (MNI)
(Mazziotta et al., 2001). The procedure yielded 155712
features (3244 sources∗48 frequencies)

(c) Both feature sets were log transformed toward the
Gaussian distribution. (Gasser et al., 1988)

(2) Next, z scores were obtained by comparing qEEG in
the PEM and Control participants with the Cuban normative
database using age as a covariate (John et al., 1988; Galán et al.,
1994; Szava et al., 1994) and qEEGt in (Hernandez-Gonzalez
et al., 2011). The result feature sets are scalp z spectra for qEEG
and source z spectra for qEEGt. The expression for the well
known z transform is: Z = x−µ(age)

σ(age) where x is any qEEG or
qEEGt parameters standardized with the age dependent mean
and standard deviation.

qEEG and qEEGt methods have been summarized extensively
elsewhere (Niedermeyer et al., 2004; Thatcher and Lubar, 2009;
Hernandez-Gonzalez et al., 2011). They were implemented using
the qEEGt MATLAB-based (Hernandez-Gonzalez et al., 2011)
software available by request from the authors.

In this paper, we employed a mass univariate approach
to compare qEEG and qEEGt features between both groups.
A sample t test was carried out for all variables, and results
were reported only for tests above a threshold corrected
for multiple comparisons using permutation methodology,
and specifically the non-parametric combination (NPC).
(Pesarin and Salmaso, 2010) “The NPC methodology
allows for straightforward extension to multiple testing and
multiple comparisons. . .”. We utilized a combination also
described by this author: “In particular, Tippett’s combining
function . . ..can perform step-down procedures which enable
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computation to be speeded up. . ... Special cases of Tippett’s
combining functions are the ‘max t test’ and the ‘max
chi-square. . .. . ..”

We applied the max t-test permutation test for qEEG
described for the first time by our group (Galán et al., 1994) to
evaluate the differences between groups using the z spectra of
both topographic (qEEG) and tomographic (qEEGt) features (see
also Blair and Karniski, 1993), which is currently a standard in
neuroimaging research (Winkler et al., 2016).

Permutation tests have the following advantages: the tests
are distribution-free and provide a p-value for the test statistic
that has the correct Type I error rate, regardless of the number
of univariate tests for combined assessment. In addition, no
assumptions of an underlying correlation structure are required,
and they provide exact p-values for any number of subjects,
frequency points and recording sites. The correction of the
p-values is converted into a global statistic that contrasts the
null hypothesis using the non-parametric combination of the
p-values.

Thus, the t statistics were calculated for all derivations and
frequencies (912 variables) or for all sources and frequencies
(3244 variables). The max t statistic was calculated in each case,
where max t represents the maximum of the t statistic over
all variables considered and is used to summarize differences
between two Z spectrums. The algorithm for the permutation test
consisted of:

(1) Permutation of the observations between the groups
repeatedly for all variables. In each repetition both
statistics were calculated for the 912 variables at electrode
level (19 electrodes by 48 frequencies) as well as for the
155,712 variables of the source analysis (3244 sources by
48 frequencies). Each test was carried out using 10000
random permutations.

(2) The empirical distributions of the t and max t statistic
were calculated.

(3) The 95th percentiles were obtained for each statistic using
the empirical distributions of the above step. This value
was used as the threshold of significance.

(4) This permutation procedure allowed us to report only
those t-tests that were significant at the global p < 0.05
level (corrected for multiple comparisons). In an earlier
paper (Bosch-Bayard et al., 2012), we analyzed the power
of qEEGt procedures regarding the size sample. Power
calculations from that report (shown in Figure 2 of the
paper) demonstrated that the smallest effect detectable was
for sample sizes greater than n = 50. Our current sample
size is 108, well above the minimal required sample size.

Machine Learning Classification Based
on Expert Evaluation and qEEG Features
A procedure for selecting stable biomarkers and constructing
robust classification procedures has been recently published by
the authors (Bosch-Bayard et al., 2018), and is briefly summarized
here. To avoid capitalization upon chance, the samples are
divided into a training (70%) and test set. After initial screening
of variables using the independent significant features (IndFeat)

(Weiss and Indurkhya, 1998) procedure, best variables for
classification are selected by the elastic net regression method.
This cross validated variable selection is repeated independently
1000 times and only the features significant in more than 50%
of the iterations are retained for further analysis. The expected
classification accuracy is evaluated by means of ROC analysis
which is carried out upon a further, independent, set of 1000 cross
validations. The median ROC curve is the summary operational
characterization of the classifier. The distribution of the 1000
areas under the ROC curve (AUC) is used to fit a kernel
probability density that allowed quantification of the variability of
classification performance with variable selection. This procedure
was used for:

(a) The clinical scores (standardized by the MIRT analysis)
produced by each expert separately.

(b) All qEEG features (19 channels by 48 frequency bins).

Since the elastic net is a linear combination of features, its
application to qEEGt (also a linear learning procedure) was not
considered necessary.

RESULTS

Qualitative EEG Analysis
Visual inspection of the resting EEG (AC-R and TV-A) revealed
abnormalities in the EEG recordings, which were defined at the
Section “Qualitative EEG Analysis”).

Visual inspection of the BNS EEG records demonstrated
a preponderance of abnormalities in the PEM group. Only 6
PEM children showed the typical antero-posterior differentiation
gradient expected for their age. By comparison, 26 controls
showed this gradient. Additionally, the PEM group also showed a
higher percentage of global abnormalities compared to controls:
the total number of abnormal EEG recordings were 28 (60.9%)
in PEM and 11 (17.7%) in the control group. To test if there
was a significant difference between the expected and observed
frequencies we employed a Chi-square test, which was significant
at the p < 0.05 level.

To carry out more sensitive analysis of the visual inspection
data, we devised Likert-type scales for the EEG based on an
ordinal grading of perceived abnormality. The following five
EEG items were graded: “frequency of rhythmic background
activity,” “focal abnormality,” “paroxysmal activity,” “diffuse slow
wave activity,” and “presence of sharp waves.” Multivariate Item
Response Theory was then used to produce a global EEG
abnormality score by means of a non-linear factor analysis.
This analysis indicated that a single factor F1 was sufficient to
describe this dataset. We came to this conclusion based on the
observed Akaike information criteria (AIC) that increase when
selecting two factors vs. one, indicating an undue increase of
model complexity with respect to variance explained.

Two aspects of the MIRT factor analysis are of importance
in analyzing the different EEG items (Table 1). The first
is loading F1 of the items in the factor. The second is
the reliability, of the response alternatives provided by the
evaluators. Only 4 items had loadings higher than 0.7: focal
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TABLE 1 | Item response theory analysis.

Item j F1 αj

Focal abnormality 0.991 3.40

Paroxysmal activity 0.923 35.09

Sharp wave 0.746 2.45

Diffuse slow activity 0.704 1.68

Baseline frequency −0.117 0.001

abnormality, paroxysmal activity, presence of sharp waves and
diffuse slow activity. These were also the items with high
reliability. As can be seen from Figure 4A (left), the item with
the best reliability, “focal abnormality,” had higher estimated
probabilities for all response alternatives and did not overlap
for the different levels. By contrast, the item with the lowest
factor score, “background frequency” in Figure 4B (right),
exhibited overlapping and low probabilities for the 5 levels of
the item scale. This item was therefore excluded from the overall
score.

The loadings of the F1 components were all positive (shown
in Table 1), except for the last item, indicating that F1 can be
considered to represent the overall Neurophysiological State (NS)
of the children, with higher values indicating more abnormality.

To test if there was a statistical difference of the NS score
between the PEM and control groups, we used the MIRT
mixed-effects procedure, as follows:

MIRT Model 1 : Items ∼ mixedmirt(fixed

= ∼ 1+ Group, random

= list(∼ 1| subject, | ∼ 1 evaluator)).

which combines overall score with ANOVA. The fixed
effect was considered “group,” the random effects being the
“evaluator” and the multiple observations for each subject. Only
the difference between groups was significant (Z = −6.835,
p < 0.0001).

Scalp Topographic Quantitative EEG
Analysis (qEEG)
The analysis of the t-test between groups using the qEEG feature
set (48 bins of frequency and 19 electrodes per each subject)
revealed a significant difference between the z spectra of both
groups for 25 frequency/electrode combination at a level of
p < 0.05, corrected for multiple comparisons. Table 2 lists these
features.

These features are grouped into four clusters that are limited
to an EEG frequency band and a set of scalp electrodes. These
clusters are:

1. theta: Increased slow activity (3.91–5.86 Hz) in electrodes
T4, O2, Pz. (Figure 5A)

2. alpha 1: Decreased activity in alpha 1 (8.59–8.98 Hz)
in Fp1, Fp2, Fz, F3, F4, (frontal) and C3, Cz (central)
electrodes. (Figure 5B)

3. alpha 2: Increased alpha 2 (11.33–12.50 Hz) in temporal
(T4, T5) parietal (P3, P4) and Occipital (O1) electrodes.
(Figure 5C)

4. beta: Increased fast activity in beta 1 (13.67–18.36 Hz),
more relevant in temporal (T4) and T5 and parietal P4
electrodes. (Figure 5D)

The schematic distribution of the electrodes significant in
different frequencies is shown in Figure 6.

As an additional check of these results instead of analyzing
the z transform of qEEG features, an ANCOVA of differences
between the two groups, with group dependent age regressions
was carried out. No difference between group age regressions
was found and the plot of significant parameters was very
similar to that of Figure 5 and will not be discussed
further.

Quantitative EEG Tomography (qEEGt)
A similar analysis of the t-tests for the source z spectra identified
10 out 48 frequency bins (collapsing across all voxels) where the
differences between the sources were statistically significant at
p = 0.03, corrected for multiple comparisons. When this analysis
was broken down by both voxel and frequency (see Figure 6), the

FIGURE 4 | Examples of EEG visual scoring items with different assessment reliability by clinical neurophysiologists. The curves depict the probabilities of response
of the two neurophysiologists to the different levels of the EEG score items (y axis: 0–1 probability). On the left (A): discrimination profile for the item with most reliable
discrimination between response alternatives (focal abnormality); all the options of classification reached the maximal probability. Right (B): the profile for the item
with lowest probability; “background frequency”: where the classification alternatives probabilities were near zero.
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TABLE 2 | Scalp topographic quantitative EEG analysis.

Scalp
Topographic
Quantitative
EEG analysis
(qEEG) Lead

Frequency
bin (Hz)

Broad
Band

Lead Frequency
bin (Hz)

Broad
Band

T4 3.91 theta 1 T4 11.33 alpha 2

Pz 3.91 T4 11.72

T4 5.07 theta 2 T5 11.72

T4 5.86 T4 12.11

O2 5.86 T5 12.11

Fz 8.59 alpha 1 O1 12.11

C3 8.59 P3 12.50

Cz 8.98 P4 12.50

Fp1 8.98 P4 13.67 beta 1

Fp2 8.98 T5 13.67

F3 8.98 T4 14.45

F4 8.98 T4 17.58

T4 18.36

distribution of the differences for the PEM group was classified
in broad bands that are very similar to those from the qEEG
results.

These four spectral components identified by the tomographic
analysis were plotted using the AAL Atlas projected on the MNI
average brain. We selected only those structures where more than
25% of voxels were activated. The relation of the anatomical
structures significant for the 10 frequencies significant are shown
in Supplementary Material S3.

The components identified were:

1. theta: Increase of source power at slow frequencies
(3.52–5.07 Hz; p < 0.03) in right centro-temporo-parietal
areas, especially in the supplementary motor area (SMA)
of the right hemisphere. Supplementary Table S3A and
Figure 6A.

2. alpha 1: Decrease of power in alpha at 8.98 Hz (p = 0.01)
in widespread bilateral prefrontal areas, including the
superior, medial and inferior frontal gyrus. Supplementary
Table S3B and Figure 6B.

3. alpha 2: Increase of activity between the range of
11.33–13.28 Hz (p = 0.03) in centro-parietal areas of
the right hemisphere. Supplementary Table S3C and
Figure 6C.

4. beta: Decrease of activity at 16.41 Hz in bilateral
occipito-temporal areas (p = 0.02). Supplementary
Table S3D and Figure 6D.

Machine Learning Classification Based
on Expert Evaluation and qEEG Features
The results of the stable machine learning classification are
shown in Figure 7 (left panel). The variability between experience
evaluators is quite large, with areas under the ROC curve
(AUC) ranging from 0.69 to 0.83. qEEG performs as well as
the expert with higher performance. The distribution of AUC

values produced by the randomization procedure (Figure 7-
right panel) is quite informative. For all crossvalidations, AUCs
are well above the chance level. However, the scores of one of
the experts can range from very close to 0.5 (chance level) to
about 0.7 which is a mediocre classification performance. The
scores produced by the other expert is better than that of the
first expert but is quite variable. The performance of qEEG is
very stable and slightly above the median level of the second
expert.

DISCUSSION

Previous Studies of Malnutrition and EEG
The present study is unique as there are very few longitudinal
EEG studies following an early episode of malnutrition. In a
follow-up study of 20 South African children with histories of
marasmus and 20 controls, a history of early PEM was shown
to be associated with reduction in faster EEG frequencies alpha
(α) rhythm for up to 12 years after a nutritional intervention
(Stoch and Smythe, 1967; Baraitser and Evans, 1969). In another
South African study of children who had experienced severe
undernutrition (N = 30) (<2 SD of WHO norms) in the first year
of life showed reduced alpha and higher levels of theta (slow-wave
activity) relative to non-malnourished siblings (N = 30) and yard
mates (N = 30) 6–12 years after recovery from malnutrition using
computerized EEG (Bartel et al., 1979). In summary, previous
studies using EEG in malnutrition, found reduced alpha rhythm
and higher levels of theta (slow wave). These previous studies
contain methodological flaws, however, including that the sample
sizes reported were relatively small, lacked a control group, there
were multiple stressors experienced and cofounding factors in
addition to malnutrition, and insufficient control of relapses and
co-morbidities.

Analysis of Quantitative EEG Results
Comparing PEM and control children, the three first components
obtained at scalp and sources analysis were similar and consistent
even when the EEG at the scalp and the current densities at the
sources were biophysically quite different. We now analyze each
finding component in turn:

Excess of Theta (Slow-Wave Activity) in Pre and
Postcentral Areas for Both Scalp and Source z
Spectra
The excess of slow-wave activity found in the scalp z spectra
of the PEM children may reflect a maturational lag in cortical
development, in accordance with psychometric performance.
Corning compared two groups with low and high slow EEG
frequency (Corning et al., 1982) on IQ measures, and found that
the group with excess of slow frequency had lower scores in verbal
subtests and normal scores in non-verbal subtests. But those with
the least slow frequency activity were above normal on both IQ
subtests. Excess theta activity has been related to learning and
attention disorders, specifically attention-deficit/hyperactivity
disorder (ADHD) in qEEG studies (Clarke et al., 2002; Snyder
and Hall, 2006; Barry et al., 2011). High theta levels have also
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FIGURE 5 | Topography of t-tests between groups scalp z spectra. The y axis depicts EEG derivation and the x axis shows frequency bins. Only values below the
p < 0.05 threshold (corrected for multiple comparisons by permutation tests) are shown. Significant regions in the electrode/frequency plane are highlighted, with a
circle. Regions detected were theta (A), alpha1 (B), alpha2 (C), and beta (D). Beside each circle a head plot shows the topographic distribution of the t-values for
the most significant test in that region.

FIGURE 6 | 3D view of t-tests between PEM and Controls source z spectra. t-values comparing PEM and Control source spectra are plotted on the surface of the
MNI average brain for selected EEG frequency bins corresponding to theta (A), alpha1 (B), alpha2 (C), and beta (D). Only values below the p < 0.05 threshold
(corrected for multiple comparisons by permutation tests) are shown.
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FIGURE 7 | Robust measures of the performance of elastic net classification of PEM/Control groups based on features from qEEG analysis as well as from visual
inspection by two EEG neurophysiologists. Results of the classification method applied to detect stable variables (selected more than 50% of the time). The
performance of these stable variables in an elastic net classification of PEM/Control EEGs was evaluated in a further 1000 cross-validated fashion to yield ROC
curves. On the left the median ROC curves for the two neurophysiologists and qEEG variables. On the right the probability distribution of the area under the ROC
curve. Expert 1 performed above chance but poorly. Expert 2 had a variable performance with many good results. qEEG outperformed expert 1 and nearly 60% of
the time expert 2.

been observed in children raised in aversive environments such as
orphanages (Marshall et al., 2004). To our knowledge, the results
for the source z spectra are the first to localize this activity at the
supplementary motor area of the right hemisphere for the three
theta frequencies that were statistically significant: (73.17% for
3.52 Hz, 68.29% for 4.69 Hz and 95.12% for 5.08 Hz). This could
be relevant in explaining motor inhibition and language deficits
in the PEM children, considering the supplementary motor area’s
(SMA) crucial role in ‘self-initiated’ internal action (Nachev et al.,
2008).

Decreased Alpha 1 Activity in Prefrontal Areas
Bilaterally
The decreased alpha activity observed in the scalp z spectra of
the PEM group can also be associated with a failure in functional
cortical development (maturational retardation hypothesis). This
hypothesis emphasizes the retardation of early developmental
processes (neurulation, cellular proliferation, migration), leading
to maturational arrest. Slowing of late processes, such as
synaptogenesis and myelination, are more likely to result in
maturational delay (Sarnat et al., 2015). It is essential to note that
alpha activity in children starts 3 years after birth, almost parallel
to the development of speech.

Our results are in line with those of other long-term
follow-up studies in previously marasmic children showing
a marked retardation in faster EEG frequencies (α rhythm)
for up to 12 years following PEM and after successful
nutritional treatment (Stoch and Smythe, 1967). Fundamental
studies reveal that the modulations of alpha frequency among
neurologically intact adults depend on the structural integrity
of white matter tracts (Llinás and Steriade, 2006). Consistent
with this idea, Sheridan et al. (2012) suggested that reduced
alpha power observed in the EEG of children exposed to
institutional rearing may be the result of delay in cortical
white matter development. Results from longitudinal studies
have demonstrated that normal brain development involves a
linear increase in white matter from childhood to adulthood.
The white matter makes the signal transduction become faster
and more efficient, allowing increasingly higher frequency
contributions to the overall signal. White matter maturation is
an essential element of brain development and is fundamental
for normal function and cognitive maturity (Luna et al., 2001;
Valdés-Hernández et al., 2010). Ineffective signal transduction
due to decreases in myelination caused by early malnutrition
could be one explanation for the alpha power reduction in
PEM. The malnutrition episode took place during the first
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year of life, when the most significant period of myelination
occurs.

The neurophysiological impairments associated with early
PEM can be permanent, often accompanied by widespread
neurological disturbances involving sensory-motor activity,
learning, memory, consciousness, cognition and emotion
(Guedes, 2011). In the PEM group (in comparison with the
control group) the source analysis related with the decrease
of alpha was localized in the bilateral prefrontal region (PFC).
This brain region has been implicated in planning complex
cognitive behavior, personality expression, decision making,
and moderating social behavior (Miller et al., 2002). The main
objective of this region is to develop “executive functions” related
to action planning, decision making, etc. According to Fuster
(1988), the PFC can be subdivided into three major regions:
orbital, medial, and lateral. The orbital and medial are involved
in emotional behavior. The pre-frontal lateral region, which
is maximally developed in the human, provides the cognitive
support to the temporal behavior, speech, and reasoning.

Increased Alpha 2
The main difference between groups for the scalp z-spectra
is the increase in fast alpha in the PEM group with a clear
right asymmetry. Previous reports have indicated that this is
a typical electrophysiological pattern present in depression and
other emotional states (Gotlib, 1998; Debener et al., 2000; Coan
and Allen, 2003, 2004; Davidson, 2004; Coan et al., 2010).
Additionally, other authors have related this specific frequency
rhythm with hypervigilance and anxiety in children. For a review
about frontal EEG asymmetry and social behavior see (Schmidt
and Miskovic, 2014).

Increase/Decrease of the Beta (Fast Frequencies
Above 16 Hz)
The beta frequency range was the only band for which scalp
z spectra and source z spectra analysis do not coincide. Scalp
z spectra showed an increase of beta activity in temporal leads
in PEM children, while the source z spectra for these children
revealed a decrease. The scalp results are consistent with the
prior literature. Scalp beta activity is believed to result from
cortical/cortical and thalamo/cortical interactions. This could
be an indication of immature electrical brain activity according
to patterns described in normal EEG development (Matsuura
et al., 1985) where a reduction of beta is expected. In fact,
anterior-posterior (AP) beta decreases with age. Maturation of
activity in the beta band progresses from the center to lateral and,
finally, to frontal areas.

Activity in the beta frequency band is a presumed index
of the level of cortical arousal. Increased beta activity has
been associated with many different conditions including:
externalizing spectrum disorders (Porjesz et al., 2005), ADHD,
substance abuse disorders, conduct disorder, and antisocial
behavior (Gilmore et al., 2010). The increased beta may thus
indicate cortical hyperarousal, which is what is found in the scalp
z-spectra of the PEM children.

Scalp and source results are not necessarily the same,
so the discrepancy we observed is not surprising. This is

a result of the way the sources are reflected on the scalp
via the lead field as mentioned previously in Bosch-Bayard
et al. (2001). If the electrodes are relatively close to the
source, and do not receive much interference from far away
sources then a high concordance between scalp and source
results can be expected. This does not seem to be the case
for this frequency band and will be the subject of further
research.

Relation to Cognitive and Behavioral
Outcomes in the BNS
Galler and colleagues have already found deficits in intellectual
performance and soft neurologic signs as well as school
achievement in the PEM group versus control children of
this cohort (Galler et al., 1983a,b, 1984, 1985, 1986, 1987b,
1990, 2004). These differences persisted for each outcome
even after correcting for household socioeconomic factors and
maternal depressive symptoms. The model employed by Galler in
1984 displayed interrelationships among previous malnutrition,
soft neurological signs, classroom behavior intelligence and
physical growth, demonstrating that slow motor performance
was associated with lower verbal and performance IQ and
the presence of attention deficit disorder, as assessed by the
child’s teacher. There was a striking four-fold increase in
attention problems among previously malnourished children.
These problems typically did not involve hyperactivity, but rather
inattention, indicative of cognitive dysregulation. Previously
malnourished children also displayed more conduct problems.
The inattention and conduct problems already demonstrated
in the PEM group are congruent with the pattern of EEG
abnormalities described above, namely the increase of theta
activity in SMA, decrease of alpha in prefrontal areas,
and the increase of alpha2 in SMA. A confirmation of
the causal relationship between the EEG findings reported
in this study and the cognitive and behavioral problems
detected in these children, would be the aim of further
research.

Comparison Between Qualitative and
Quantitative Analysis
The visual inspection done by the clinical neurophysiologist
reported a prevalence of abnormalities (17.7%) in the BNS
control group. This is much higher than what has been reported
for normal children in other studies. For this reason, there
might be an observer bias in this study. However, note that
EEG abnormalities reported for healthy children are between
3.5 to 5% but only for epileptiform activity (Okubo et al., 1994;
Riviello, 2007; Hmar et al., 2016). In our study other types of
“abnormality” were included which might explain the finding
better.

Nevertheless, this result underscores the need for a more
objective evaluation of EEG visual findings. One approach to
provide quantitative support for human evaluation is the use of
a standardized clinical rating scale. These comprise a collection
of items that are assigned scores which are then summed to
provide an overall number. However, according to the best
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practices recommendation for constructing clinical evaluation
scales (Hobart et al., 2007), simply summing the original ratings
is to be avoided. Rather, the items should be assigned weights
estimated by statistical item response theory. This was the
purpose of the multivariate item response theory (MIRT) analysis
we employed.

The MIRT assessment of the qualitative evaluation of the
EEGs showed highly significant differences between the PEM
and control groups. Visual inspection, in fact, showed that the
PEM group had more diffuse slow activity, focal abnormalities,
paroxysmal activity and sharp waves than the control group.
There was no difference between groups for background
frequency activity.

In terms of predictive value, the results shown in Figure 7
indicate that qEEG features can provide a robust and very
stable set of biomarkers with an area under the ROC curve
of 0.83. This is to be contrasted with the variability between
experts which ranged from 0.69 to 0.83. Thus, at worst, qEEG
might substitute clinical experts. The performance might actually
be better for qEEG since experts in clinical settings do not
use the procedures, enhanced by MIRT, described in this
paper. The Machine Learning procedure was optimized for
each specialist, something that might be impractical in real life
situations. In addition, qEEG is objective and free of subjective
bias.

The MIRT results are noteworthy in light of the strengths
and limitations of qEEG and qEEGt which are based on spectral
analysis of the EEG. Spectral analysis is optimal in identifying
the frequency content of signals, even picking up on small
amplitude oscillations that are missed by visual inspection. It
is interesting to speculate that the diffuse slow wave activity is
well captured by spectral features. On the other hand, visual
scoring of the base frequency of the EEG only reflects the most
dominant frequencies of the EEG and the analysis of other
frequencies is an area in which qEEG may outperform visual
inspection. Note that MIRT eliminated background frequency
as an interesting variable which is the main characteristics
quantified by qEEG.

However, it is also instructive to analyze the features
that are not currently analyzed by qEEG but were revealed
to have additional descriptive power in visual scoring of
EEG. These were paroxysmal activity, focal abnormalities
and sharp waves, are transient phenomena, that are missed
by spectral analysis, which is a tool for stationary signals.
A qEEG method based on non-linear and non-stationary
features of the EEG was proposed by Valdes et al. (1999). This
alternative feature set must be studied with the expectation
that it might provide increased qEEG diagnostic accuracy
beyond that described in this paper. Currently we use
qEEG and visual inspection separately to analyze EEG, but
combining these methods may have utility for automatic
diagnosis.

Future Work
Future work will address several limitations of our current
approach:

(1) EEG and other neuroimaging studies of the two cohort
groups are being undertaken in the same individuals
40 years later to evaluate the evolution and permanence
of the early life neural fingerprints of PEM over the life
span.

(2) Both linear (spectral) and non-linear features must be
considered for the current EEG dataset as well as for
future EEG recordings to increase predictive power.

(3) In future studies, EEG source methods will be improved
with the use of individualized head models from MRI data
(not available in the 1970’s).

(4) Features obtained from source connectivity measures will
also be included.

(5) The relationship between these EEG findings and the
cognitive and behavioral function of the population will
be further studied.

(6) Most importantly, the EEG feature sets will be integrated
within a stochastic disease progression model that will also
include demographic, cognitive, behavioral, physiological
and epigenetic variables.

The objective of this and ongoing studies is not only to
understand better the long-term effects of early PEM, but also to
predict response to treatment as the goal for a health impact of
this research.

All data and programs for used in this study will be
available via the open source portal CBRAIN3 (Sherif et al.,
2014)

CONCLUSION

To our knowledge, this is the first study to identify quantitative
EEG (qEEG) in individuals who suffered from PEM during the
first year of life. In spite of the attrition due to loss of early records,
the final group is much larger than any study of EEG-PEM to
date. In addition, this is the only report on EEG and childhood
malnutrition that studies EEG sources by means of tomographic
qEEG.

Significant differences between both groups in the z spectra
(for all locations and frequencies) were found in the following
four clusters

(A) Increased theta activity (3.91–5.86 Hz) in electrodes T4,
O2, Pz and in the sources of the supplementary motor area
(SMA); (B)

(B) Decreased alpha1 (8.59–8.98 Hz) in Fp1, Fp2, Fz, F3,
F4, C3, Cz electrodes and sources of widespread bilateral
prefrontal areas.

(C) Increased alpha2 (11.33–12.50 Hz) in T4, T5, P3, P4, O1
electrodes as well as in sources in central-parietal areas of
the right hemisphere.

(D) Increased beta (13.67–18.36 Hz), in T4, T5, and P4
electrodes and decreased in the sources of bilateral
occipital-temporal areas.

3https://mcin-cnim.ca/technology/cbrain/
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In addition, Multivariate Item Response Theory (MIRT)
of EEG expert visual inspection revealed a neurophysiological
latent variable which indicated excessive paroxysmal and focal
abnormality activity in the PEM group at the (p < 0.0001)
level.

Machine learning performance using the elastic net classifier
shows that discrimination between index and the control groups
is very stable when based on qEEG features, with the median
value higher than that of classifiers based on scores by the best
expert.

These findings suggest that both, the quantitative (qEEG)
and the tomographic (qEEGt) might may be a source
of scalable and affordable biomarkers for assessing the
long term brain impact of protein energy malnutrition
(PEM).
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