
[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i32 i32–i40

BIOINFORMATICS Vol. 24 ISMB 2008, pages i32–i40
doi:10.1093/bioinformatics/btn173

Optimal pooling for genome re-sequencing with
ultra-high-throughput short-read technologies
Iman Hajirasouliha1,†, Fereydoun Hormozdiari1,†, S. Cenk Sahinalp1,∗ and Inanc Birol 2

1Lab for Computational Biology, Simon Fraser University, Burnaby, and 2BC Cancer Agency, Genome Sciences
Center, Vancouver, BC, Canada

ABSTRACT

New generation sequencing technologies offer unique
opportunities and challenges for re-sequencing studies. In this
article, we focus on re-sequencing experiments using the Solexa
technology, based on bacterial artificial chromosome (BAC) clones,
and address an experimental design problem. In these specific
experiments, approximate coordinates of the BACs on a reference
genome are known, and fine-scale differences between the BAC
sequences and the reference are of interest. The high-throughput
characteristics of the sequencing technology makes it possible
to multiplex BAC sequencing experiments by pooling BACs for
a cost-effective operation. However, the way BACs are pooled in
such re-sequencing experiments has an effect on the downstream
analysis of the generated data, mostly due to subsequences
common to multiple BACs. The experimental design strategy
we develop in this article offers combinatorial solutions based on
approximation algorithms for the well-known max n-cut problem and
the related max n-section problem on hypergraphs. Our algorithms,
when applied to a number of sample cases give more than a 2-fold
performance improvement over random partitioning.
Contact: cenk@cs.sfu.ca

1 INTRODUCTION
After decades of research effort, the cost of sequencing an individual
human genome via Sanger sequencing (Sanger et al., 1977, 1980,
1982) has now been reduced to the order of 10-million dollars
for a 10-fold coverage and require 10 000 instrument days (1 year
with 30 instruments) (Solexa web server, 2008). In order to
perform fast and cost effective genome sequence comparisons for
many biological and medical applications, the cost needs to be
further reduced to the order of a few thousand dollars (i.e. a few
dollars per megabase) and the time frame of sequencing must be
reduced to a few days per instrument. For example, the Solexa
sequencing-by-synthesis technology of Illumina (Bennett, 2004)
offers about 100-fold improvements over Sanger sequencing in
both cost and throughput. Similarly, the pyrosequencing technology
of 454 Life Sciences (Margulies et al., 2005) promises massive
parallelization of the sequencing process by the use of microchip
sensors, improving the speed of Sanger sequencing by a factor of
a few hundred. In addition to these, there are other commercial
and pre-commercial products from Applied Biosystems, Helicos

∗To whom correspondence should be addressed.
†
The authors wish to be known that, in their opinion, the first two authors

should be regarded as joint First Authors.

Biosciences and Visigen Biotechnology, among others that perform
either clonal cluster sequencing or single molecule sequencing.

Unfortunately, the massive increase in the throughput offered by
the above technologies comes with a shortened read length, and
shorter the read length, the more problematic it is to work with
a genome that has many longer repeats. While Sanger sequencing
offers 500–1000 bps per read, the read lengths of new technologies
range from ∼25 (e.g. Solexa) to few hundred base pairs (e.g.
454) and as such, they are more suitable for re-sequencing studies.
Although current developments in extending these technologies
to produce longer, as well as paired end reads puts the de novo
sequencing studies in the realm of the possible, for the rest of this
report we concentrate on the problem of resequencing of individual
genomes with short single end reads, and focus on the Solexa
technology.

The type of re-sequencing problem we consider in this work is
based on bacterial artificial chromosome (BAC) libraries. Benefits
of using BACs in re-sequencing studies is 2-fold. (1) It is possible
to cluster the short reads obtained from each BAC into small local
sets that represent the sequence of one BAC where most of the
repeat sequences have a unique copy. (2) One can a priori determine
the genomic neighbourhood the BAC is coming from; thus having
the reference sequence provides an essential backbone. This can
be achieved, for instance, by using the results of fingerprinting or
BAC end sequencing experiments. Although on the face of it, a
BAC-library-based sequencing effort defeats the benefits of massive
parallelization offered by new sequencing technologies, it enables
directed sequencing studies possible, where the interest is not on
whole genome (re)sequencing, but on investigating a region of
interest. Furthermore, recent developments bring the throughput in
fingerprinting technology on par with new sequencing technologies
(Mathewson et al., 2007).

Solexa sequencing experiments are run on a flow cell with eight
lanes, each yielding in the order of 108 bps of sequence per run.
A typical BAC we consider has a length ranging between 150 Kbps
and 250 Kbps. Thus, if we sequence one BAC on each lane, a single
run would produce about a 1000-fold coverage per BAC, which is
far beyond necessary in a re-sequencing study. Therefore, in order to
maximize the throughput of the Solexa technology, hence minimize
its cost, it is of key importance to utilize each lane in a more sensible
way, such as by sequencing more than one BAC per lane. However,
sequencing multiple BACs per lane introduces major difficulties due
to repeat sequences that are present in two or more BACs, as they
would cause tanglement in their assemblies. In order to minimize the
repeat elements that are present in multiple BACs, novel algorithmic
techniques must be developed.

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

file:cenk@cs.sfu.ca

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i33 i32–i40

Optimal pooling for genome re-sequencing

Available algorithms for DNA fragment assembly (Pevzner et al.,
2001a,b; Roach et al., 1995), especially those for short reads
(Chaisson et al., 2004; Chaisson and Pevzner, 2008; Warren et al.,
2006) all suffer from the presence of repeats within the genome
region to be assembled (Margulies et al., 2005). However, the high
potential of high-throughput short-read technologies have promoted
the development of novel protocols and algorithms such as the short
read assembly protocol (SHARP; Sundquist et al., 2007) that aim
to address the shortcomings of short-read technologies. Our goal
in this article is to help the available fragment assembly methods,
especially in the context of genome re-sequencing, by providing
(near) optimal utilization of the multiple lanes available by the
Solexa technology, while keeping the cost of fragment assembly
at a minimum. For this purpose, we present algorithms that partition
the input BACs into multiple lanes in a way to minimize potential
assembly errors due to repeat sequences shared among BACs in
each lane. Our algorithms are quite efficient in practice and provide
significant improvement to the cost of fragment assembly over
random partitioning strategies.

2 PROBLEM DEFINITION AND GENERAL
ALGORITHMIC APPROACH

Given a set of BACs sampling in some known specific genomic
regions, and the reference sequence, our ultimate goal is to
construct the sequence of each BAC using the results of optimally
designed Solexa sequencing experiments. Consider a set of m BACs
sequenced with a read length of k (typically 25–50 bps); the problem
we address in this work is, how can we partition this set into n groups
(or pools) of approximately h=m/n BACs, such that individual
reads can be attributed to the BACs they come from as correctly as
possible. In other words, how can we minimize number of shared
k-mers by multiple BACs in each pool in the overall configuration?

Strictly speaking, the problem does not have a solution, because
before conducting any sequencing experiment, it is not possible to
know how many shared k-mers the BACs in question would have.
However, note that our focus is on re-sequencing studies, and if we
have even a crude idea on the genomic coordinates of the BACs,
we can approximate that missing information by using the reference
sequence.

One other hurdle in designing a globally optimal experiment is
the rapid proliferation of number of possible configurations. For
instance, if we would like to pool m=150 BACs into groups of
h=10, we would need to consider

∏14
i=0

(150−10i
10

)
15! >10152 (1)

configurations in an exhaustive search. Since it is infeasible to search
all these configurations for finding the global optimum, we propose
an algorithmic approach to guide us to an ‘approximately’ optimal
setup.

Once again we note that our goal is to partition a given set of m
BACs into pools of size h each, with the purpose of minimizing the
number of potential assembly errors due to sequences that repeat
in multiple BACs within a pool. Potential assembly errors due to
sequences that repeat within a single BAC, on the other hand, are
beyond the scope of this study and are not investigated here.

We define our problem more formally as follows.

2.1 Pooling problem
Given a set of m BACs that are to be placed into n pools of
approximately h=m/n BACs in each, let Ci,b be the number of
BACs in a pool Pi that share a particular k-mer b. If we denote the
cost of b as f (Ci,b), we can write an overall cost function for a given
configuration as

J =
n∑

i=1

∑
∀b∈Pi

f (Ci,b) (2)

and the problem becomes one of selecting the optimum partitioning
P∗ ={P∗

i } that minimizes the cost J .
One can attribute alternative costs for shared k-mers b, two of

which are

1. f (Ci,b)=(Ci,b

2

)
;

2. f (Ci,b)=Ci,b −1.

For the remainder of this article, we will restrict our attention to
these two formulations for reasons explained below.

The pooling problem under the cost function f (Ci,b)=(Ci,b

2

)
is

a minimization problem for the number of k-mers that are shared
between pairs of BACs which are in the same pool. This can be
reduced to a well-known combinatorial problem called, n-clustering
problem, as follows: construct a complete graph G where each BAC
B is represented with a unique vertex vB and given any pair of
BACs B and B′, set the weight of the edge (VB,V ′

B) to the number
of common k-mers in B and B′. The n-clustering problem is a
problem of partitioning G into vertex sets, such that the sum of
edge weights between vertices that belong to the same partition is
minimized.

Unfortunately even obtaining a constant factor approximation to
the n-clustering problem is NP-hard (Sahni and Gonzalez, 1976).
Thus in Section 3.1, we first reduce this problem to another
combinatorial problem known as the max n-cut. Although this
problem is also NP-hard (Sahni and Gonzalez, 1976), we solve it by
the use of a simple local search procedure within an approximation
factor of 1−1/n. For n=15, this implies an approximation factor of
0.93. Although this approximate solution to the max n-cut problem
does not provide a guarantee on the approximation for the pooling
problem, it gives good results in practice.

An extension to the pooling problem is the balanced pooling
problem, where we seek to minimize the cost of partitioning BACs
into pools, such that the number of BACs in each pool is exactly
h=m/n. As can be expected, even approximating the balanced
pooling problem within a constant factor is NP-hard. Thus, in
Section 3.2 we reduce the balanced pooling problem to the max
n-section problem, which is the balanced version of the max n-cut
problem. We again describe an algorithm to approximately solve
this problem within a factor of 1−1/n. Although the latter algorithm
does not provide a guarantee on the approximation factor it obtains
for the balanced pooling problem, it yields good results in practice
once again.

The pooling problem under the second cost function f (Ci,b)=
Ci,b −1 is a minimization problem for the number of BACs within
a pool that shares each k-mer, summed over all k-mers. This is
a generalized version of the pooling problem with the first cost
function as will be explained below.

i33

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i34 i32–i40

I.Hajirasouliha et al.

The pooling problem under the second cost function can be
reduced to a hypergraph partitioning problem as follows. Let G be a
hypergraph where each BAC B is represented with a unique vertex
vB and each subset S of at most d vertices are connected with a
hyperedge eS . In the most general case of the problem d =m. The
weight of eS , namely w(eS) is the number of k-mers that occur in all
BACs in S and occur in no other BACs. Consider a partition of G
into non-overlapping vertex sets. For a given subset S of vertices, let
#(S) be the number of pools that have at least one vertex of S. Then
the cost of eS with respect to this partitioning is w(eS)·(|S|−#(S));
here |S| denotes the number of BACs in set S.

Our hypergraph partitioning problem defines a search for
partitioning G into vertex sets/pools so as to minimize the total cost
of the hyperedges with respect to this partition.

Unfortunately, the above hypergraph partitioning problem
requires O(

(m
n
)
) space to just represent all the hyperedges. As this

represents faster than exponential growth with the number of BACs,
even setting up an instance of the problem on a computer is not
feasible for the parameter values we are interested in.

Notice that if we restrict the maximum number of vertices that
can be incident to a hyperedge, d, to 2 (rather than m) then our
hypergraph partition problem reduces to the n-clustering problem
and thus to the pooling problem with the first cost function. Now
we can consider versions of the hypergraph partition problem
with d =3, 4, ... as ‘approximations’ to our general hypergraph
partitioning problem with d =m.

Our hypergraph partitioning problem with d >1 is NP-hard
(Sahni and Gonzalez, 1976) even to approximate within a constant
factor. We reduce it to another hypergraph partitioning problem in
which the cost of a hyperedge eS with respect to a partitioning
is w(eS)· (#(S)−1) and the goal is to maximize the total cost of
all hyperedges. In this article we show how to solve this problem
approximately within a factor of 1−d/2n. For d =3 and n=15, our
algorithm provides a 0.9 approximation factor, again sufficiently
close to 1. The algorithm employs a greedy approach and is quite
efficient.

We also consider a balanced version of this hypergraph
partitioning problem which asks for maximizing the total cost of
all hyperedges with respect to a partition, provided that the number
of vertices per each pool is exactly h=m/n. Again we provide a
(1−d/2n)-approximation algorithm to this problem. This algorithm
is quite involved, as further described in the next section, employing
a solution to the minimum weighted bipartite matching towards a
greedy selection of the vertices in each partition.

3 METHODS
In this section we give detailed descriptions of the approximation algorithms
we use for solving the pooling problem, both balanced and unbalanced
versions, under the two cost functions we presented earlier.

3.1 The pooling problem under f (Ci,b)=(Ci,b
2

)
The pooling problem (unbalanced version) under our first cost function can
be formulated as the well-known max n-cut problem as follows.
Input: A weighted undirected graph G(V ,w), with the vertex set V
representing the set B={B1,B2,...,B150} of BACs, and the edge weights
w. For any vertex pair vB,v′

B, w(vB,v′
B) is the number of common k-mers in

the corresponding BACs, B and B′.

Output: A partitioning of V into pools P={P1,P2,··· ,Pn},
n⋃

i=1

Pi = V ,

which maximizes the following objective function:
n∑

i=1

n∑
j=i+1

∑
vB∈Pi,v′

B∈Pj

w(vB,v′
B).

3.1.1 A local search algorithm for max n-cut (LSMnC)

1. Randomly partition the vertex set V of the graph G into n different
pools.

2. If there exists a vertex v∈V such that it is assigned to pool Pi (v∈Pi)
and there exists a pool Pj such that

∑
u∈Pi

w(v,u)≥
∑

x∈Pj
w(v,x),

then move vertex v from the pool Pi into the pool Pj .

3. Repeat second step until no change can occur.

The above simple local search algorithm, when applied to the general max
n-cut problem may take too much time before it terminates. However, for
our specific problem, the running time of the above algorithm is guaranteed
to be polynomial with m and the maximum length of a BAC as shown below.

Proof. Let t be the total weight of the edges of the graph G, which is
polynomial with m and the maximum number of k-mers in a BAC. It is
clear that in each step of the local search algorithm, the total weight of edges
going between pools increases by at least one. Therefore in the worst case,
this algorithm terminates after t steps.�

In practice, the running time of the above local search algorithm is in
second order for m=150, n=15 and maximum BAC length of 250K . The
approximation factor achieved by the above algorithm is 1−1/n as shown
below.

Proof. Consider an arbitrary vertex v∈V and assume Pi is the cluster
containing v after the termination of the local search. We have:

∀1≤ j≤n :
∑

∀u∈Pi

w(v,u)≤
∑

∀x∈Pj

w(v,x)⇒ (3)

∑
∀u∈Pi

w(v,u)≤ 1

n

n∑
j=1

∑
∀x∈Pj

w(v,x)⇒ (4)

n∑
j=1,j 	=i

∑
∀u∈Pj

w(v,u)≥ n−1

n

n∑
j=1

∑
∀x∈Pj

w(v,x) (5)

The expression
∑n

j=1,j 	=i

∑
∀u∈Pj

w(u,v) in left-hand side of last equation
represents the total weight of all edges in the ‘cut’ incident to vertex v.
Also, the expression

∑n
j=1

∑
∀x∈Pj

w(v,x) in the right-hand side of the same
equation represents the total weight of all edges incident to vertex v. Since
v has been chosen arbitrary from the vertex set V , we have:∑

∀v∈V

n∑
j=1,j 	=i

∑
∀u∈Pj

w(v,u)≥
∑
∀v∈V

n−1

n

n∑
j=1

∑
∀x∈Pj

w(v,x) (6)

According to the above inequality, the total weight of the edges which are
incident to a pair of vertices that do not belong to the same pool is at least
(n−1)/n times the total weight of the edges in G, and thus the local search
provides a 1−1/n approximation. �

3.2 The balanced pooling problem under f (Ci,b)=(Ci,b
2

)
The balanced pooling problem asks to partition m BACs into n pools so as
to minimize the above cost function, with the additional constraint that the
number of BACs per each pool is exactly h=m/n. This is known as max
n-section problem for which a local search algorithm by (Gaur et al., 2007)
guarantees an approximation factor of 1−1/n.

For each vertex u∈V and for each set of vertices belonging to a pool Pi,
let w(u,Pi)=∑

v∈Pi
w(u,v). The local search algorithm for the max n-section

problem works as follows.

i34

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i35 i32–i40

Optimal pooling for genome re-sequencing

3.2.1 Local search algorithm for max n-section (LSMnS)

1. Initialization. Partition the vertices V into n pools P1,P2, ...,Pn

uniformly at random such that |P1|≤|P2|≤ ...≤|Pn|≤|P1|+1.

2. Iterative step. Find a pair of vertices v∈Pi and u∈Pj (i 	= j),
such that w(v,Pi −v)+w(u,Pj −u)≥w(v,Pj −u)+w(u,Pi −v). If such
a pair exists move u to the cluster Pi and v to the cluster Pj .

3. Termination. If no such pair of vertices is found then terminate.

This algorithm is an simple extension to the local search algorithm
described in Section 3.1 and it is easy to show that it terminates in time
polynomial with m and the maximum length of a BAC. Furthermore, it
was shown in (Gaur et al., 2007) that this algorithm has a guaranteed
approximation factor of 1−1/n.

3.3 The pooling problem under f (Ci,b)=Ci,b −1
We now focus on the cost function f (Ci,b)=Ci,b −1. As we discussed in
the problem definition (Section 2), the pooling problem under cost function
f (Ci,b)=Ci,b −1 can be reduced to a hypergraph partitioning problem as
follows. Let G be a hypergraph where each BAC B is represented with a
unique vertex vB and each subset S of at most m vertices, are connected with
a hyperedge eS . The weight of eS , namely w(eS) is the number of k-mers that
occur in all BACs in S and occur in no other BACs.

Consider a partitioning of V , the vertex set of G, into non-overlapping
pools P={P1,...,Pn}. For a given subset S of vertices, let #(S) be the number
of pools of Pi that have at least one vertex of S. Then the cost of eS with
respect to P is w(eS) ·(|S|−#(S)) and the goal of the hypergraph partitioning
problem is to minimize the total cost of all hyperedges.

The ‘dual’ of this hypergraph partitioning would be another partitioning
problem where the cost of eS with respect to P is w(eS)·(#(S)−1), and the
goal is to maximize the total cost of all hyperedges.1

Input: A weighted hypergraph G(V ,w), with vertex set V , and weights w(eS)
for each hyperedge eS (which connects the set S ⊆V for |S|≤d).
Output: A partitioning of vertices V into pools P={P1,P2,··· ,Pn},

n⋃
i=1

Pi = V , which maximizes the following objective function:

∑
S⊆V ,|S|≤d

w(eS) ·(#(S)−1).

We give a greedy algorithm to solve the above hypergraph partitioning
problem. The algorithm, at each iteration x randomly picks a vertex vx ∈V ′

x ,
where V ′

x is the set of vertices not processed so far, and adds it to one of the
pools Pi as described below.

Before we provide further details, we give some definitions. Let Px,i be
the set of vertices in pool Pi before iteration x and let Px ={Px,1,...,Px,n}.
(Thus V ′

x =V −
i=n⋃
i=1

Px,i.)

Given some S ⊂V , let #Px (S) denote the number of pools Px,i ∈Px which
include at least one vertex of S.

Also let #̃Px,k (S) be a boolean function such that #̃Px,k (S)=1 if Px,k ∩S =∅
and #̃Px,k (S)=0 otherwise.

3.3.1 A greedy algorithm for hypergraph partitioning problem (GAHP)

1. As an initial step, set V ′
0 =V and ∀n

i=1P0,i =∅.

2. In each iteration x∈{1,...,m}, randomly pick a vertex vx ∈V ′
x and put

vx into the pool

kx =argmax
k

∑
S⊆V ,vx∈S

w(eS)· #̃Px,k (S).

(Thus, ∀i≤n,i 	=kx,Px+1,i =Px,i and Px+1,kx =Px,kx ∪{vx}).
1The two problems are equivalent as |S| is a constant.

The above algorithm achieves an approximation factor of 1−d/2n as shown
below.

Proof. First, we need to find a lower bound on the total cost w(eS)·
(#(S)−1) with respect to the pool set Pm+1 ={Pm+1,1,Pm+1,2,···Pm+1,n}
returned by the algorithm at the end of iteration m.

It is not hard to see that for any set of vertices S (for the remainder of the
proof, all sets S we consider will satisfy |S|≤d), for which vx ∈S:

w(eS)·#Px+1 (S)=
w(eS)·#Px (S)+w(eS)· #̃Px,kx

(S) (7)

Thus,

w(eS)·#Pm+1 (S)=
m∑

x=1,vx∈S

w(eS)· #̃Px,kx
(S).

Now taking the sum of above equation for all possible hyperedges we
would get: ∑

S⊆V

w(eS)·#Pm+1 (S)=
∑
S⊆V

m∑
x=1,vx∈S

w(eS)· #̃Px,kx
(S)

=
m∑

x=1

∑
S⊆V ,vx∈S

w(eS)· #̃Px,kx
(S) (8)

For bounding the left hand side of equation 8, we will consider an arbitrary
iteration x.

n ·
∑

S⊆V ,vx∈S

w(eS) · #̃Px,kx
(S)≥

∑
S⊆V ,vx∈S

n∑
i=1

w(eS)· #̃Px,i (S). (9)

By adding up the right hand side of equation 9 over all values of x we get:
m∑

x=1

∑
S⊆V ,vx∈S

n∑
i=1

w(eS)· #̃Px,i (S)=

∑
S⊆V

m∑
x=1,vx∈S

n∑
i=1

w(eS)· #̃Px,i (S). (10)

For bounding equation 10 we first have to argue for any arbitrary S ⊆V
we have,

m∑
x=1,vx∈S

n∑
i=1

w(eS)· #̃Px,i (S)≥w(eS)·(n+···(n−|S|+1))

Thus, ∑
S⊆V

m∑
x=1,vx∈S

n∑
i=1

w(eS) · #̃Px,i (S)≥
∑
S⊆V

w(eS)·(n+···(n−|S|+1)) (11)

Now using Equations 9–11 we will have:
m∑

x=1

∑
S⊆V ,vx∈S

w(eS)· #̃Px,1,kx (S)≥
∑

S⊆V w(eS)·(|S|·n−(1+2+···(|S|−1)))

n
. (12)

Utilizing Equations 12 and 8 we conclude:∑
S⊆V

w(eS)·(#Pm+1 (S)−1)≥

∑
S⊆V w(eS) ·(|S|·n− |S|(|S|−1)

2)

n
−

∑
S⊆V

w(eS)

= n ·∑S⊆V w(eS) ·(|S|−1)−∑
S⊆V w(eS)· |S|(|S|−1)

2

n
(13)

Now to find the approximation factor for this greedy algorithm we need
to find an upper bound of the optimal solution. It is easy to see that for

i35

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i36 i32–i40

I.Hajirasouliha et al.

even optimal partitioning
∑

eS
w(eS) ·(#(S)−1)≤∑

eS
w(eS)·(|S|−1). Thus,

the approximation factor α can be bounded as:

α=
∑

S⊆V w(eS) ·(#Pm+1 (S)−1)∑
S⊆V w(eS) ·(#Popt (S)−1)

≥
∑

S⊆V w(eS)((|S|−1)n− |S|(|S|−1)
2)

n ·∑S⊆V w(eS)·(|S|−1)

=1−
∑

S⊆V w(eS) · |S|(|S|−1)
2

n ·∑S⊆V w(eS) ·(|S|−1)

=1−
∑

S⊆V w(eS) ·(|S|·(|S|−1))

2n ·∑S⊆V w(eS) ·(|S|−1)
(14)

Now, as |S|<d we can easily see that α≥1−d/2n. �

3.4 The balanced pooling problem under
f (Ci,b)=Ci,b −1

Our last algorithm deals with the balanced pooling problem under the
cost function f (Ci,b)=Ci,b −1, for which we give a greedy approximation
algorithm. We remind the reader that there are m=nh vertices to be assigned
into n pools, and eventually each pool must have exactly h vertices.

3.4.1 A greedy algorithm for balanced hypergraph partitioning (GABHP)
The algorithm starts with a set of n empty pools, P={P1,...,Pn}, and at
each iteration x, it selects a set of n arbitrary vertices, say Yx ={y1,x,...,yn,x},
which are not assigned to any of the pools yet, and adds them to the pools
such that each pool receives exactly one new vertex. Let the set of vertices
in pool Pi at the beginning of iteration x be denoted by Pi,x and let Px =
{Px,i,...,Px,n}. Thus, in iteration x, each yj,x is assigned to exactly one of the
pools Px,i.

For any set of vertices S ∈V , let λ(yj,x,Px,i,S) be a boolean function
defined as follows.

λ(yj,x,Px,i,S)=
{

1 if ∃ y�,x 	=yj,x :y�,x ∈S, y�,x ∈Px,i

0 otherwise.

Intuitively, for a given vertex yj,x , a pool Px,i, and a vertex set S, λ(yj,x,Px,i,S)
is equal to zero if and only if no other vertex y�,x incident to the hyperedge
eS has already been assigned to the pool Px,i.

Then, for each pool Px,i, we define the marginal cost function µ(yj,x,Px,i)
with respect to the potential assignment of yj,x to Px,i, as follows.

µ(yj,x,Px,i)=
∑

S⊆V ,yj,x∈S

w(eS) ·λ(yj,x,Px,i,S)

We now construct a new complete bipartite graph H with vertex sets Yx

and Px such that for any vertex yj,x ∈Yx and pool Px,i ∈Px , there exists an
edge in H with weight µ(yj,x,Px,i). Then we find a perfect minimum weighted
matching for H , i.e. a perfect matching where the sum of weights of the edges
in the matching has the minimum possible value by using the well-known
Hungarian algorithm (Munkres, 1957).2

For each j, 1≤ j≤n, let π (yj,x) be the pool which is matched to yj,x in the
prefect minimum bipartite matching of the graph H. We add the vertex yj,x

to the pool πx,i.
We run the above iterative step for x=1,...,h so as to assign each one of

the m=nh vertices into one pool in a balanced manner.
The above algorithm gives an approximation to the balanced hypergraph

partitioning problem within a factor of 1−d/2n, where d is the maximum
number of vertices that can be incident to a hyperedge. The proof for
the approximation factor is similar to that for the unbalanced hypergraph
partitioning problem and thus is omitted.

2We actually solve the dual, weight maximization problem after subtracting
each edge weight from the maximum edge weight.

4 RESULTS AND DISCUSSION
We report results on two sets of BACs (with m=150) on which
we tested our algorithms for both balanced and unbalanced pooling
problem using both cost functions. We start by noting that for both
data sets the results obtained by the balanced pooling algorithms
turned out to be almost identical to those obtained by the unbalanced
pooling algorithms for each of the two cost functions we used.
In other words, the cost of the partition obtained by the LSMnC
algorithm was almost identical to that of the LSMnS algorithm and
the cost obtained by the GAHP algorithm was very similar to that of
the GABHP problem. It is also interesting to note that the unbalanced
pooling algorithms returned very balanced partitions.3 We compare
the performance of these algorithms with that of random partitioning
of BACs into pools.

We measure the performance of our algorithms and that of random
partitionings with respect to the general cost function f (Ci,b)=
Ci,b −1. The total cost of a particular partitioning of a set of m
BACs into pools P1,...,Pn, is J =∑n

i=1
∑

∀b∈Pi
f (Ci,b). In order to

compute the cost J for a partitioning, we construct, for each pool
Pi, the joint trie of the k-mers (for this study k =50) of all BACs in
Pi, denoted by Ti. The trie Ti can be constructed in time linear with
the total lengths of the BACs in Pi as per the linear time algorithms
for suffix tree construction (Mccreight, 1976; Sahinalp and Vishkin,
1994). During the construction of Ti, at each leaf corresponding to a
k-mer b, we maintain the labels of the specific BACs that include b.
By going through all leaves of each Ti, we compute J in time linear
with the total lengths of the BACs.

We used two data sets in our experiments, each consisting of 150
BACs. The first set of clones were collected in the high-resolution
analysis of lymphoma genomes project at the BC Genome Sciences
Centre. They represent regions of interest in the genome of a tumor
sample, where there are marked local deviations from the reference
human genome. The BAC coordinates are deduced by aligning BAC
fingerprints to the reference genome (Krzywinski et al., 2007) and
are confirmed by BAC end sequencing experiments.
The second set is a synthetic library of clones with a mean size
of 182 kb and a standard deviation of 34 kb, representing a random
sampling of the finished regions of the reference human genome,
hg18.

4.1 Pooling experiments with LSMnC/LSMnS
algorithms

We first compare the performance of our local search methods
LSMnC/LSMnS with random partitions (denoted ranPool).
Although these methods were designed to minimize the cost of
pooling with respect to the cost function f (Ci,b)=(Ci,b

2

)
, we report

their performance with respect to the second cost function, f (Ci,b)=
Ci,b −1, as, ultimately that is the cost function we would like to
minimize.

Note that ranPool is known to give an expected approximation
factor of 1−1/n for the max n-cut problem. However, LSMnC will
guarantee a worst case approximation factor of 1−1/n for the max
n-cut problem.

In Figures 1(a) and 2(a), we depict how the cost of the
ranPool method for 5000 independent trials, as well as the cost

3 The number of BACs obtained by the unbalanced pooling algorithms were
never less than 7 and never more than 12 in any pool.

i36

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i37 i32–i40

Optimal pooling for genome re-sequencing

0

50000

100000

150000

200000

4 6 8 10 12 14 16

m
ea

n
co

st
 o

f p
ar

tit
io

ni
ng

number of pools

LSMnC
ranPool

(a)

1.6

1.7

1.8

1.9

2

2.1

4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ns

number of pools

ranPool/LSMnC
(b)

Fig. 1. A comparison of the cost of ranPool and LSMnC/LSMnS methods
with respect to the number of pools on the lymphoma data set. (a) The actual
cost of LSMnC/LSMnS method (red) and the cost of ranPool (green) with
respect to the number of pools (mean, upper quartile and lower quartile
results reported for 5000 independent runs) with respect to the number of
pools. (b) The ratio of the average cost of ranPool (on 5000 independent
runs) and the cost of LSMnC/LSMnS methods.

0

50000

100000

150000

200000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

LSMnC
ranPool

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ns

number of pools

ranPool/LSMnC
(b)

(a)

Fig. 2. A comparison of the cost of ranPool and LSMnC/LSMnS methods
with respect to the number of pools on the synthetic data set. (a) The actual
cost of LSMnC/LSMnS method (red) and the cost of ranPool (green) with
respect to the number of pools (mean, upper quartile and lower quartile
results reported for 5000 independent runs) with respect to the number of
pools. (b) The ratio of the average cost of ranPool (on 5000 independent
runs) and the cost of LSMnC/LSMnS methods.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20000 40000 60000 80000 100000

di
st

rib
ut

io
n

cost

LSMnC/LSMnS
ranPool

Fig. 3. The distribution of cost obtained by ranPool and LSMnC/LSMnS for
n=15 on the lymphoma data set for 5000 independent runs.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20000 40000 60000 80000 100000

di
st

rib
ut

io
n

cost

LSMnC/LSMnS
ranPool

Fig. 4. The distribution of cost obtained by ranPool and LSMnC/LSMnS for
n=15 on the synthetic data set for 5000 independent runs.

of LSMnC/LSMnS method varies with respect to the number of
pools on the lymphoma and the synthetic data sets (we show
the mean, the highest and the lowest 25% cost for the ranPool
method). We also depict how the ratio between the (average)
cost of the ranPool and the cost of the LSMnC/LSMnS method
changes with respect to the number of pools in Figures 1(b)
and 2(b). We can observe that as the number of pools increases,
the costs of both ranPool and LSMnC/LSMnS decrease for
both data sets. Perhaps more interestingly, we can also observe
that as the number of pools increases, the ratio between the
(average) cost of ranPool and that of LSMnC/LSMnS increases
as well.

For a specific number of pools (n=15) we depict the distribution
of the costs obtained in the 5000 independent runs of both ranPool
and the LSMnC/LSMnS methods on both the lymphoma and the
synthetic data sets in Figures 3 and 4, respectively. As can be seen,
the costs obtained by independent trials of the LSMnC/LSMnS
method (each starting with a unique random partitioning) are highly
concentrated around the mean. Furthermore, even the minimum cost
obtained by the ranPool method is well above the maximum cost
returned by the LSMnC/LSMnS method.

We can conclude that the results obtained by the LSMnC/LSMnS
approach is much better than those obtained by ranPool. For
example, at n=15 the LSMnC/LSMnS approach provides a factor
2 improvement over the average cost of 5000 independent runs
of ranPool on the lymphoma data set. The cost improvement
of LSMnC/LSMnS approach with respect to the minimum cost
obtained by ranPool after 5000 independent trials is 1.4 on the same
data set.

i37

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i38 i32–i40

I.Hajirasouliha et al.

4.2 Pooling experiments with GAHP/GABHP
algorithms

The local search algorithms LSMnC and LSMnS aim to ‘minimize’
the cost of pooling with respect to the cost function f (Ci,b)=(Ci,b

2

)
;

however, the cost obtained by these algorithms were considerably
lower than that obtained by ranPool even with respect to the
second cost function—which provides a more accurate performance
measure.

Our second set of algorithms, GAHP/GABHP are designed to
‘minimize’ the cost with respect to the second cost function. They
are flexible in the sense that one can set up the value of d as desired;
for d =n, the optimal solution to the hypergraph partitioning indeed
minimizes the cost function f (Ci,b)=Ci,b −1. We tried the two
algorithms for both d =2 and 3 in order to evaluate their advantage
over the local search algorithms as well as random partitionings.
The running time of both GAHP and the GABHP algorithms are
exponential in d (the number of hyperedges grow exponentially with
increasing d), thus it is of crucial importance to know up to which
value of d, an improvement in performance could be expected. A
significant performance improvement by GAHP/GABHP methods
using d =3 over LSMnC/LSMnS methods (which solve the
hypergraph partitioning problem for d =2) may imply that d should
be increased to 4 or more for better performance.4

4Unfortunately the approximation factor achieved by the GAHP/GABHP
methods deteriorate with increasing k. Note that for d =3, the approximation
factor guaranteed by the GAHP/GABHP method to the hypergraph
partitioning problem is 1−3/2n which is equal to 0.9 for n=15.

0

50000

100000

150000

200000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=3)
ranPool

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ni
ng

number of pools

ranPool/GAHP(d=3)

(a)

(b)

Fig. 5. A comparison of the cost of ranPool and GAHP/GABHP (d =3)
methods with respect to the number of pools on the lymphoma data set.
(a) The actual cost of LSMnC/LSMnS method (red) and the cost of ranPool
(green) with respect to the number of pools (mean, upper quartile and lower
quartile results reported for 5000 independent runs) with respect to the
number of pools. (b) The ratio of the average cost of ranPool (on 5000
independent runs) and the cost of GAHP/GABHP methods.

In Figures 5(a) and 6(a) we compare the (mean value as well
as the highest and lowest 25%) costs obtained by 5000 independent
runs of the ranPool method and that of the GAHP/GABHP approach
on the lymphoma and the synthetic data sets. Figures 5(a) and 6(a)
show how the costs change with respect to the increasing number
of pools. We also show how the ratio between the average cost of
the ranPool and the cost of GAHP/GABHP methods change with
respect to the number of pools in Figure 7(a) and (b).

We investigate the effect of using hypergraphs with d =3 over the
use of ordinary graphs with d =2 on the GAHP/GABHP methods
in Figure 7(a) and (b). As can be observed, the performance
improvement achieved by increasing d form 2 to 3 is negligible
for both data sets. It may be possible to explain this observation by
investigating the distribution of repeat sequences among the BACs
in the two data sets. The number of k-mers which are repeated in
exactly two BACs are 100–200 times more than those repeated in
three BACs or more; see Figure 8(a) and (b) for the distribution
of hyperedge weights in the two data sets. Thus, the total weight
of hyperedges incident to three vertices or more is insignificant in
comparison to edges that are incident to exactly two vertices. As
a result, on the two data sets we used, the hypergraph partitioning
algorithms largely ‘ignore’ the hyperedges whose contribution to
the total cost is very small. We expect that the performance of the
GAHP/GABHP methods for d =3 will be superior to that for d =2
if highly repetitive BACs are sequenced.

We finally compare the two alternative algorithmic methods we
introduce in this article; LSMnC/LSMnS and GAHP/GABHP (for
d =2). In Figure 9(a) and (b), a comparison of the two methods are

0

50000

100000

150000

200000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=3)
ranPool

(a)

1

1.1

1.2

1.3

1.4

1.5

1.6

4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ni
ng

number of pools

ranPool/GAHP(d=3)
(b)

Fig. 6. A comparison of the cost of ranPool and GAHP/GABHP (d =3)
methods with respect to the number of pools on the synthetic data set. (a) The
actual cost of LSMnC/LSMnS method (red) and the cost of ranPool (green)
with respect to the number of pools (mean, upper quartile and lower quartile
results reported for 5000 independent runs) with respect to the number of
pools. (b) The ratio of the average cost of ranPool (on 5000 independent
runs) and the cost of GAHP/GABHP methods.

i38

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i39 i32–i40

Optimal pooling for genome re-sequencing

0

20000

40000

60000

80000

100000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=2)
GAHP(d=3)

0

20000

40000

60000

80000

100000

120000

140000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=2)
GAHP(d=3)

(b)

(a)

Fig. 7. A comparison of the cost of GAHP (GABHP) method for d =2 (red)
and d =3 (green) with respect to the number of pools, (a) on the lymphoma
data set, (b) on the synthetic data set.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 10 20 30 40 50 60

to
ta

l w
ei

gh
t o

f h
yp

er
ed

ge
s

size of hyperedge(d)

(a)

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 10 20 30 40 50 60

to
ta

l w
ei

gh
t o

f h
yp

er
ed

ge
s

size of hyperedge(d)

(b)

Fig. 8. The distribution of hyperedge weights (in log scale) among
5000 BACs, (a) from the lymphoma data set, (b) from the synthetic data set.

provided for both data sets. Interestingly enough, the performance of
LSMnC/LSMnS method is slightly better than the GAHP/GABHP
method for both data sets. This indicates that LSMnC/LSMnS
(which finds a local optimum) outperforms a greedy based method
(GAHP/GABHP), which does not necessarily find a local optimum.
However, we believe that if regions of DNA with high repetitions

0

20000

40000

60000

80000

100000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

LSMnC
GAHP(d=2)

0

20000

40000

60000

80000

100000

120000

140000

4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

LSMnC
GAHP(d=2)

(b)

(a)

Fig. 9. A comparison of the cost of LSMnC/LSMnS method (red)
and GAHP/GABHP method for d =2 (green) with respect to the
number of pools, (a) on the lymphoma data set, (b) on the synthetic
data set.

are used as the input, GAHP/GABHP (especially for d >2)
would give better results compared to LSMnC/LSMnS and even
GAHP/GABHP for d =2.

Conflict of Interest: none declared.

REFERENCES
Bennett,S. (2004) Solexa ltd. Pharmacogenomics, 5, 433–438.
Chaisson,M. et al. (2004) Fragment assembly with short reads. Bioinformatics, 20,

2067–2074.
Chaisson,M.J. and Pevzner,P. (2008) Short read fragment assembly of bacterial

genomes. Genome Res., 18, 324–330, doi:10.1101/gr.7088808.
Gaur,D.R. et al. (2007) The capacitated max k-cut problem. Math. Progr.,

doi:10.1007/s10107-007-0139-z.
Mathewson,C.A. et al. (2007) Chapter 5: Large-Scale BAC Clone Restriction Digest

Fingerprinting. John Wiley and Sons, Hoboken, NJ, pp. 19.1–19.21.
Krzywinski,M. et al. (2007) A bac clone fingerprinting approach to the detection of

human genome rearrangements. Genome Biol., 8, R224, doi:10.1186/gb-2007-8-
10-r224.

Margulies,M. et al. (2005) Genome sequencing in open microfabricated high-density
picoliter reactors. Nature, 437, 376–380.

Mccreight,E.M. (1976) A space-economical suffix tree construction algorithm. JACM,
23, 262–272.

Munkres,J. (1957) Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math., 5, 32–38.

Pevzner,P. et al. (2001a) A new approach to fragment assembly in dna sequencing.
RECOMB, 256–265.

Pevzner,P.A. et al. (2001b) An eulerian path approach to dna fragment assembly. Proc.
Natl. Acad Sci., 98, 9748–9753.

Roach,J. et al. (1995) Pairwise end sequencing: a unified approach to genomic mapping
and sequencing. Genomics, 26, 234–353.

Sahinalp,S.C. and Vishkin,U. (1994) Symmetry breaking for suffix tree construction.
In Proceedings of the STOC, pp. 300–309.

Sahni,S. and Gonzalez,T. (1976) P-complete approximation problems. J. ACM, 23,
555–565.

i39

[20:54 18/6/03 Bioinformatics-btn173.tex] Page: i40 i32–i40

I.Hajirasouliha et al.

Sanger,F. et al. (1977) Dna sequencing with chain-terminating inhibitors. Proc. Natl
Acad. Sci., 74, 5463–5467.

Sanger,F. et al. (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA
sequencing. J. Mol. Biol., 143, 161–178.

Sanger,F. et al. (1982) Nucleotide sequence of bacteriophage lambda. DNA, 161,
729–773.

Solexa web server (2008). http://www.solexa.com.
Sundquist,A. et al. (2007) Whole-genome sequencing and assembly with high-

throughput, short read technologies. PLoS ONE, 2, e484.
Warren, R. et al. (2006) Assembling millions of short DNA sequences using ssake.

Bioinformatics, 23, 500–501.

i40

	Optimal pooling for genome re-sequencing with ultra-high-throughput short-read technologies
	Iman Hajirasouliha, Fereydoun Hormozdiari, S. Cenk Sahinalp and Inanc Birol
	1 Introduction
	2 Problem definition and general algorithmic approach
	3 Methods
	4 Results and discussion

