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In situ tissue regeneration has been demonstrated to promote bone repair. To identify a
better approach for treating osteonecrosis of the femoral head (ONFH), we prepared
scaffolds using copper-lithium-doped nanohydroxyapatite (Cu-Li-nHA), which has the
potential to modulate mesenchymal stem cells (MSCs) homing. The scaffold was
fabricated using the gas foaming method and the migration, angiogenesis, and
osteogenesis activities of MSCs were detected using Transwell assays, tube formation
assays, alkaline phosphatase and alizarin red S staining, respectively. We then implanted
the Cu-Li-nHA scaffold into the femoral heads of ONFH rabbits, and CFSE labeled
exogenous MSCs were injected intravenously to verify cell homing. The repair effect
was subsequently examined using micro-CT and histological analysis in vivo. The results
showed that Cu-Li-nHA significantly promoted MSCs migration and homing by
upregulating the HIF-1α/SDF-1 pathway. The Cu-Li-nHA group showed optimal
osteogenesis and angiogenesis and greater improvements in new bone formation in
ONFH rabbits. To summarize, Cu-Li-nHA promoted homing and induced the osteogenic
differentiation of MSCs, thereby enhancing bone regeneration during ONFH repair. Thus,
Cu-Li-nHA implantation may serve as a potential therapeutic strategy for ONFH in the
future.
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INTRODUCTION

The excessive long-term use of glucocorticoids (GCs) is one of the major etiologies of osteonecrosis
of the femoral head (ONFH), a condition that decreases a patient’s quality of life (Chughtai et al.,
2017; Mont et al., 2020). Moreover, most patients who experience a collapse of the femoral head need
to undergo total hip arthroplasty (THA) (Moya-Angeler et al., 2015). Unfortunately, the mechanisms
underlying GCs-ONFH remain unclear, although, abnormal differentiation of bone marrow stem
cells (BMSCs), apoptosis of osteocytes, and tissue ischemia may play important roles in its
pathogenesis (Zhun et al., 2018; Chang et al., 2020). Studies have demonstrated that BMSCs
derived from patients with GCs-ONFH exhibit poorer osteogenic differentiation activity than those
derived from healthy individuals (Houdek et al., 2016). High-dose GCs can inhibit the Wnt/β-
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catenin pathway by upregulating the expression of DKK-1, which
prevents the differentiation of BMSCs into osteoblasts and
induces adipogenesis (Kato et al., 2018; Zhun et al., 2018). In
recent years, biomaterials that promote osteogenesis have made
great progress in the treatment of ONFH (Zhao and Ma, 2020;
Zhu et al., 2020; Zhu et al., 2022).

Nanohydroxyapatite (nHA) has been widely used in clinical
applications, especially for bone defect repair, owing to its
excellent biocompatibility and osteoconductivity (Winkler
et al., 2018). However, their insufficient osteoinductivity limits
the use. Considerable efforts have been made to improve the
osteogenesis of nHA by doping metal ions (such as strontium and
lithium) into it, which could effectively contribute to the
osteoblast differentiation of BMSCs (Ge et al., 2018; Li et al.,
2018a). Lithium (Li), a common psychotropic drug, has been
shown to enhance bone regeneration by activating the Wnt/
GSK-3β pathway (Li et al., 2011). Lithium-doped
nanohydroxyapatite (Li-nHA) scaffolds have better
osteoinductivity than nHA for repairing bone defects (Li
et al., 2018a). However, although Li-nHA improves the cell
adherence and differentiation of BMSCs, it cannot help recruit
more BMSCs to necrotic areas. Mesenchymal stem cells (MSCs)
therapies have been widely studied for the treatment of various
diseases (Wang Z. et al., 2022). Although researchers have
implanted BMSCs into the femoral head to improve
osteogenesis, the complex process of implantation and low
survival rate of BMSCs limit the extensive use of this method

(Kang et al., 2018; Zhou et al., 2021). An approach known as in
situ tissue regeneration has been introduced, which can
mobilize host endogenous stem cells to target tissues (Ko
et al., 2013). Therefore, a scaffold that can modulate the host
microenvironment to recruit MSCs to the damaged regions of
ONFH is required.

Copper (Cu) ions can stabilize the expression of hypoxia-
inducible factor-1α (HIF-1α) and upregulate vascular endothelial
growth factor (VEGF) to induce neovascularization (Feng et al.,
2009; Li et al., 2021). Angiogenesis also promotes bone
development (Hu and Olsen, 2016; Wang L. et al., 2022).
After co-culture with BMSCs, Cu-containing bioactive glass
scaffolds increased the expression of VEGF and osteocalcin
(OCN) simultaneously (Wu et al., 2013). Interestingly, studies
have indicated that Cu has the potential to induce cell homing
(Meng et al., 2015). After implanting Cu-containing
microbubbles in the ischemic infarct area of the heart, BMSCs
migrate to this area for regeneration. Cu may elevate the levels of
localized stromal cell-derived factor-1 (SDF-1), thus, leading to
the recruitment of BMSCs via chemotactic attraction (Lau and
Wang, 2011; Zhu et al., 2018). Here, according to the in situ tissue
regeneration concept, we have developed a copper-lithium-doped
nanohydroxyapatite (Cu-Li-nHA) composite scaffold that
releases Cu ions by upregulating SDF-1 expression, promotes
MSCs homing to the necrotic zone, and induces the
differentiation of recruited MSCs via osteoblastogenesis
through Wnt/β-catenin signaling activation. Finally, these

FIGURE 1 | The graphical abstract of the study. Cu-Li-nHA implantation could stimulate adjacent tissue and build an optimal microenvironment via releasing Li+ and
Cu2+, and promote cell homing, osteogenesis and angiogenesis to repair ONFH.
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synergistic effects contribute to bone repair in patients with
ONFH (Figure 1).

MATERIALS AND METHODS

Synthesis and Characterization of
Cu-Li-nHA
Cu-nHA and Li-nHA were synthesized by liquid-phase
coprecipitation and were mixed to prepare Cu-Li-nHA using
the gas foaming method. The doped copper had a molar ratio of
0.25%, and a lithium content of 1.5% (Li et al., 2018b; Li et al.,
2021). The synthesis was performed as follows: 1) (NH4)2HPO4

(Sinopharm, China) solution was added dropwise to the
Ca(NO3)2·4H2O (Sinopharm, China) solution containing
LiNO3 or Cu(NO3)2 (Sigma, United States), and then colloidal
fluid was separated by a standing and layering process and the
precipitate was rinsed and sintered at 1,000°C for 2 h in a muffle
furnace to obtain Cu-nHA and Li-nHA powders; 2) 0.25% Cu-
nHA and 1.5% Li-nHA powders (1:1 mass) were mixed using a
planetary ball mill with a rotating speed of 45 Hz for 10 min to
obtain Cu-Li-nHA powders; and 3) The slurry was prepared
using a mixture of 5% polyvinyl alcohol, followed by the addition
of 10 ml of H2O2, and the mixture was then stirred and heated
repeatedly until a slurry was filled with foam. Finally, the slurry
was dried and the scaffold precursors were sintered at 1,150°C for
4 h to form porous scaffolds.

The materials were characterized using X-ray diffraction
(XRD, Shimadzu, Japan) and Fourier-transform infrared
spectroscopy (FTIR, Thermo, United States). Transmission
electron microscopy (TEM, FEI, United States) was used to
observe the particle size, and scanning electron microscopy
(SEM, JEOL, Japan) was used to observe the scaffold structure.
The porosity was analyzed using mercury intrusion
(Micromeritics, United States), and the compressive
performance was measured using an electronic universal
testing machine (Shimadzu, Japan).

Effects of Cu-Li-nHA on the Differentiation
and Migration of BMSCs
BMSCs were isolated from newborn New Zealand white rabbit
pups and identified using a previously published method (shown
in the Supplementary Material) (Li et al., 2018a). BMSCs were
co-cultured with Cu-Li-nHA, Li-nHA and nHA (Cu-Li-nHA +
BMSCs, Li-nHA + BMSCs, nHA + BMSCs) in an incubator at
37°C, 5% CO2 for 7 days. Cell adhesion was observed using SEM.
In addition, BMSCs were inoculated into 6-well plates containing
extract solutions of different materials per well at a density of
5×104/ml. Alkaline phosphatase and alizarin red S staining assays
were performed to test the osteogenic differentiation of BMSCs at
2 weeks.

Tube formation assays were performed to evaluate
neovascularization. Starvation-treated human umbilical vein
endothelial cells were inoculated in 48-well plates at a density
of 2×104/ml. The groups were set as follows: 1) Cu-Li-nHA
group: Cu-Li-nHA + BMSCs co-culture medium, 2) Li-nHA

group: Li-nHA + BMSCs co-culture medium, 3) nHA group:
nHA + BMSCs co-culture medium, 4) positive group: complete
medium +50 ng/ml recombinant VEGF protein (SinoBiological,
China), and 5) negative group: complete medium. Closed
lumens were observed using an inverted microscope
(Olympus, Japan).

Transwell assays were performed to detect migration of
BMSCs. BMSCs and scaffolds were co-cultured for 7 days to
prepare the conditioned medium. Conditioned or complete
medium was added to the lower chamber of a 24-well
Transwell plate for the following five groups: 1) Cu-Li-
nHA, 2) Li-nHA, 3) nHA, 4) SDF-1 (complete medium
+100 ng/ml recombinant protein of SDF-1)
(SinoBiological, China), and 5) negative (complete
medium). One milliliter of the CFSE-labeled BMSCs
suspension (5×104/ml) was dropped into the upper
chamber. Transwell plates were incubated for 8 h in an
incubator at 37°C and 5% CO2 and were finally observed
by fluorescence microscopy (Olympus, Japan).

The expression levels of Runx2, β-catenin, HIF-1α, VEGF, and
SDF-1 were verified using reverse transcription-polymerase chain
reaction (RT-PCR) and western blotting. 1) RT-PCR: RNA was
isolated from BMSCs using TRIzol reagent (Invitrogen,
United States). Primer sequences for each gene are shown in
Table 1. PCR amplification was performed using real-time PCR
(QuantStudio 3, ABI, United States). The pre-reaction was at
95°C for 10 min, and 40 reaction cycles were performed. The
parameters were set as follows: 95°C for 15 s, 55°C for 30 s, and
72°C for 30 s. 2)Western blotting: The total protein concentration
was determined using the BCA method (Epizyme, China).
Proteins were separated by electrophoresis (BioRad,
United States) and then diluted primary antibodies (1:1,000)
were added and the membranes were incubated at 4°C
overnight. The membranes were then incubated with
secondary antibodies (1:5,000) at 37°C for 60 min. The bands
were obtained using an imaging system (BioRad, United States).

Establishment of the ONFH Model and
Material Implantations
The animal study protocol was reviewed and approved by the
Animal Care and Use Committee of Sichuan University

TABLE 1 | RNA primer sequence.

RNA Primer sequence

RUNX2 F: 5′GGACGAGGCAAGAGTTTCACTT3′
R: 5′CTGTCTGTGCCTTCTTGGTTCC3′

β-catenin F: 5′TCTGCTATTGTACGCACCAT3′
R: 5′CTGCCATTTTAGCTCCTTCT3′

HIF-1α F: 5′TCGAAGTAGTGCTGACCCTG3′
R: 5′ACTGGTAGGCTCAGGTGAAC3′

VEGF F: 5′TCTACCTCCACCATGCCAAG3′
R: 5′CACGCACTCCAGGCTTTCAT3′

SDF-1 F: 5′GCTCTGCATCAGTGACGGTA3′
R: 5′TAATTTCGGGTCAA-TGCACA3′

β-actin F: 5′CGTCTTCCCCTCCATCGTG3′
R: 5′GGGTACTTGAGCGTCAGGAT3′
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(2020091A). Thirty New Zealand white rabbits (male, aged
28–32 weeks, weight 2.5–3.2 kg, one per cage) were housed at
the animal center of our institution and maintained on a
standard laboratory diet and water. The rabbit model of
ONFH was established by intramuscular injection of
lipopolysaccharide (10 μg/kg, Sigma, United States)
combined with intramuscular injection of
methylprednisolone (20 mg/kg, Sigma, United States) for
the following 3 days (Li et al., 2022).

All animals were labeled with an implantable RFID chip tag
and then randomly grouped (six for each) using SPSS
software as follows: 1) nHA group, 2) Li-nHA group, 3)
Cu-Li-nHA group, 4) negative group (only surgically
drilled), and 5) blank group. Drilling and material
implantation were performed using the posterior-lateral
approach 2 weeks after ONFH modeling in groups 1–4.
Materials were implanted after drilling a tunnel (diameter,
3.5 mm) below the junction of the femoral head and neck and
1 cm in depth along the axial direction of the femoral neck
(Supplementary Figures S4, S5).

In Vivo Evaluation of BMSCs Homing by
Cu-Li-nHA
Four weeks after surgery, all groups except for group 4 were
injected with 1 ml of exogenous BMSCs (5×106/ml) labeled with
fluorescent CFSE via ear margin veins. Two weeks later, two
rabbits in each group were sacrificed to perform
immunofluorescence assays to verify cell homing.

Femoral head samples were obtained at 6 and 12 weeks after
surgery. The following tests were performed to detect implanted
materials and new bone reconstruction: 1) Micro-CT and bone
volume (BV)/total volume (TV) analysis; 2) HE and Goldner
staining; and 3) immunohistochemistry of OCN, Runx2,
GSK-3β, β-catenin, VEGF, and SDF-1 (Abcam,
United States).

After fixing with 10% neutral formaldehyde for 7 days, the
samples were scanned by micro-CT (Quantum GX II,
Perkin Elmer, United States) at a voltage of 90 kV, a current
of 88 A, and a voxel size of 50 μm. Then, the samples were
decalcified in 20% EDTA for 14 days and then embedded in
paraffin. Coronally sections were sliced at a thickness of 3 μm,

FIGURE 2 | (A) XRD spectrum. (B) FITR spectrum. (C) TEM observation for particle size. Scale bar in the bottom right-hand corner of each image (red): 50 nm. (D)
SEM observation for porous scaffold structure. Pore size is shown in each image. Scale bar in the bottom right-hand corner of each image (red): 100 μm. (E) SEM
observation for BMSCs adhesion to scaffolds. Blank Group: nHA without BMSCs co-culture. Green arrow: adherent BMSCs. Scale bar in the bottom right-hand corner
of each image in the left column (red): 100 μm; Scale bar in the bottom right-hand corner of each image in the right column (red): 50 μm.
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dewaxed in xylene, and hydrated with graded ethanol
series before staining with the HE reagent kit
(Beyotime, China). To analyze the area of mineralized bone,
Goldner staining was performed sequentially following the
protocols of the stain kit (Solarbio, China) using Weigert
iron hematoxylin solution, Ponceau solution, Orange G

solution, and Light Green solution. The sections for
detecting cell homing were incubated with the diluted
primary antibody of Collagen I (1:200), and then labeled
with the secondary antibody of Cy5. DAPI (1 μg/ml)
counterstained sections were observed under the confocal
microscope (Nikon, Japan). Immunohistochemistry was

FIGURE 3 | (A) Immunofluorescence assays of BMSCs migration using Transwell device. BMSCs were labeled by CFSE (green) and DAPI (blue). Scale bar in the
bottom right-hand corner of each image (red): 100 μm. (B) The number of migrated cells under the membrane among different groups. Negative Group: complete
medium; SDF-1 Group: SDF-1 + complete medium. Statistical analysis was conducted using a one-way analysis of variance with post-hoc Bonferroni’s multiple
comparisons test. NS: p > 0.05, *p < 0.05.

FIGURE 4 | (A,B) Osteogenic differentiation tests. (A) Alkaline phosphatase staining among groups. Light or dark purple staining cells represent positive cells. (B)
Alizarin red S staining among groups. The red areas or dots represent calcium nodules or deposits. Blank Group: complete medium. Scale bar in the bottom right-hand
corner of each image (red): 200 μm. (C,D) Tube formation assays for angiogenesis test. (C) Tube-like structure represents newly formed vessel. Scale bar in the bottom
right-hand corner of each image (red): 200 μm. (D) The number of tube-like structures among different groups. Positive Group: VEGF + complete medium;
Negative Group: complete medium. Statistical analysis was conducted using a one-way analysis of variance with post-hoc Bonferroni’s multiple comparisons test.
*p < 0.05.
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conducted with diluted primary antibodies (1:200) at 4°C
overnight and visualized with a secondary antibody.
Immunohistochemical proteins were analyzed using the
positive staining area ratio.

Statistical Analysis
For the semi-quantitative analysis above, three researchers
blinded to the group allocation used ImageJ software (National
Institutes of Health, United States) to analyze each sample, and

FIGURE 5 | (A) RT-PCR and (B)Western-blotting of RUNX2, β-catenin, HIF-1α, VEGF and SDF-1 in BMSCs. Statistical analysis was conducted using a one-way
analysis of variance with post-hoc Bonferroni’s multiple comparisons test. NS: p > 0.05, *p < 0.05.

FIGURE 6 | Immunofluorescence assays to verify BMSCs homing 2 weeks after injecting with exogenous CFSE-labeled BMSCs. BMSCs in the implanted regions
were shown under the Collagen I signal (red), and homing BMSCs were shown under the CFSE signal (green). White arrow: CFSE-labeled BMSCs. Scale bar in the
bottom right-hand corner of each image (red): 200 μm.
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FIGURE 7 | (A,B) Micro-CT observation and BV/TV values in the bone defect area. The regions within the green circle were implanted with scaffolds. Materials
showed high density and new trabecular bone showed medium density. Negative Group: only drilling tunnels. Blank Group: without ONFH modeling and scaffold-
implantation operation. White triangle: region of drilling. (C) HE staining. Black asterisk: trabecular bone. Green asterisk: drilling region. Yellow arrow: lining cell. Green
arrow: osteocyte. Green triangle: nHA scaffold. White triangle: Li-nHA scaffold. Yellow triangle: Cu-Li-nHA scaffold. Green circle: neovascularization. Negative
Group: only drilling tunnels. Blank Group: without ONFH modeling and scaffold-implantation operation. Scale bar in the bottom right-hand corner of each image (red):
100 μm. (D,E)Goldner staining andmineralize bone area analysis. Mineralized bone was stained in green, and osteoid was in red. Yellow asterisk: mineralized trabecular
bone. Yellow arrow: lining cell. Green arrow: osteocyte. Green triangle: nHA scaffold. White triangle: Li-nHA scaffold. Yellow triangle: Cu-Li-nHA scaffold. Blank Group:
without ONFH modeling and scaffold-implantation operation. Scale bar in the bottom right-hand corner of each image (red): 50 μm. Statistical analysis was conducted
using a one-way analysis of variance with post-hoc Bonferroni’s multiple comparisons test. NS: p > 0.05, *p < 0.05.
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the average results were determined after three repeated
measurements.

SPSS 22.0 (SPSS Inc., Chicago) was used to perform statistical
analysis, and significant differences were defined at p < 0.05. All
continuous variables are expressed as the mean ± standard
deviation (mean ± SD). The results were analyzed using a
one-way analysis of variance with post-hoc Bonferroni’s
multiple comparisons test.

RESULTS

Characterization of Cu-Li-nHA
The characteristic peaks of Li-nHA or Cu-nHA were detected at
26.2°, 32.2°, 49.5°, 50.5° and 51.6°, and these findings are
consistent with the spectrum of the standard nHA
(Figure 2A). The FTIR results also showed a similar
spectrum for the three groups. The peak at the wave
length near 3,500 cm−1 was the absorption peak of
hydroxyl groups (O-H), while the peaks at the wave length
near 1,000 cm−1 and 600 to 500 cm−1 were the absorption
peaks of phosphate (PO4

3−) (Figure 2B). TEM showed that
each particle was composed of several needle- or rod-like
structures with long diameter less than 50 nm, thus,
confirming the sizes of Cu-nHA and Li-nHA were at the
nanometer level (Figure 2C). The SEM analysis showed that the
gas foamingmethod could prepare a Cu-Li-nHA three-dimensional

porous scaffold with see-through pores between macropores and
the interconnections of pores (Figure 2D). Cu-Li-nHA and nHA
had no significant differences in porosity (74.65 ± 11.33% vs.
71.59 ± 11.09%, p > 0.05) or compressive strength (4.79 ±
0.92MPa vs. 4.82 ± 0.85 MPa, p > 0.05).

Cu-Li-nHA Promoted BMSCs Migration,
Osteogenesis, and Angiogenesis
Cu-Li-nHA had the advantage of cell compatibility in that
fibroblast-like BMSCs adhered to the pore wall (Figure 2E).
The number of migrated cells in the Cu-Li-nHA group was
the highest (p < 0.05), but there was no significant
difference between the Cu-Li-nHA and the SDF-1 groups
(p > 0.05) (Figures 3A,B). The number of migrated BMSCs
in the nHA and Li-nHA groups was clearly less than that in
the SDF-1 group (p < 0.05). Alkaline phosphatase
expression in the Cu-Li-nHA group was significantly higher
than that in the nHA and Li-nHA groups. The number of
calcium deposits was also visibly higher in the Cu-Li-nHA
group than in the nHA and Li-nHA groups (Figures 4A,B). As
shown in Figures 4C,D, the number of vascular-like
structures in the Cu-Li-nHA group was the highest among
the three scaffold groups (p < 0.05), but less than that in
the positive group (p < 0.05). The expression levels of Runx2,
HIF-1α, VEGF, and SDF-1 in BMSCs were significantly higher

FIGURE 8 | Immunohistochemistry and positive ratio analysis of OCN (A), Runx2 (B). Blank Group: without ONFH modeling and scaffold-implantation operation.
Scale bar in the bottom right-hand corner of each image (red): 100 μm. Statistical analysis was conducted using a one-way analysis of variance with post-hoc
Bonferroni’s multiple comparisons test. NS: p > 0.05, *p < 0.05.
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in the Cu-Li-nHA group than in the other groups
(Figures 5A,B).

Cu-Li-nHA Modulated BMSCs Homing for
Treating ONFH in Vivo
Cells in situ were observed in all groups, whereas CFSE-labeled
cells were observed only in the Cu-Li-nHA group (Figure 6). The
materials showed high density in the bone defect area under
micro-CT, whereas the new trabecular bone showed medium
density (Figure 7A). A greater medium-density area could be
observed in the Li-nHA and Cu-Li-nHA groups than in the nHA
group after 6 weeks, and the density of the implanted region in
the Cu-Li-nHA group was close to that in the blank group after
12 weeks. BV/TV showed similar trends after 6 (Cu-Li-nHA vs.
nHA, p < 0.05) and 12 weeks (Cu-Li-nHA vs. Li-nHA, p < 0.05)
(Figure 7B).

HE staining showed new trabecular bone formation in the
nHA, Li-nHA, and Cu-Li-nHA groups, and the shape of the
trabecular bone in the Cu-Li-nHA group was intact. Abundant
neovascularization was also observed in the Cu-Li-nHA group
(Figure 7C). Goldner staining showed that trabecular bone
mineralization in the Cu-Li-nHA and Li-nHA groups was
higher than that in the nHA group (p < 0.05), but lower than
that in the blank group (without ONFH modeling and scaffold-
implantation operation) (p < 0.05) (Figures 7D,E). The

expression levels of OCN, Runx2, β-catenin, VEGF, and SDF-
1 in the Cu-Li-nHA group were higher than those in the other
groups (p < 0.05) (Figures 8, 9, 10). In addition, the expression
levels of GSK-3β in the Cu-Li-nHA and Li-nHA groups were
significantly lower (p < 0.05).

DISCUSSION

In current study, we evaluated the Cu-Li-nHA porous composite
scaffold for GCs-ONFH repair and we interestingly found that
Cu-Li-nHAwith biocompatibility and osteoconductivity, enabled
MSCs recruitment to the target region and induced osteogenesis.
The results indicated that Cu-Li-nHA promoted MSCs homing
and enhanced bone regeneration in ONFH.

Surgical reconstruction usually requires tissue transplantation
to restore normal structure and function (Zhao et al., 2021).
However, autografts and allografts both present certain issues
problems, such as additional surgical procedures and immune
rejection (Dimitriou et al., 2011). Repair for ONFH is also faced
with such challenges. To overcome these limitations, in situ tissue
regeneration technology has been designed, which utilizes the
implantation of bioactive scaffolds to recruit host progenitor cells,
and simultaneously provides optimal microenvironment,
contributing to proliferation and differentiation of recruited
cells, finally promoting tissue regeneration (Lutolf et al., 2009;

FIGURE 9 | Immunohistochemistry and positive ratio analysis of GSK-3β (A), β-catenin (B). Blank Group: without ONFH modeling and scaffold-implantation
operation. Scale bar in the bottom right-hand corner of each image (red): 100 μm. Statistical analysis was conducted using a one-way analysis of variance with post-hoc
Bonferroni’s multiple comparisons test. NS: p > 0.05, *p < 0.05.
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Ko et al., 2013). Several studies have confirmed the superiority of
MSCs homing in improving the quantity and efficacy of
regeneration of different tissues (Karp and Leng Teo, 2009; Xiang
et al., 2020; Chen et al., 2021). For instance, Wang succeeded in
BMSCs recruitment and osteogenic differentiation by loading
hydroxyapatite/polyacrylonitrile scaffolds with SDF-1 (Wang
et al., 2019). Moreover, patients with GCs-ONFH present a
decreased number of BMSCs in the lesion area (Hernigou et al.,
1999). Chronic abuse of GCs results in the differentiation of BMSCs
into adipose tissue and cartilage, thereby reducing the reserve of stem
cells (Cui et al., 1997; Houdek et al., 2016). Thus, a well-designed
material must be fabricated to recruit MSCs and provide an
osteogenic microenvironment for GCs-ONFH reconstruction.

SDF-1 is one of the factors that induce the directional
migration of cells (Lau and Wang, 2011). Scaffolds composite
with SDF-1 are efficient in repairing organ defects by stimulating
BMSCs homing (Chen et al., 2015; Chen et al., 2019). SDF-1 in
local tissues not only mobilizes adjacent BMSCs, but also recruits
MSCs from the peripheral blood (Ceradini and Gurtner, 2005).
HIF-1α regulates SDF-1 expression, and theoretically, Cu also
upregulates HIF-1α to increase SDF-1 levels indirectly. Chen
found that Cu increased BMSCs motility and recruitment
through Rnd3 pathway-dependent cytoskeletal remodeling
(Chen et al., 2020). Hence, we designed a composite scaffold
by doping Cu into Li-nHA to enhance tissue regeneration
potential through the MSCs homing. We successfully
developed a Cu-Li-nHA scaffold with a three-dimensional

porous structure and good compressive strength. In an in vitro
chemotaxis experiment, Cu-Li-nHA promoted the directional
migration of BMSCs. Moreover, the effect of Cu-Li-nHA on
chemotaxis was not inferior to that of SDF-1. Cu-Li-nHA also
induced exogenous BMSCs homing to the scaffold site in vivo and
highly expressed SDF-1. Thus, Cu-Li-nHA mobilized the intrinsic
reserves of MSCs to repair the damaged region of ONFH.

Li-nHA has been reported to enhance osteogenic
differentiation of BMSCs via the Wnt pathway (Li et al.,
2018a; Luo et al., 2018). Our results are consistent with the
findings of previous studies. In addition, the angiogenesis of
Cu-Li-nHA was explored. Neovascularization increases local
blood supply in osteonecrosis, which benefits new bone
ingrowth for reconstruction (Zhao et al., 2016). VEGF plays
an important role in this process. Kim found that VEGF-
loaded biomaterials provided an appropriate environment for
accelerated osteogenesis (Kim et al., 2021). Similarly, our study
indicated that Cu doping in the composite scaffold also increased
vascular-like structures and promoted trabecular bone formation,
largely because Cu can activate VEGF by inhibiting the
degradation of HIF-1α (Feng et al., 2009). Cu-Li-nHA
improved the microcirculation of ONFH to create more
conducive conditions for MSCs differentiation.

This study also has several limitations. First, we did not
include a Cu-nHA group in the study. Previous studies have
demonstrated that Li-nHA has osteogenic properties but Li with
limited ability of cell homing (Li et al., 2018a). Therefore, we

FIGURE 10 | Immunohistochemistry and positive ratio analysis of VEGF (A), SDF-1 (B). Blank Group: without ONFHmodeling and scaffold-implantation operation.
Scale bar in the bottom right-hand corner of each image (red): 100 μm. Statistical analysis was conducted using a one-way analysis of variance with post-hoc
Bonferroni’s multiple comparisons test. NS: p > 0.05, *p < 0.05.
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doped Cu into Li-nHA to improve tissue regeneration potential
via Cu modulating MSCs homing for promoting the repair of
ONFH, instead of verifying role of Cu in MSCs mobilization
alone. Second, we had not set relevant experiments by regulating
HIF-1α/SDF-1 pathway for further validation. Third, further
research should be conducted using other animal models of
ONFH to confirm the reconstruction effect of Cu-Li-nHA.

The current study demonstrated that the Cu-Li-nHA
composite scaffold could induce MSCs homing and improve
osteogenesis and angiogenesis, consequently promoting GCs-
ONFH repair. Thus, Cu-Li-nHA implantation may serve as a
potential therapeutic strategy for ONFH in the future.
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