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Abstract

Many ecosystems may suffer from both nutrient enrichment and exotic plant invasions

simultaneously. Much has been known that nutrient inputs can promote growth and expan-

sion of exotic invasive plants in wetlands, and that allelopathic effects of the exotic invasive

plants can inhibit the growth of coexisting native plants, contributing to their invasion suc-

cess. Thus, we hypothesized that allelopathic effects of exotics on natives in invaded eco-

systems can be enhanced by nutrient enrichment. To test this hypothesis, we conducted

two greenhouse hydroponic experiments. One is the monoculture experiment in which a

widespread exotic invasive perennial Alternanthera philoxeroides and a native perennial

Ludwigia peploides subsp. stipulacea in monoculture were subjected to five levels of nutrient

supply. The other is the mixture experiment in which the two species in mixture were sub-

jected to five levels of nutrient supply, each with and without activated carbon addition. Both

A. philoxeroides and L. peploides grew better under higher level of nutrient availability in

monoculture experiment. In the mixture experiment, A. philoxeroides formed less total and

root biomass while L. peploides formed more in response to activated carbon addition and

all of the responses had larger degree at higher level of nutrient availability, indicating A. phi-

loxeroides had significant allelopathic effects on L. peploides and the effects was signifi-

cantly enhanced by nutrient enrichment. Such results support our hypothesis and reveal a

novel mechanism for exotic plant invasion in eutrophicated and invaded wetlands, i.e. nutri-

ent enhancement of allelopathic effects of exotics on natives.

Introduction

Wetlands can actually or potentially offer many ecosystem services to human society [1, 2].

However, human-induced municipal sewage discharging, agricultural fertilization [3, 4], and/

or atmospheric nitrogen deposition [5] may increase nitrogen and/or phosphorous loading to

wetlands, causing water eutrophication of the ecosystems. This is particularly true in urban

and suburban wetlands [6, 7]. In fact, as a consequence of global environmental change,
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around the world eutrophication has been leading to wetland ecosystem degradation [8–11],

which is often characterized by biodiversity losing and productivity decreasing [12–14].

Wetlands in economically developed regions often suffered not only eutrophication but

also biological invasion [6, 15]. Previous studies found wetlands become more susceptible to

exotic plant invasions after suffering from human disturbances like eutrophication due to

nutrient accumulation [12, 16, 17]. Exotic invasive plants can alter ecosystem processes pro-

foundly in wetlands [15, 18, 19]. Recent studies found nutrient inputs could promote expan-

sion of exotic invasive plants in wetlands [12, 20], which can also shift growth and interactions

between exotic invasive and native species, endowing the exotic invasive plants with competi-

tion advantage [21–23] and consequently with a higher invasiveness. Thus, understanding

how wetland ecosystems respond to nutrient accumulation and plant invasion can greatly help

ecosystem management and governance of wetlands [6, 24].

Allelopathy between plants refers to the effect of toxic metabolites produced and released

by a plant species on the growth of another [25, 26]. Novel weapon hypothesis claimed that

allelopathic effects of the exotic on the native plant species substantially contribute to the inva-

sion success through inhibiting growth of the native [26–28]. So far, we have known that plant

invasion can be promoted by nutrient enrichment [12, 29, 30] and by allelopathic effects of the

exotics on the natives [27, 28, 31–33], while we have not known whether nutrient enrichment

can enhance allelopathic effects of the exotics on the natives, being among the mechanisms

underlying the promotion. Thus, we propose a new hypothesis that nutrient enrichment can

enhance the allelopathic effects of the exotics on the natives.

To test this hypothesis, we conducted two greenhouse hydroponic experiments. One is a

monoculture experiment in which Alternanthera philoxeroides, an exotic clonal perennial

widely invading in China, and Ludwigia peploides subsp. stipulacea, a native clonal perennial,

were grown in monoculture and subjected to five levels of nutrient supply. The other is a mix-

ture experiment in which the two plant species were grown in mixture and subjected to five

levels of nutrient supply, each with and without activated carbon addition. Previous studies

found that nutrient availability could promote the growth and competitive ability of A. philox-
eroides [23, 34]. Therefore, based on the new hypothesis, we predict: 1) the exotics will grow

better under the higher level of nutrient availability; 2) activated carbon addition will decrease

the allelopathy increasing with the growth of the exotics; 3) allelopathic effect of the exotics on

the natives will be larger under higher level of nutrient availability.

Materials and methods

Species and plant materials

Alternanthera philoxeroides (Mart.) Griseb. (Amaranthaceae), a perennial stoloniferous clonal

plant native to South America, is a serious exotic invasive species spread to Australia, New

Zealand, USA, Thailand and China. It is amphibious so that it is able to grow both in wetland

and terrestrial habitat [35]. A. philoxeroides has extremely low genetic diversity in China [36,

37], and mainly propagates through clonal growth by formation of stolon, rhizome and tuber

[35]. This species can produce aqueous and degradable allelochemicals to inhibit co-occurring

native species, especially for aquatic ecotype [38].

Ludwigia peploides subsp. stipulacea (syn. Jussiaea repens; Onagraceae; hereafter abbreviate

as L. peploides), is a perennial stoloniferous clonal plant growing in wetland habitats, such as

bank of canals, ponds and paddy fields [39]. It is a native species in China and mainly distrib-

uted in Zhejiang Province, Fujian Province and the East of Guangdong Province. The two spe-

cies usually coexist in many wetlands from aquatic to aquatic-terrestrial ecotones in South
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China [39, 40]. Previous studies found A. philoxeroides have a competitive advantage over L.

peploides in heterogeneous environments due to the ability of clonal integration [39].

Plant materials of A. philoxeroides and L. peploides were collected from the Xixi National

Wetland Park (30˚140-30˚160N, 120˚020-120˚050E) located in Hangzhou City, Zhejiang Prov-

ince, China, with the approval by Administration of Xixi National Wetland Park. This study

did not involve any endangered or protected species. To avoid sampling the same genotypes,

we collected materials of each species from at least five locations at least 20 m apart. The plant

materials were propagated in a greenhouse at Hangzhou Normal University, China. After 2

weeks of recovery growth, tip cuttings of A. philoxeroides and L. peploides respectively were

selected and planted into plastic containers with Hoagland solution for continued culture.

Experimental design

Monoculture experiment. On September 10, 2017, 25 cuttings with 10 cm length and

similar size of A. philoxeroides and L. peploides were grown in total 50 (H × L × W:

12.5cm × 40cm × 30cm, 15 L totally) plastic containers in the greenhouse, separately. We set

five nutrient levels (Table 1; N1 to N5) with different nitrogen and phosphorous concentra-

tions adjusted by NH4NO3 and Na2HPO4 solution, referring to eutrophication situation of the

Yangtze Delta Region [41] where the plant materials were collected. Nitrogen to phosphorous

ratio (N:P) of the solution was the same (20:1) for all five nutrient levels, and kept consistent

during the experiments to avoid the potential confounding effects of N:P on interspecific inter-

actions [23]. The concentrations of other essential elements for plant growth in the nutrient

solution were referred to Hoagland solution. The 25 containers of each species were randomly

subjected to the five nutrient treatments, each with five replications. Totally, there were 2 spe-

cies × 5 nutrient treatments × 5 replications.

Mixture experiment. At the same time, 50 cuttings with 10 cm length and similar size for

each of the species were randomly chosen and grown in the way in which one cutting of one of

the two species together, with one cutting of the other were in each of in total 50 plastic con-

tainers (the same size as in monoculture experiment) put randomly in the greenhouse. The 50

containers of each species were randomly subjected into the five nutrient treatments (the same

as in monoculture experiment) with five replications, and half of them were assigned into acti-

vated carbon addition (with the dosage of 2%, 250 g per container) treatment to neutralize

potential allelopathic effects [42, 43]. Totally, there were 5 nutrient treatments × 5 replications.

The two experiments lasted two months (from September 10 to November 10, 2017) in the

greenhouse. Nutrient solution and activated carbon were replenished every 7 days. During the

experiments, containers were supplied with deionized water once a day and the water level in

the containers was kept. Containers with different treatments were randomly arranged in the

greenhouse to avoid potential confounding effects of local environmental conditions. Addi-

tionally, all containers were repositioned every week to avoid the effects of possible environ-

mental patchiness within the greenhouse.

Table 1. Nitrogen and phosphorus dose of different nutrient levels in the experiments.

Nutrient level NH4NO3 (mg) Na2HPO4 (mg) [N] (mg L-1) [P] (mg L-1)

N1 1.43 0.11 0.2 0.01

N2 7.14 0.57 1.0 0.05

N3 14.29 1.15 2.0 0.10

N4 21.43 1.72 3.0 0.15

N5 28.57 2.29 4.0 0.20

https://doi.org/10.1371/journal.pone.0206165.t001
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Harvest and measurements

At harvest, we separated each plant into leaf, stolon and root. Then all materials of the different

plant parts were oven-dried at 60˚C for 48 h before they were weighed respectively.

Data analysis

For the monoculture experiment, two-way ANOVA was performed to test the effects of nutri-

ent level and species identity on total biomass, root biomass, stolon biomass and leaf biomass

accumulation. For the mixture experiment, three-way ANOVA were applied to examine the

effects of nutrient availability, species identity and activated carbon addition on total biomass,

root biomass, stolon biomass and leaf biomass accumulation. When ANOVA showed signifi-

cant differences, we conducted LSD tests to make multiple comparisons among treatments

within species. Data were transformed to meet the assumption of ANOVA when needed. All

statistical analyses were conducted using SPSS 22.0 (SPSS, Chicago, IL, USA). An effect was

considered significant if P< 0.05.

Results

Plant performance in monoculture experiment

Species identify, nutrient availability and their interaction all significantly affected total bio-

mass, root biomass, stolon biomass and leaf biomass of plants in the monoculture experiment

(Table 2). Total biomass, root biomass, stolon biomass and leaf biomass of A. philoxeroides
and L. peploides increased significantly with the elevation of nutrient supply (Fig 1; Table 2).

Under the same nutrient level, total biomass, root biomass, stolon biomass and leaf biomass of

A. philoxeroides were significantly smaller than those of L. peploides (but see root biomass

under N1 nutrient level) (Fig 1; Table 2), and such interspecific differences in total biomass,

root biomass, stolon biomass and leaf biomass significantly enlarged with the elevation of

nutrient level (Fig 1; Table 2).

Plant performance in mixture experiment

Total biomass, root biomass, stolon biomass and leaf biomass of plants in the mixture experi-

ment were significantly affected by activated carbon addition, species identity, nutrient level

Table 2. Effects of species identity (S) and nutrient availability (N) on total biomass, root biomass, stolon biomass

and leaf biomass of plants in the monoculture experiment with Alternanthera philoxeroides or Ludwigia
peploides.

Source d.f. F P
Total biomass S 1,38 254.543 <0.001

N 4,38 142.562 <0.001

S × N 4,38 14.685 <0.001

Root biomass S 1,38 178.767 <0.001

N 4,38 410.447 <0.001

S × N 4,38 35.216 <0.001

Stolon biomass S 1,38 276.344 <0.001

N 4,38 76.325 <0.001

S × N 4,38 15.140 <0.001

Leaf biomass S 1,38 55.518 <0.001

N 4,38 95.777 <0.001

S × N 4,38 0.833 0.513

https://doi.org/10.1371/journal.pone.0206165.t002
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and their interactions (Table 3). In response to activated carbon addition, total biomass, root

biomass, stolon biomass and leaf biomass significantly decreased in A. philoxeroides while

increased in L. peploides (Fig 2). More interestingly, the plants grew under higher nutrient

level, the increase and the decrease were significantly larger, as shown in Fig 2, and indicated

by the significant interaction effects of C × S × N at P = 0.001 in Table 3.

Under the same nutrient level, total biomass, root biomass, stolon biomass and leaf biomass

of A. philoxeroides were significantly smaller than that of L. peploides (Fig 2; Table 3). And

such interspecific differences in both total biomass, root biomass, stolon biomass and leaf bio-

mass significantly enlarged with the elevation of nutrient level (Fig 2; Table 3).

Discussion

Allelopathic effect was enlarged with the elevation of nutrient level. In both monoculture and

mixture experiment, A. philoxeroides plants grew better in terms of total biomass, root bio-

mass, stolon biomass and leaf biomass under higher level of nutrient availability. In the

Fig 1. Total biomass (a), root biomass (b), stolon biomass (c) and leaf biomass (d) of Alternanthera philoxeroides (Ap) and Ludwigia peploides (Lp) under different

nutrient levels in monoculture experiment. Values are presented as means + SE (n = 5). Bars with different letters are significantly different at P = 0.05 for each species.

The overlined two bars with �, �� and ��� are significantly different at P = 0.05, P = 0.01 and P = 0.001, respectively.

https://doi.org/10.1371/journal.pone.0206165.g001
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mixture experiment A. philoxeroides plants grew less in response to activated carbon addition

and the degree of the responses was larger at higher level of nutrient availability, indicating

that the species grew better in response to allelophathy with larger response degree at higher

level of nutrient availability since activated carbon addition leads to the removal of allelochem-

icals [42–44]. Obviously, our results proved the predictions made in the introduction. There-

fore the new hypothesis proposed in the introduction and based on which the predictions

were made was supported, that is, nutrient enrichment can enhance the allelopathic effects of

the exotics on the natives.

The correlation between nutrient enhancement and allelopathic effect gives new insights

into the invasion mechanism of wetland invasive plants. There are many evidences for that

exotic invasive plants can produce various allelochemicals, such as phenols, terpenoids and

alkaloids, which would be beneficial to enhance their capacity of interspecific competition and

to promote invasion [27, 31, 32]. Activated carbon is often used to manipulate the allelopathic

interaction, because it strongly absorbs various allelochemicals while it has no affinity for

hydrophilic molecules including most plant available nutrients [42–44]. Our results showed

that activated carbon addition significantly reduced the total biomass, root biomass, stolon

Table 3. Effects of activated carbon addition (C), species identity (S) and nutrient availability (N) on total bio-

mass, root biomass, stolon biomass and leaf biomass of plants in the mixture experiment with Alternanthera phi-
loxeroides and Ludwigia peploides.

Source d.f. F P
Total biomass C 1,80 173.652 <0.001

S 1,80 3067.657 <0.001

N 4,80 2417.841 <0.001

C × S 1,80 2319.590 <0.001

S × N 4,80 136.166 <0.001

C × N 4,80 38.838 <0.001

C × S × N 4,80 174.340 <0.001

Root biomass C 1,80 22.567 <0.001

S 1,80 477.482 <0.001

N 4,80 537.932 <0.001

C × S 1,80 328.398 <0.001

S × N 4,80 28.864 <0.001

C × N 4,80 5.727 <0.001

C × S × N 4,80 32.288 <0.001

Stolon biomass C 1,80 298.889 <0.001

S 1,80 3178.579 <0.001

N 4,80 1717.657 <0.001

C × S 1,80 2003.224 <0.001

S × N 4,80 185.889 <0.001

C × N 4,80 74.884 <0.001

C × S × N 4,80 170.464 <0.001

Leaf biomass C 1,80 19.695 <0.001

S 1,80 420.743 <0.001

N 4,80 1004.861 <0.001

C × S 1,80 1019.630 <0.001

S × N 4,80 8.168 <0.001

C × N 4,80 14.524 <0.001

C × S × N 4,80 34.514 <0.001

https://doi.org/10.1371/journal.pone.0206165.t003
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biomass and leaf biomass in A. philoxeroides while increased in L. peploides in the mixture

experiment. Therefore, we inferred that A. philoxeroides obtained the net allelopathic effects in

the mixture experiment, i.e., inhabitation of growth of L. peploides by allelochemicals released

by A. philoxeroides was stronger than that of A. philoxeroides by L. peploides under the same

nutrient level. More interestingly, the net eutrophic effects between A. philoxeroides and L.

peploides tended to enlarge as the nutrient availability increased. This implicates that water

eutrophication, together with allelopathic effects of exotic invasive plants, could alter the inter-

specific interactions between the exotic and the native plants, eventually excluding the rem-

nant native species in invaded ecosystems and further lowering biodiversity of the

communities. Our finding that nutrient enhancement of allelopathic effects of the exotics on

the native supports to reveal a novel mechanism explaining the invasion success of the exotic

plant in eutrophicated and invaded wetlands.

Associated with nutrient enrichment, allelopathic effects significantly affected the interac-

tion pattern and growth status of both the native and the exotic invasive species. In

Fig 2. Total biomass (a), root biomass (b) stolon biomass (c) and leaf biomass (d) of Alternanthera philoxeroides (Ap) and Ludwigia peploides (Lp) under different

nutrient levels in the mixture experiment with (CA) and without (N-CA) activated carbon addition. Values are presented as means + SE (n = 5). The bars with different

letters are significantly different at P = 0.05 for each species with or without active carbon addition. The overlined two bars with �, �� and ��� are significantly different at

P = 0.05, P = 0.01 and P = 0.001, respectively. The overlined two bars with ns are not different at P = 0.05.

https://doi.org/10.1371/journal.pone.0206165.g002
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monoculture experiment of this study, without regard to interspecific interaction due to natu-

ral enemies, resource shortage and allelochemical release, we found that both the native species

and the exotic invasive species could significantly respond to nutrient enrichment and that the

native species grew much better than the exotic invasive. This indicates that water eutrophica-

tion can stimulate the growth of wetland plants at species level, in consistent with many previ-

ous studies which also found that eutrophication increased the growth yields of terrestrial and

wetland plants on individual scale [12, 17]. In mixture experiment, it is interesting that both

the native L. peploides and the invasive A. philoxeroides had less biomass than they were in the

monoculture experiment while the native L. peploides decreased biomass in a much higher

rate. That is likely due to that the invasive A. philoxeroides exerted allelopathic effect on the

native L. peploides to a much larger extend than the native did to the invasive. Native plants

had some potential mechanisms, such as higher resource use efficiency or allelopathic effects,

to resist invasions by exotic species [42]. However, after activated carbon treatment had allevi-

ated the allelopathic effect on the native by the invasive to large extent, the total and root bio-

mass of native greatly increased while that of the invasive dramatically decreased, and the

effects was significantly enhanced by nutrient enrichment. It is in agreement with the findings

of the previous research that L. peploides had larger individuals and more developed roots

under eutrophic water, consequently a stronger nutrient absorption ability and a greater bio-

mass accumulation rate [39]. And more interestingly, the growth advantage of the native over

the exotics was bigger at higher level of nutrient availability. These suggest that native L.

peploides might have a higher resource use efficiency than the invasive exotics when either

they grow alone or together, and that is particularly true in eutrophicated environments. Thus,

such a native plant species can be selected and applied to the restoration of invaded and/or

eutrophicated wetland ecosystems, similar to those for restoring grassland invaded by spotted

knapweed [45].

Conclusions

Our results reveal a novel mechanism for the success of exotic plant invasion in eutrophicated

and invaded wetland, i.e., nutrient enhancement of allelopathic effects of exotic on native spe-

cies. This finding implicates that, due to the novel mechanism, eutrophication may consider-

ably promote the invasion success of the exotic plants and accelerate their spatial expansion,

particularly in wetlands. Future biological invasion managements should consider interspecific

relationships and their interactions with the fast changing environments, especially

eutrophication.
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