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Sulforaphane ameliorates 
lipid profile in rodents: 
an updated systematic review 
and meta‑analysis
Kaili Du, Yuxin Fan & Dan Li*

Sulforaphane (SFN), a naturally-occurring isothiocyanate enriched in cabbage and broccoli, has been 
provided as food supplements to improve weight management and reduce lipid levels. However, its 
effects on serum lipid profiles are contradictory. In this review, a meta-analysis and systematic review 
of SFN on lipid reduction and weight control is assessed with mice and rats fed on high-fat diet. The 
effects of SFN supplementation were evaluated by weighted mean difference (WMD) in body weight 
(BW), liver weight (LW) and also by its effect on serum lipids. A random-effects model was applied to 
estimate the overall summary effect. SFN reduced BW (WMD: − 2.76 g, 95% CI: − 4.19, − 1.34) and 
LW (WMD: − 0.93 g, 95% CI: − 1.63, − 0.23) significantly in our ten trials. Its effects on serum total 
cholesterol (TC) (WMD: − 15.62 mg/dL, 95% CI: − 24.07, − 7.18), low-density lipoprotein cholesterol 
(LDL-C) (WMD: − 8.35 mg/dL, 95% CI: − 15.47, − 1.24) and triglyceride (TG) (WMD: − 40.85 mg/
dL, 95% CI: − 67.46, − 14.24) were significant except for high-density lipoprotein cholesterol (HDL-
C) component (WMD: 1.05 mg/dL, 95% CI: − 3.44, 5.54). However, species, disease model, duration, 
SFN dosage as well as route of administration did not explain the heterogeneity among studies. In 
summary, these findings provide new insights concerning preclinical strategies for treating diseases 
including obesity, diabetes, hypertension, non-alcoholic fatty liver disease as well as cardiovascular 
disease with SFN supplements.

Chronic, non-communicable diseases and metabolic syndromes including obesity, diabetes, hypertension, hyper-
cholesterolaemia, cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD)1–3 are significantly 
increasing due to lifestyle and dietary patterns. This coincides with modifications in global nutritional and 
epidemiological characteristics4. Lipid profile as well as obesity are risk factors for CVD5. Therefore, uptake of a 
balanced diet and natural product supplements has been recommended to reduce the risk of metabolic syndrome 
through weight management and lipid reduction to normal physiological levels6,7.

In the past decades, natural products derived from plants are utilized to prevent or treat obesity, diabetes and 
lipids-associated disorders8–10. Epidemiological studies suggest that supplementation with plant-derived bioac-
tive compounds can be beneficial in control of body weight and reduction of lipid accumulation11. Sulforaphane 
(SFN), a natural product enriched in broccoli and cabbage, can decrease lipid levels both in vivo and in vitro6,12,13. 
These studies suggest SFN may become a potential therapeutic drug for dyslipidemia. SFN has also been effective 
in the treatment of atherosclerosis, diabetes, and neurodegenerative diseases14–16.

Two randomized clinical trials (RCTs) show that intake of broccoli sprouts can significantly reduce inflamma-
tory markers and plasma low-density lipoprotein cholesterol (LDL-C) in the long term17,18. Animal studies also 
show that SFN upregulates the expression of phase I & phase II metabolic enzymes and lipid metabolism-related 
enzymes/proteins19. Moreover, SFN induces adipocyte lipolysis and inhibits adipocyte differentiation20–23, which 
could be the possible mechanism that SFN improves lipid profile.

So far only two RCTs of serum lipid profile on SFN are reported. Thus, in this study, we focus on the effect of 
SFN on lipid regulation in the preclinical studies (rats and mice)17,18. Particularly, no meta-analysis about mono-
treatment of SFN on lipid instead of using food enriched with SFN. Therefore, we here, provide a systematic 
review and meta-analysis that summarizes SFN effects on lipid profiles in animals since 2013.
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Material and method
Search strategy.  To find articles related to SFN, we systematically searched databases including: Web 
of Science, PubMed, SCOPUS, medRxiv, bioRxiv and Google Scholar from 2013 through Sept. 2020. Our 
search of those databases utilized MeSH and non-MeSH terms related to lipid profile and sulforaphane. These 
included: “Lipoproteins, LDL”, “Low Density Lipoprotein Cholesterol”, “Cholesterol LDL”, “LDL triacylglycerol”, 
“Triglycerides”, “Triacylglycerol”, “Triacylglycerols”, “Lipoproteins, HDL”, “HDL Lipoproteins”, “High Density 
Lipoproteins”, “High-Density Lipoproteins”, “Lipoproteins, High-Density”, “Lipoproteins, VLDL”, “Cholesterol”, 
“Cholesterol, VLDL”, “VLDL Cholesterol”, “Very Low Density Lipoprotein Cholesterol”, “Very-Low-Density 
Lipoproteins”, “Lipoproteins, Very-Low-Density”, “Very Low Density Lipoproteins”, “Lipoproteins VLDL”, 
“VLDL Lipoproteins”, “Lipoproteins, VLDL”, “total cholesterol”, “TC”, “LDL”, “HDL”, “VLDL”, “TG”, “Lipolysis” 
and “sulforaphane”24. Initially, we attempted to focus our study on the clinical trials of SFN. Regrettably, only two 
clinical research relevant to the lipid profile of SFN are reported. The two research also lack some key clinical 
indicators including dosage of drug, duration of treatment and route of administration. Hence, we decided to 
concentrate on the preclinical studies of SFN (rodents-rats and mice).

Inclusion criteria.  This systematic review and meta-analysis was conducted according to the PRISMA 
guidelines25. Studies with following criteria were selected for meta-analysis: (i) Original articles; (ii) Focusing 
on rodent (rats and mice) models; (iii) Using SFN as monotherapy in intervention group; (iv) Evaluation of sys-
temic metabolic parameters, including body weight (BW), liver weight (LW) or lipid profile data.

Exclusion criteria.  We excluded trials if they met the following criteria: (A) Using food sources instead of 
SFN, (B) Using other food supplements with SFN, (C) Lacking of control group, (D) Having unclear/inadequate 
data, (E) Not using rodents (rats and mice) model, (F) Acute SFN action.

Data extraction.  After considering criteria of inclusion and exclusion, eligible articles were selected. 
Detailed data includes: the name of the first author, publication year, species and sex, number of animals, age 
of animals, model method, duration, intervention (including SFN dose, route of administration), the main out-
comes, intergroup difference and results26.

Statistical analysis.  Treatment effects were considered as weighted mean difference (WMD) and the cor-
responding standard error (SE) in BW, LW and concentrations of serum lipids (TC, LDL-C, HDL-C and TG). 
To estimate the overall effect, we used a random-effect model, previously described by DerSimonian and Laird, 
which considers both within and between-study heterogeneity27. Heterogeneity among the studies was esti-
mated using the I2 statistic, with values of 0–25%, 25.1–75%, and 75.1–100% representing a low, moderate, and 
high degree of heterogeneity, respectively. When standard deviations or SEs were not shown in studies, they were 
calculated using 95% CI. In addition, when studies have reported median and interquartile range, they were 
converted to mean and SE using available formulas28. Statistical analyses were done using Stata, version 13 (Stata 
Corp., College Station, TX, USA). P-values less than 0.05 were considered statistically significant.

Results
Selection of articles.  A total of 654 studies were involved by our database search. 279 duplicate articles 
were removed. After reading the title and abstract of papers, 20 articles were selected to analyze the full text 
with removing 355 studies. We considered inclusion and exclusion criteria and then excluded 10 further studies 
owing to prescribing broccoli supplement or broccoli sprout extract instead of SFN (n = 3), acute SFN action 
(n = 2), RCTs (n = 2), rabbit model (n = 1), alcohol-induced liver steatosis model (n = 1) and lacking of clear data 
(n = 1) (Fig. 1). Ultimately, this meta-analysis was conducted on ten trials of rodents29–38 (Table 1), including 5 
batches of C57BL/6 mice, 4 batches of Wistar rats and 1 batch of Sprague Dawley rats. In terms of gender, all the 
trials selected male animals aged 4–10 weeks. The methods to build disease models included feeding mice or rats 
with high-fat diet, high-fructose diet or highly palatable diet or injecting of streptozotocin (STZ) into rodents. 
Specifically, four trials induced obesity by feeding with high-fat diet, one trial by feeding with high-fructose diet, 
one trial by feeding with high-fat high-sucrose diet, and one trial by feeding with highly palatable diet, two trials 
evoked diabetes by feeding with high-fat diet and then injecting of STZ and one trail by injection of STZ. The 
animals were treated with SFN using multiple routes, including by oral administration, oral gavage, subcutane-
ous injection, and intraperitoneal injection. The intervention duration was 3 to 16 weeks. The dosage of SFN 
ranged from 0.5 mg/kg to 30 mg/kg.

Effects of SFN supplementation on body weight.  The meta-analysis of BW included 6 publications 
with 6 effect sizes. We found that SFN supplementation was correlated with BW changes (WMD: − 2.76 g, 95% 
CI: − 4.19, − 1.34; P = 0.032, I2 = 58.9%) (Fig. 2). In the subgroup analyses, the heterogeneity was not observed 
when studies were stratified by species, disease model, duration and SFN dosage and administration route 
(Table  2). However, heterogeneity was attenuated in oral administration subgroup (I2 = 0.0%), studies which 
lasted for > 10 weeks (I2 = 0.0%), diabetes model subgroup (I2 = 12.2%), studies whose dosage of SFN ≤ 0.5 mg/
kg/d (I2 = 12.2%) and rats subgroup (I2 = 24.8%). SFN supplementation significantly decreased BW in murine 
group (WMD: − 2.93 g, 95% CI: − 4.34, − 1.52; P = 0.015, I2 = 76.3%), in the obesity model studies (WMD: − 
3.30 g, 95% CI: − 4.46, − 2.14; P = 0.096, I2 = 52.7%), in studies which lasted for ≤ 10 weeks (WMD: − 3.18 g, 
95% CI: − 4.60, − 1.75; P = 0.037, I2 = 64.6%), in studies whose dosage of SFN > 0.5 mg/kg/d (WMD: − 3.30 g, 
95% CI: − 4.46, − 2.14; P = 0.096, I2 = 52.7%), in the oral administration group (WMD: − 3.96 g, 95% CI: − 4.47, 
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− 3.14; P = 0.392, I2 = 0.0%) and in the injection administration group (WMD: − 1.33 g, 95% CI: − 4.46, 1.80; 
P = 0.107, I2 = 55.2%). However, BW was not reduced in rats group (WMD: 1.12 g, 95% CI: − 6.87, 9.19; P = 0.265, 
I2 = 24.8%) nor the diabetes model of rodents with a dosage of SFN ≤ 0.5 mg/kg/day (WMD: 1.09 g, 95% CI: − 
4.53, 6.72; P = 0.286, I2 = 12.2%) (Table 2).

Effects of SFN supplementation on liver weight.  The results of LW were calculated in 4 comparisons 
from 4 studies. As shown in Fig. 3, SFN significantly affected LW of rodents (WMD: − 0.93 g, 95% CI: − 1.63, 
− 0.23; P = 0.000, I2 = 93.0%). In subgroup analyses by the species, disease model, duration, SFN dosage and 
administration route of rodents, it showed that SFN caused a reduction in levels of LW in the obesity group 
treated with dosage of SFN > 0.5 mg/kg/day by oral administration (WMD: − 1.26 g, 95% CI: − 2.31, − 0.39; 
P = 0.000, I2 = 95.2%), but its effect in diabetes group treated with dosage of SFN ≤ 0.5 mg/kg/day by injection 
(WMD: 0.00 g, 95% CI: − 0.37, 0.37; P = 0.000, I2 = 95.2%) was not significant (Table 2). Results revealed that 
classifying trails based on species, disease model, duration, SFN dosage as well as administration route could not 
explain the heterogeneity among studies from the subgroup analysis (Table 2).

Effects of SFN supplementation on serum total cholesterol.  In total 6 publications with 6 effect 
sizes, serum total cholesterol concentrations were analyzed and reported. SFN caused a significant reduction in 
serum TC levels (WMD: − 15.62 mg/dL, 95% CI: − 24.07, − 7.18; P = 0.000, I2 = 92.3%) (Fig. 4). Heterogeneity 
was eliminated in studies which lasted for > 10 weeks (I2 = 0.0%), however, the heterogeneity sources were not 
found when studies were stratified duration and other subgroups (Table 2). Moreover, in all studies, intake of 
SFN led to a significant decline in serum levels of total cholesterol, particularly in the subgroups with a dosage 
of SFN > 0.5 mg/kg/day (WMD: − 22.75 mg/dL, 95% CI: − 40.46, − 5.04; P = 0.000, I2 = 95.1%) and interven-
tion ≤ 10 weeks (WMD: − 21.27 mg/dL, 95% CI: − 34.67, − 7.87; P = 0.000, I2 = 92.5%) (Table 2).

Effects of SFN supplementation on serum low‑density lipoprotein cholesterol.  In total, the 
analysis of LDL-C involves 3 publications with 3 effect sizes. A statistically significant reduction effect of SFN 
supplementation on serum LDL-C (WMD: − 8.35 mg/dL, 95% CI: − 15.47, − 1.24; P = 0.001, I2 = 85.2%) was 
discovered (Fig. 5).

Effects of SFN supplementation on serum high‑density lipoprotein cholesterol.  Combining 5 
effect sizes from 5 publications, we found SFN was not effective in raising the levels of serum HDL-C concentra-
tion (WMD: 1.05 mg/dL, 95% CI: − 3.44, 5.54; P = 0.000, I2 = 91.2%) (Fig. 6). In subgroup analyses, it appears that 
SFN played a role in a significant increase of HDL-C in diabetes subgroup which is injected with SFN (WMD: 
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Figure 1.   Flow diagram of database searches and study selection.
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First author, 
year Species

No. of animals 
(intervention/
control group) Age (weight)

Model method 
(time) Duration Intervention

The main 
outcomes

Intergroup 
difference Results

1. Choi K.M. 
(2014)29

Male C57BL/6N 
mice 10/10 4 weeks High-fat diet 

(6 weeks) 6 weeks
1 g/kg diet SFN,
oral administra-
tion

1. BW
2. TC (serum)
3. TG (serum)
4. HDL-C
5. LDL-C
6. TC (liver)
7. TG (liver)

1. P < 0.01
2. P < 0.05 3. 
P > 0.05
4. P > 0.05
5. P > 0.05
6. P > 0.05
7. P > 0.05

BW and serum 
TC, decreased 
significantly, 
but serum TG, 
HDL-C, LDL-C, 
liver TC, and TG 
did not change in 
SFN group

2. Lei P (2019)52 Male Wistar rats 6/6 4–6 weeks 
(160–200 g)

High-fat diet 
(10 weeks) 10 weeks

20 mg/kg, 3 days 
a week SFN, oral 
gavage

1. LW
2. TC (serum)
3. TG (serum)
4. HDL-C
5. LDL-C
6. TC (liver)
7. TG (liver)
8. LDs (liver)
9. FFA (liver)

1. P < 0.05
2. P < 0.05
3. P < 0.05
4. P > 0.05
5. P < 0.05
6. P > 0.05
7. P < 0.05
8. P < 0.01
9. P < 0.01

LW, serum TC, 
TG, LDL-C, 
liver TG and 
LDs decreased 
significantly, but 
serum HDL-C, 
and liver TC did 
not change in 
SFN group

3. Shawky N.M. 
(2019)31

Male Sprague 
Dawley rats 8/10 8 weeks 

(150–200 g)
High-fructose 
diet (9 weeks) 6 weeks 0.5 mg/kg/day 

SFN, oral gavage

1. BW
2. AUC​OGTT​
3.  AUC​ITT
4. HOMA-IR
5. TC (serum)
6. TG (serum)
7. HDL-C
8. LDL-C

1. P > 0.05
2. P < 0.05
3. P > 0.05
4. P < 0.05
5. P > 0.05
6. P > 0.05
7. P < 0.05
8. P < 0.05

AUC​OGTT, 
HOMA-IR, 
serum HDL-C 
and LDL-C 
ameliorated 
significantly, 
but BW, AUC​
ITT, serum TC 
and TG did not 
change in SFN 
group

4. Shawky N.M. 
(2016)32

Male C57BL/6J 
mice 11/11 8 weeks

High-fat high-
sucrose diet 
(8 weeks)

3 weeks
0.5 mg/kg/day 
SFN, subcutane-
ous injection

1. BW
2. HOMA-IR
3. AUC​IPGTT​
4. TC (plasma)
5. TG (plasma)
6. HDL-C 
(plasma)
7. LDL-C 
(plasma)
8. FFA (plasma)
9. Non-HDL-C 
(plasma)

1. P < 0.05
2. P < 0.05
3. P < 0.05
4. P > 0.05
5. P < 0.05
6. P < 0.05
7. P > 0.05
8. P < 0.05
9. P < 0.05

BW, HOMA-IR, 
AUC​IPGTT, plasma 
TG, HDL-C, FFA 
and non-HDL-
C ameliorated 
significantly, 
but plasma TC, 
LDL-C did not 
change in SFN 
group

5. Souza C.G. 
(2016)33 Male Wistar rats 8/7 8 weeks Injection of STZ 3 weeks

0.5 mg/kg/day 
SFN, intraperito-
neal injection

1. LW
2. TC (serum)
3. HDL-C 
(serum)
4. Non-HDL-C
5. TG (serum)
6. ALT
7. AST
8. AUC​IPIRT

1. P > 0.05
2. P < 0.05
3. P > 0.05
4. P < 0.05
5. P < 0.05
6. P > 0.05
7. P > 0.05
8. P < 0.05

Serum TC, 
non-HDL-C, 
TG, AUC​IPIRT 
decreased signifi-
cantly, but LW, 
HDL-C, ALT, 
and AST did not 
change in SFN 
group

6. Souza C.G. 
(2013)34 Male Wistar rats 7/7 8 weeks

Highly palatable 
diet (24 weeks) 
(enriched 
sucrose diet)

16 weeks 1 mg/kg/day 
SFN, oral gavage

1. BW
2. LW
3. TC (serum)
4. HDL-C
5. TAG (serum)
6. TAG (liver)
7. TC (liver)
8. ALT
9. AST
10.AUC​IPGTT​

1. P > 0.05
2. P > 0.05
3. P > 0.05
4. P > 0.05
5. P > 0.05
6. P > 0.05
7. P > 0.05
8. P > 0.05
9. P > 0.05
10.P > 0.05

Lipid parameters 
did not change 
significantly in 
SFN group

7. Sun Y. (2020)35 Male C57BL/6J 
mice 5/5 8 weeks

High-fat diet 
(12 weeks, 
24 weeks), injec-
tion of STZ

12 weeks
0.5 mg/kg, 
5 days a week 
SFN, intraperito-
neal injection

1. BW
2. LDs (cardiac)

1. P > 0.05, 
P < 0.05
2. P > 0.05, 
P < 0.05

BW and 
cardiac LDs 
did not change 
significantly 
in SFN group 
treated by HFD 
for 12 weeks, 
but both of 
them decreased 
significantly 
in SFN group 
treated by HFD 
for 24 weeks

Continued
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4.00 mg/dL, 95% CI: 0.65, 7.35)33, but it had no significant effect in the obesity group by oral administration 
(WMD: 0.40 mg/dL, 95% CI: − 5.42, 6.22; P = 0.000, I2 = 92.5%). In addition, SFN supplementation reduced the 
level of HDL-C significantly in the murine subgroup (WMD: − 8.30 mg/dL, 95% CI: − 11.94, − 4.66). Species, 
disease model, duration and SFN dosage and administration route of studies were not determined to be sources 
of heterogeneity (Table 2).

Effects of SFN supplementation on serum triglyceride.  There were five effect sizes from 5 publica-
tions that were included in the analysis of serum triglyceride. Overall, levels of serum TG were reduced after sup-

First author, 
year Species

No. of animals 
(intervention/
control group) Age (weight)

Model method 
(time) Duration Intervention

The main 
outcomes

Intergroup 
difference Results

8. Tian S. 
(2017)36 Male Wistar rats 10/10 4–6 weeks 

(160–200 g)
High-fat diet 
(10 weeks) 10 weeks

5, 10, 20 mg/kg, 
3 days a week 
SFN, oral gavage

1. TC (plasma)
2. TG (plasma)
3. TC (liver)
4. TG (liver)

1. P < 0.05, 
P < 0.05, 
P < 0.0001
2. P < 0.0001, 
P < 0.05, 
P < 0.0001
3. P > 0.05, 
P < 0.01, 
P < 0.0001
4. P > 0.05, 
P < 0.0001, 
P < 0.0001

Plasma TC, 
TG decreased 
significantly, but 
liver TC, TG 
did not change 
significantly in 
low-doses-SFN 
group; All of 
plasma TC, TG, 
liver TC and TG 
decreased signifi-
cantly in middle-
doses-SFN and 
high-doses-SFN 
group

9. Yang G. 
(2016)37

Male C57BL/6 
mice 8/8 5 weeks High-fat diet 

(9 weeks) 9 weeks 30 mg/kg/day 
SFN, oral gavage

1. LW
2. TC (liver)
3. TG (liver)
4. FFA (liver)
5. ALT
6. AST
7. HOMA-IR

1. P < 0.05 2. 
P < 0.05 3. 
P < 0.05
4. P < 0.05
5. P < 0.05
6. P < 0.05
7. P < 0.05

Lipid parameters 
change signifi-
cantly in SFN 
group

10. Zhang Z. 
(2014)38

Male C57BL/6J 
mice 6/6 8–10 weeks

High-fat diet 
(12 weeks), 
injection of STZ

16 weeks
0.5 mg/kg, 
5 days a week 
SFN, subcutane-
ous injection

1. TC (plasma)
2. TG (plasma)
3. AUC​IPGTT​
4. LDs (cardiac)

1. P > 0.05
2. P < 0.05
3. P > 0.05
4. P < 0.05

Plasma TG 
and cardiac 
LDs decreased 
significantly, 
but plasma TC 
and AUC​IPGTT​ 
did not change 
significantly in 
SFN group

Table 1.   Description of included studies. ALT alanine aminotransferase, AST aspartate aminotransferase, AUC​ 
area under the curve, FFA free fatty acids, GTT​ glucose tolerance test, HOMA-IR an index of insulin resistance, 
IP intraperitoneally, IRT the insulin responsiveness test, LDs lipid droplets, O oral.

Figure 2.   Forest plot showing effects of SFN on body weight.
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Effect size, n WMD 95% CI I-squared (%) P for heterogeneity

P for between 
subgroup 
heterogeneity

Body weight

Overall effect 6 − 2.76 − 4.19, − 1.34 58.9 0.032

Species 0.471

Mice 3 − 2.93 − 4.34, − 1.52 76.3 0.015

Rats 3 1.12 − 6.87, 9.10 24.8 0.265

Disease model 0.122

Obesity (without STZ) 4 − 3.30 − 4.46, − 2.14 52.7 0.096

Diabetes (with STZ) 2 1.09 − 4.53, 6.72 12.2 0.286

Duration 0.122

 ≤ 10 weeks 4 − 3.18 − 4.60, − 1.75 64.6 0.037

 > 10 weeks 2 − 0.45 − 3.68, 2.79 0.0 0.37

SFN dosage 0.292

 ≤ 0.5 mg/kg/day 2 1.09 − 4.53, 6.72 12.2 0.286

 > 0.5 mg/kg/day 4 − 3.30 − 4.46, − 2.14 52.7 0.096

Administration route 0.391

Oral 3 − 3.96 − 4.47, − 3.14 0.0 0.392

Injection 3 − 1.33 − 4.46, 1.80 55.2 0.107

Liver weight

Overall effect 4 − 0.93 − 1.63, − 0.23 93.0 0.000

Species 0.712

Mice 1 − 0.54 − 0.75, − 0.33 – –

Rats 3 − 1.11 − 2.31, 0.09 95.2 0.000

Disease model 0.363

Obesity (without STZ) 3 − 1.26 − 2.13, − 0.39 93.3 0.000

Diabetes (with STZ) 1 0.00 − 0.37, 0.37 – –

Duration 0.992

 ≤ 10 weeks 3 − 0.93 − 1.89, 0.03 94.9 0.000

 > 10 weeks 1 − 1.00 − 1.40, − 0.60 – –

SFN dosage 0.363

 ≤ 0.5 mg/kg/day 1 0.00 − 0.37, 0.37 – –

 > 0.5 mg/kg/day 3 − 1.26 − 2.13, − 0.39 93.3 0.000

Administration route 0.363

Oral 3 − 1.26 − 2.13, − 0.39 93.3 0.000

Injection 1 0.00 − 1.63, − 0.23 – –

Total cholesterol

Overall effect 6 − 15.62 − 24.07, − 7.18 92.3 0.000

Species 0.511

Mice 2 − 23.59 − 60.48, 13.30 97.3 0.000

Rats 4 − 12.77 − 21.41, − 4.14 89.2 0.000

Disease model 0.752

Obesity (without STZ) 4 − 17.49 − 30.34, − 4.64 93.7 0.000

Diabetes (with STZ) 2 − 12.92 − 28.45, 2.61 94.3 0.000

Duration 0.261

 ≤ 10 weeks 4 − 21.27 − 34.67, − 7.87 92.5 0.000

 > 10 weeks 2 − 6.17 − 9.01, − 3.34 0.0 0.525

SFN dosage 0.338

 ≤ 0.5 mg/kg/day 3 − 9.66 − 20.10, 0.78 90.6 0.000

 > 0.5 mg/kg/day 3 − 22.75 − 40.46, − 5.04 95.1 0.000

Administration route 0.752

Oral 4 − 17.49 − 30.34, − 4.64 93.7 0.000

Injection 2 − 12.92 − 28.45, 2.61 94.3 0.000

HDL-C

Overall effect 5 1.05 − 3.44, 5.54 91.2 0.000

Species 0.199

Mice 1 − 8.30 − 11.94, − 4.66 – –

Continued
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Effect size, n WMD 95% CI I-squared (%) P for heterogeneity

P for between 
subgroup 
heterogeneity

Rats 4 3.31 − 1.18, 7.80 88.0 0.000

Disease model 0.747

Obesity (without STZ) 4 0.40 − 5.42, 6.22 92.5 0.000

Diabetes (with STZ) 1 4.00 0.65, 7.35 – –

Duration 0.878

 ≤ 10 weeks 4 1.63 − 6.44, 9.70 93.4 0.000

 > 10 weeks 1 0.00 − 0.40, 0.40 – –

SFN dosage 0.102

 ≤ 0.5 mg/kg/day 2 8.26 − 0.71, 17.22 85.9 0.008

 > 0.5 mg/kg/day 3 − 3.13 − 8.38, 2.12 90.1 0.000

Administration route 0.747

Oral 4 0.40 − 5.42, 6.22 92.5 0.000

Injection 1 4.00 0.65, 7.35 – –

Triglyceride

Overall effect 5 − 40.85 − 67.46, − 14.24 97.1 0.000

Species 0.659

Mice 2 − 41.49 − 161.29, 78.30 98.7 0.000

Rats 3 − 33.14 − 60.77, − 5.51 95.3 0.000

Disease model 0.092

Obesity (without STZ) 3 − 1.34 − 18.69, 16.01 95.1 0.000

Diabetes (with STZ) 2 − 212.55 − 436.50, 11.40 97.1 0.000

Duration 0.898

 ≤ 10 weeks 4 − 18.05 − 42.06, 5.96 96.4 0.000

 > 10 weeks 1 − 103.25 − 128.94, − 77.56 – –

SFN dosage 0.305

 ≤ 0.5 mg/kg/day 3 − 132.41 − 231.71, − 33.12 97.5 0.000

 > 0.5 mg/kg/day 2 4.85 − 22.42, 32.13 97.1 0.000

Administration route 0.092

Oral 3 − 1.34 − 18.69, 16.01 95.1 0.000

Injection 2 − 212.55 − 436.50, 11.40 94.9 0.000

Table 2.   Subgroup analysis to assess the effect of SFN supplement on lipid profile.

Figure 3.   Forest plot showing effects of SFN on liver weight.
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plementation of SFN with high degree of study heterogeneity showed by the quantitative meta-analysis (WMD: 
− 40.85 mg/dL, 95% CI: − 67.46, − 14.24; P = 0.000, I2 = 97.1%) (Fig. 7). The results of the subgroup analysis 
revealed that the heterogeneity among studies could not be explained when studies were divided by species, 
disease model, duration and SFN dosage and administration route. In these results, the effect of reducing serum 
TG concentrations after intake of SFN was significant when studies were performed on rodents with a dosage 
of SFN ≤ 0.5  mg/kg/day (WMD: − 132.41  mg/dL, 95% CI: − 231.71, − 33.12; P = 0.000, I2 = 97.5%), with an 
intervention duration of > 10 weeks (WMD: − 103.25 mg/dL, 95% CI: − 128.94, − 77.56), and using a rat group 
(WMD: − 33.14 mg/dL, 95% CI: − 60.77, − 5.51; P = 0.000, I2 = 95.3%) . In addition, SFN supplements were not 
statistically significant for other subgroups (Table 2).

Publication bias and sensitivity analysis.  There was no evidence for publication bias through Funnel 
plots and Egger’s tests (BW Egger’s test: P = 0.201, LW Egger’s test: P = 0.386, TC Egger’s test: P = 0.055, LDL-C 
Egger’s test: P = 0.515, HDL-C Egger’s test: P = 0.836 and TG Egger’s test: P = 0.230) (Supplementary Table S1 and 
Figure S1). Sensitivity analyses revealed that any individual study did not influence the summary effects on BW, 
LW, TC, LDL-C, HDL-C and TG (Supplementary Figure S2).

Discussion
In this updated meta-analysis, ten articles were utilized to assess SFN supplementation effects on body weight and 
lipid profile in preclinical animal models. Our analysis clearly demonstrates that SFN supplementation signifi-
cantly decreased BW, LW, TC as well as LDL-C levels, apart from HDL-C. This is the first meta-analytic study that 

Figure 4.   Forest plot showing effects of SFN on serum total cholesterol.

Figure 5.   Forest plot showing effects of SFN on serum low-density lipoprotein cholesterol.
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summarizes the function of SFN mono-treatment on lipid profile in rodents with metabolic syndrome. Clearly, 
SFN has a positive effect in reducing BW and LW and promotes physiologically lipid profile in animal models.

Our results reveal that different disease models (with or without STZ) do not influence the previous results 
of meta-analysis on lipid-related parameters and weight in rodents after supplementation with SFN. Duration, 
dosage of SFN or route of administration has no effect on this result.

Our research focuses on the effects of SFN as a mono-therapeutic drug on animal lipid profile. Majority 
clinical trials used of broccoli and broccoli sprouts instead of SFN mono-treatment. However, clinical trials 
with intake of broccoli (enriched with SFN) can provide some auxiliary support for SFN mono-therapeutic 
research. Adriana Conzatti and coworkers’ study revealed that broccoli sprouts could improve lipid profile and 
blood gulcose13. Armah et al.17, also found that plasma LDL-C was significantly downregulated with intake of 
high glucoraphanin broccoli. However, according to the result of Sudini et al.39, intake of broccoli sprouts lasting 
for half a week did not ameliorate inflammation and oxidative stress markers, in spite of causing a remarkable 
increase in serum SFN levels. Overall, all related clinical trials we mentioned here, using food like broccoli 
instead of SFN mono-treatment as therapeutic intervention, required longer time courses to obtained reliable 
physiologically effects.

In vivo and in vitro studies had shown that SFN can improve lipid-related metabolic indicators and ameliorate 
cardiovascular disorders40,41. Recently, SFN was reported to attenuate HFD-induced obesity through inhibiting 
lipogenesis via AMP-activated protein kinase (AMPK) pathway20,29. SFN played a positive role in cardiomyopathy 

Figure 6.   Forest plot showing effects of SFN on serum high-density lipoprotein cholesterol.

Figure 7.   Forest plot showing effects of SFN on serum triglyceride.
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that was specifically related to the Nrf2-mediated antioxidant pathways (nuclear factor, erythroid 2 like 2) and 
the AMPK-upregulated lipid metabolism29,42,43. Clinical and animal studies shows that the preventive effect of 
SFN on CVD could also be through Nrf2 activation44. Apart from mediating metabolic syndromes, SFN was 
also found to reduce glycated hemoglobin and fasting blood glucose in type 2 diabetes patients14,42,45. Fu et al.46 
showed that SFN supplements attenuated reactive oxygen species stimulated by glucose, and thereby decreased 
insulin secretion. SFN could ameliorate obesity and insulin resistance in parallel experiments31,47–49.

Clearly, the take home message is that SFN could attenuate certain risk factors of metabolic syndrome through 
weight management and reduction of lipid abnormalities12,50. This is the first systematic review and meta-analysis 
of SFN monotreatment vs. whole broccoli on lipid distribution in rodents with metabolic syndrome. Our sub-
group analysis focused on model method, age, SFN dosage, intervention duration and route of administration. 
Furthermore, the meta-analysis involved 10 studies from various countries and animal models.

However, some limitations of this study must be kept in mind. First, it is not clear whether gender responses 
differently to the effect of SFN, because all researches use male animals rather than female. Female and male 
animals have different sex hormones, which may affect serum lipid concentration51. It’s necessary to conduct 
research using both male and female to evaluate the effect of SFN on the lipid profile. Moreover, our meta-analysis 
is based on animal experiments rather than RCTs. Results obtained through animal models are not necessarily 
applicable to humans. In addition, only ten studies meet our requirements. The number of studies with clearly 
delineated data about metabolic parameters is too small to engage in further subgroup analysis. Most articles 
were not exclusively performed on rodents fed with HFD and the trail using other food supplements with SFN 
was not utilized here owning to exclusion criterion.

Overall, our analysis supports the conclusion that SFN supplements decrease the level of BW, LW and lipid 
profile such as TC, TG, LDL-C in rodents. However, this needs to be validated by relevant clinical trials. In 
addition, it will be necessary to design and perform a more comprehensive panel of indicators in patients with 
conditions including dyslipidemia, obesity, CVD, NAFLD and related metabolic disorders.
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