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Abstract

Background and Aims: Current liver‐directed gene therapies look for

adeno‐associated virus (AAV) vectors with improved efficacy. With this

background, capsid engineering is explored. Whereas shuffled capsid library

screenings have resulted in potent liver targeting variants with one first

vector in human clinical trials, modifying natural serotypes by peptide

insertion has so far been less successful. Here, we now report on two capsid

variants, MLIV.K and MLIV.A, both derived from a high‐throughput in vivo

AAV peptide display selection screen in mice.

Approach and Results: The variants transduce primary murine and

human hepatocytes at comparable efficiencies, a valuable feature in clin-

ical development, and show significantly improved liver transduction effi-

cacy, thereby allowing a dose reduction, and outperform parental AAV2

and AAV8 in targeting human hepatocytes in humanized mice. The natural

heparan sulfate proteoglycan binding ability is markedly reduced, a feature

that correlates with improved hepatocyte transduction. A further property

that might contribute to the improved transduction efficacy is the lower

capsid melting temperature. Peptide insertion also caused a moderate

change in sensitivity to human sera containing anti‐AAV2 neutralizing

antibodies, revealing the impact of epitopes located at the basis of the AAV

capsid protrusions.

Conclusions: In conclusion, MLIV.K and MLIV.A are AAV peptide display

variants selected in immunocompetent mice with improved hepatocyte

tropism and transduction efficiency. Because these features are main-

tained across species, MLIV variants provide remarkable potential for

translation of therapeutic approaches from mice to men.

INTRODUCTION

Adeno‐associated virus (AAV) vectors are the most
frequently used delivery system for in vivo gene
therapy.[1] Their remarkable clinical potential is testi-
fied among others by market approvals of AAV‐based
advanced therapy medicinal products[2] and the great
success in liver‐directed hemophilia gene therapy
trials.[3] AAV vectors are composed of a protein capsid
that protects a single‐stranded (ss) DNA genome and
determines the vector tropism.[4]

When applied in vivo, host factors like serum
proteins or neutralizing antibodies interact with the
AAV capsid, impacting transduction efficiency and
biodistribution.[5] Likewise, interaction with cell surface
molecules determines whether or not AAV vectors are
internalized and shuttled toward a functional trans-
duction pathway, eventually leading to transgene
expression. Components of the extracellular matrix,
such as heparan sulfate proteoglycan (HSPG), medi-
ate the initial cell contact, thereby supporting AAV

binding to coreceptors[6] that induce clathrin‐depend-
ent endocytosis of the particles. Furthermore, AAV
receptor (AAVR) and G protein–coupled receptor
(GPR) 108 escort AAV's intracellular processing,[7,8]

eventually leading to uncoating, i.e., the vector
genome release from the viral capsid,[9,10] and
formation of stable episomes.[11]

The capsid has become the target of engineering,[4]

aiming for improved transduction efficiencies and
avoidance of vector loss in off‐target tissues. Further
desired features are translatability of vector efficacy
and tropism from small to large animal models and,
most importantly, to the human context. So far, efforts
have mainly focused on shuffled DNA capsid libraries
that were screened in vivo in various mouse
models.[12–14] To the best of our knowledge, shuffled
capsid variant LK03[12] is the first to be currently tested
in phase 1/2 (NCT03003533, Spark 200).[15]

Here, we report on liver‐targeting capsid variants,
MLIV.K and MLIV.A, derived from an in vivo AAV2
peptide display library selection in immunocompetent
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mice, which transduce murine and human hepatocytes
significantly better than the parental serotype. Signifi-
cantly fewer particles were required for efficient liver
transduction compared with the state‐of‐the‐art refer-
ence AAV8. This improved efficiency was accompa-
nied by detargeting from off‐target tissues, such as
spleen. Both variants showed impaired binding to
HSPG, the tropism‐defining attachment receptor of
AAV2, and differed in a moderate but relevant range
regarding sensitivity to AAV2 neutralizing‐antibody–
containing human sera.

MATERIAL AND METHODS

Human and animal ethics

All experiments involving human‐ and animal‐derived
samples received and followed ethical authorization
and regulations. Human samples were involved
according to the guidelines of the 1975 Declaration
of Helsinki. Animals received human care accor-
ding to the criteria outlined in the NIH Guide for the
Care and Use of Laboratory Animals, respectively (see
further details to ethical approvals in extended
methods).

AAV library selection

Hepa129‐transplanted C3H mice[16] and transforming
growth factor α/c‐myc mice,[17] n = 1–2, were intra-
venously (i.v.) injected with 1 × 1011 viral genome
containing particles (vg)/animal (AAV2 peptide display
library[18]). After 24 h, the viral genomes of capsid
variants were PCR amplified from DNA isolated from
hepatocellular carcinoma (HCC) tissue from the
nuclear fraction, and after the third selection round,
capsid variants were recovered from the nuclear
fraction of liver tissue as well as from other off‐target
tissues as described[19] (see further details in
extended methods).

Primary hepatocyte transduction

Primary human hepatocytes (PHH) were freshly
prepared from surgical human liver biopsies by a
standard two‐step collagenase perfusion and serial
differential centrifugation and cultured as described.[20]

Primary murine hepatocytes (PMH) were obtained
from bagg albino (BALB/c) mice after liver perfusion
and low‐speed centrifugation and were cultured as
described.[21] After 2 days, cells were transduced with
1 × 104 vg/cell (genomic particles of infection [GOI]).
Medium was changed 24 h later, followed by cell
harvest 72 h post‐transduction.

In vivo imaging

BALB/c mice, n = 6, were i.v. injected with 4 × 1011 vg/
animal (scAAV.SFFV.Fluc with AAV2, AAV8, MLIV.K,
and MLIV.A capsid). On Days 7, 15, and 28, luciferin D
was i.v. injected followed by in vivo imaging system
(IVIS) analysis of firefly luciferase (Fluc) activity. On Day
28, mice were euthanized and fresh frozen tissue
conservation was performed.

Therapeutic treatment of hemophilia B (HB)
mice

Blood clotting factor 9 (FIX) knockout mice (B6.129P2‐
F9tm1DWS/J), n = 7–10, were i.v. injected with 5 × 1010

vg/animal (scAAV.LP1.hFIX with AAV2, AAV8, MLIV.K,
and MLIV.A capsid). Healthy C57Bl/6 (Bl6) (n= 10) and
mock‐treated HB (n = 9) were used as control mice.
After serum collection on Day 7, Day 14, and Day 56,
factor (F)IX activity assays and human (h)FIX enzyme‐
linked immunosorbent assay (ELISA) were performed
as described.[22,23] FIX activity of serum samples was
determined through activated partial thromboplastin
time with an hFIX standard curve. hFIX serum level
were analyzed using an ELISA in which a monoclonal
anti‐hFIX antibody (Ab) (Sigma‐Aldrich) was used as
capture Ab. Peroxidase‐conjugated polyclonal goat
anti‐hFIX Ab (Affinity Biologicals) was used as the
detecting Ab.

Humanized mouse transduction

Naive Fah−/−/Rag2−/−/Il2rg−/− (FRG) mice were housed
and engrafted with an intrasplenic injection of human
hepatocytes (HH) as described (comparison 1: 2.4–2.8
mg human serum albumin (hAlb)/ml ≙ ~30% replace-
ment index [RI = engraftment]; comparison 2: 6.4–8.0
mg hAlb/ml ≙ RI of ~60% to ~80%).[24] For IHC analysis
of xenograft liver transduction, n = 1 animal received
5 × 1010 vg/vector (i.v.; ssAAV.LSP.eGFP.BC vectors
with AAV2, AAV8, MLIV.K, and MLIV.A capsid). After 1
week, engrafted liver tissues were conserved and IHC
stained.[24] For a direct comparison of the AAV capsids,
n = 1 (comparison 1; ssAAV.LSP.eGFP.BC vectors;
eight unique barcodes [BC]/capsid; AAV2, AAV8, MLIV.
K, and MLIV.A capsid) or n = 2 (comparison 2; ssAAV.
LSP.eGFP.BC vect; eight unique BCs/capsid; AAV8,
AAV3.B, LK03, NP59, SYD12, MLIV.K, and MLIV.A
capsid) animal(s) received the corresponding vector
pools (i.v., 1 × 1010 vg/vector) followed by liver perfusion
after 1 week (comparison 1) or 2 weeks (comparison 2).
Human and murine hepatocyte populations were iso-
lated by fluorescence‐activated cell sorting (FACS).[24]

Further, RNA and DNA isolation, BC amplification, and
next‐generation sequencing (NGS) as well as
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distribution analysis of BC were performed[24] (see
further details in the extended methods).

Heparin affinity and competition assay

For heparin affinity chromatography, scAAV.CMV.eGFP
vectors with AAV2, MLIV.K, or MLIV.A capsid were
loaded on HiTrap Heparin HP columns (Cytiva). Particles
were eluted in phosphate‐buffered saline/MgCl2/KCl
supplemented with increasing concentrations of sodium
chloride (NaCl).[25] For competition assay, Pop10 cells
(hepatocyte cell line) were seeded in 48‐well plates.
scAAV.SFFV.Fluc vectors (GOI 1000) were incubated
with indicated heparin concentration in Dulbecco's
Modified Eagle Medium (DMEM) for 30 min at room
temperature. Cells were incubated with AAV/DMEM/
heparin solution for 24 h, followed by flow cytometry.

Structural modeling and heparin docking

AAV capsid variants were modeled with the Rosetta
software suite for molecular modeling and design[26] using
the RosettaCM protocol[27] through RosettaScripts.[28]

The structure of AAV2 (Protein Data Bank ID: 6IH9[29])
was relaxed[30] and used as a template for all further
studies. For heparin docking studies, GlycanDock[31] was
used. For the full protocol including input XML files, see
Supporting Information S1. Figures were created with
ChimeraX.[32]

Molecular dynamics simulations

For system solvation with TIP3P water molecules, the
solution builder of CHARMM‐GUI[33] was used, and
charge was neutralized with NaCl. All simulations used
the Amber ff19sb force field.[34] Calculations were
performed with the Amber molecular dynamics (MD)
package using the pmemd software.[35] After an initial
minimization step, Langevin dynamics with a friction
coefficient of 1 ps−1 was used for linear heating of the
system in constant volume for 1 ns, during which the
protein was positionally restrained with a final equili-
brium temperature of 303.15 K. An NPT simulation was
performed using the Monte Carlo barostat to control the
isotropic pressure scaling, where N denotes the
constant particle number, P equals pressure and T is
the temperature. Electrostatic interactions were calcu-
lated using a long‐distance cutoff of 9 Å. For each
variant, three 500 ns long simulations were performed.
For minimization, equilibration, and production run input
files, see Supporting Information (Movies S1, S2, S3).
Trajectories were analyzed with pytraj,[35] a python
package binding of cpptraj,[36] and visualized with
VMD.[37]

Statistical analysis

All statistical analyses were performed in GraphPad
Prism 6 (GraphPad Software).

Data were log10‐transformed except for data repre-
senting folds and parts of the whole. Multiple group
comparisons were analyzed with an ordinary one‐way
ANOVA or two‐way ANOVA, followed by Tukey's post‐
hoc test. If a control column was available (e.g.,
“AAV2”), the remaining groups were tested against the
control column and corrected with Dunnett's test for
multiple comparisons.

Results with a p value ≤ 0.05 were considered
statistically significant.

(For further methods, see the extended methods.)

RESULTS

MLIV.K and MLIV.A identified as most
abundant AAV capsid variants by in vivo
selection

After in vivo high‐throughput selection of an AAV2
peptide display library initially designed by Perabo
et al.[18] in two distinct HCC mouse models,[16,17] we
isolated viral genomes from the nuclear fraction of
liver (nontumor) tissue, followed by NGS (Figure 1).
The most enriched variants, MLIV.R and MLIV.GA,
had to be excluded from further analysis because they
were overrepresented in the original unselected
libraries (MLIV.GA) or nonspecifically enriched, i.e.,
independent from the target tissue‐specific selection
process, during library production (MLIV.R). Thus,
MLIV.AQ, MLIV.K, MLIV.G, and MLIV.A, the next
most enriched variants, were vectorized (Figure 1B,
C), with MLIV.K and MLIV.A meeting our criteria of
titers ≥ 2 × 1011/ml (Table S1).

Improved murine and human hepatocyte
tropism compared with the parental AAV2

We used a conventional replication‐competent rep‐
capmod library, and thus capsid variants had been
selected for accumulation in the target cell nucleus but
not for their ability to express a transgene. MLIV.K and
MLIV.A were therefore first assayed for transgene
expression (functional transduction) in primary hep-
atocytes (Figure 2A). For comparison, we included
AAV2, the serotype that served as backbone for our
library, and AAV8, considered as a state‐of‐the‐art
reference for in vivo liver transduction.[38] Both variants
efficiently transduced primary human and murine
hepatocytes (PHH and PMH). In particular, MLIV.K
showed significantly higher transduction efficiencies
than AAV2 (PHH: 6‐fold; PMH: 5‐fold), and both
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capsid variants mediated superior HH transduction
compared with AAV8 (MLIV.K/MLIV.A; PHH: 14‐/5‐
fold; PMH: 16‐/6‐fold).

We subsequently compared MLIV.K and MLIV.A to
AAV2 and AAV8 in vivo. For MLIV.K and MLIV.A,
significantly improved transduction levels were
observed in the liver region of healthy BALB/c mice
(upper abdomen, Figure 2B, Figure S1). On day 28,
animals treated with MLIV variants showed 13‐ to
26‐fold higher Fluc expression levels in the upper
abdomen than mice of the AAV2 cohort (Figure 2C).
MLIV.A even reached a similar luciferase activity as
AAV8. Fluc activity was detectable in liver lysates,
whereas transgene expression activity remained
at background level in off‐target tissue lysates
(Figure S2). Vector genome biodistribution analysis
confirmed significant detargeting of our capsid var-
iants from spleen, lung, and heart (Figure 2D). The
most prominent effect was observed for spleen with
206‐fold lower levels for MLIV.K and MLIV.A

compared with AAV2. Furthermore, levels were
reduced 25‐fold (MLIV.K) and 19‐fold (MLIV.A) in
lung and 7‐fold (MLIV.K and MLIV.A) in heart
compared with AAV2. The quantitative polymerase
chain reaction analysis also revealed that both
variants required significantly fewer vector genomes
to outperform AAV2 or equal AAV8 in murine liver
transduction, arguing for improved efficacy of MLIV.K
and MLIV.A in liver (Figure 2C vs. D).

MLIV.K and MLIV.A provide capsid
properties relevant for liver targeting

The two main residues of the AAV2‐HSPG binding
motif, R585 and R588, are separated at least on the
linear sequence when inserting a peptide C‐terminal of
N587. We therefore analyzed the interaction of MLIV.K
and MLIV.A with HSPG. Firstly, we determined the
binding affinity (Figure 3A). AAV2 vector particles were

F IGURE 1 Schematic representation of in vivo high‐throughput adeno‐associated virus (AAV) peptide display selection and capsid variant
contribution to the total pool. (A) AAV2 peptide display library production and in vivo high‐throughput selection. The 50 most abundant capsid
variants identified in the nontumor liver tissue of (B) transforming growth factor (TGF) α/c‐myc hepatocellular carcinoma (HCC) mouse model and
(C) Hepa129‐grafted HCC mouse model after three rounds of in vivo selection. Proportion of variants on total pool is presented as percentage,
setting total next‐generation sequencing reads in the nontumor liver tissue to 100%. The total percentage of the 50 most abundant capsid variants
is indicated. The 10 most abundant capsid variants are listed and color‐coded. Cherry red (lowest bar) to dark purple (top bar) equals the first to the
tenth rank. Capsid variants with the same nomenclature are identical and were found in both models. ITR, inverted terminal repeat; NNB, N
represents any of the four bases, B represents cytosine, guanine, or thymine
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F IGURE 2 MLIV.K and MLIV.A show hepatocyte tropism in primary cells and in vivo. (A) Transduction of primary human hepatocytes (PHH;
n = 4) and primary murine hepatocytes (PMH; n = 3) with MLIV.K and MLIV.A compared with adeno‐associated virus (AAV) 2 (parental serotype)
and AAV8 (state‐of‐the‐art reference). Primary cells were transduced with indicated vectors delivering sc.AAV.SFFV.Fluc (genomic particles of
infection [GOI] 1 × 104). After 72 h, firefly luciferase (Fluc) activity was measured as relative light units (RLU) in cell lysates by luciferase assay and
normalized to total protein content. Data shown in log10‐scale as mean RLU/protein with SD. (B) Animals were intravenously (i.v.) injected with
5 × 1011 particles of indicated vectors delivering sc.AAV.SFFV.Fluc genomes, and Fluc was monitored for 28 days. Representative images of
in vivo imaging system (IVIS) measurements at day 7 (d7), day 14 (d14), and day 28 (d28). AAV2: n = 4; MLIV.K: n = 4; MLIV.A: n = 5; AAV8:
n = 6. CTRL (nontreated): n = 2. (C) Average radiance (p/s/cm2/sr) measured over liver on day 28. Data shown in log10‐scale as average RLU with
means and SD. (D) AAV vector genomes measured by relative quantitative polymerase chain reaction (qPCR) quantification of DNA samples
isolated from liver (LIV), spleen (SPL), lung (LNG), and heart (HRT) on day 28. Data shown in log10‐scale as efficiency‐scaled ratio of Fluc to
murine hypoxanthine‐guanine phosphoribosyltransferase (mHPRT) with means and SD. Statistics: (A,C) ordinary one‐way ANOVA with log10‐
transformed data. (A: p = 0.0006; C: p < 0.0001); Tukey's multiple comparisons; (D) two‐way ANOVA within each tissue group with log10‐
transformed data. (Interaction tissue/AAV: p ≤ 0.001; tissue: p ≤ 0.0001; AAV: p ≤ 0.0001); Dunnett's multiple comparisons with AAV2 as control
group; *p < 0.05; **p < 0.01; ***p < 0.001; ****p ≤ 0.0001
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eluted from a heparin affinity column at 0.4 M NaCl. In
contrast, MLIV.K showed reduced binding with 27% of
the vector genomes detected in the flow‐through.
Heparin‐bound MLIV.K particles (57%) were eluted at
a salt concentration of 0.3 M, indicating a lower affinity.
For MLIV.A, 35% and 18% of vector genomes were
detected in the flow‐through and wash fractions,
respectively, and column‐bound MLIV.A particles
(31%) were already eluted with 0.2 M NaCl.

To confirm the lower affinity, we performed a heparin
competition assay. For AAV2, transduction efficiency
was reduced by half (IC50) in the presence of ~0.4 U/ml
of heparin (Figure 3B). The same concentration did
neither impair MLIV.K nor MLIV.A and—in contrast—
remarkably enhanced transduction efficiency. Increas-
ing the heparin concentration inhibited transduction with
an IC50 value of ~6.0 U/ml (~15‐fold higher).

Huttner et al. reported that peptide insertion C‐terminal
of N587 can confer immune escape properties.[39] We
therefore incubated our capsid variants with serial
dilutions of human IVIG and individual human donor
serum samples. Again, AAV2 and AAV8 served as
references. In comparison, both variants revealed
distinct neutralization profiles with a moderate immune
escape phenotype (Figure S3).

We previously reported that capsid stability and
uncoating efficiency correlates,[10] with the latter being a
key determinant for transduction efficiency. We therefore
performed a thermostability assay (Figure S4). Both
variants showed comparable stability, which differed
from AAV2. Specifically, the A20 signal faded for both
variants when reaching temperatures of 60.7°C, not
affecting AAV2 capsids (strong A20 and lack of B1
signals, respectively). Simultaneously, B1 signal became
detectable for both variants at that temperature, revealing
capsid disassembly.

Modeling of altered heparin‐binding
properties of MLIV.K and MLIV.A

To explain the altered heparin‐binding properties of
MLIV.K and MLIV.A (Figure 3), we performed a
structure‐driven analysis of the capsids. Figure 4A
depicts an overlay of the tertiary structure of the
variable region (VR)VIII loop of AAV2 with MLIV.K and
MLIV.A. Both inserted peptides mainly consist of small
and flexible amino acids, resulting in a disordered
secondary structure with small helical fragments in our
models.

F IGURE 3 Reduced affinity and dependency of MLIV variants on heparan sulfate proteoglycan (HSPG) compared with adeno‐associated
virus (AAV) 2. (A) Heparin affinity chromatography of MLIV.K and MLIV.A compared with AAV2 (n = 3). Vectors encoding for sc.CMV.GFP
were loaded on a heparin affinity column, and flow‐through (FT) and wash (WS) fraction were collected. AAVs were eluted by a salt gradient of
sodium chloride (NaCl) (0.2–1.1 M) in PBS/MgCl2/KCl (wash buffer [0.137 M NaCl]), and elution fractions were collected. Samples were
quantified by quantitative polymerase chain reaction (qPCR). Data are shown in linear scale as mean percentage of total vector genomes with
SD. (B) Heparin competition assay with MLIV.K and MLIV.A compared with AAV2 on Pop10 hepatocyte cell line (n = 4). Indicated vectors
delivering sc.SFFV.Fluc were preincubated with increasing heparin concentrations (0–24 U/ml) for 30 min at RT, thereafter Pop10 were
transduced with genomic particles of infection (GOI) 1 × 103. After 24 h, luciferase activity in cell lysates was measured and normalized to
mock‐treated AAV (0 U/ml heparin) transduction. Data are shown in linear scale as mean relative light units (RLU) in % of mock‐treated with
SD. Statistics: two‐way ANOVA within each heparin concentration group (Interaction concentration/AAV: p < 0.0001; concentration: p <
0.0001; AAV: p < 0.0001; concentration: p < 0.0001; AAV: p < 0.0001); Dunnett's multiple comparisons with AAV2 as the control group;
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Using structural modeling and docking, we sub-
sequently modeled how the capsid variants might
interact with heparin using information available for
AAV2 as a reference point. In the case of AAV2,
heparin contacts R585, R588, R484, and K532, with
the HSPG binding motif being constituted by two AAV
capsid subunits[40] (Figure 4B,C). For MLIV.K, the
model predicts heparin to bind to R585, R588, R484,
and K532 despite the peptide insertion between N587
and R588. In contrast, the predicted structure
of the peptide insertion of MLIV.A interferes with
heparin binding to K532 but allows R585, R588, and
R484 binding, albeit in an orientation that differs
from AAV2.

As the sequence of the MLIV.K peptide with four
glycine residues foretells a highly flexible loop

(Figure 4A), we studied possible conformations of
the variants' viral protein (VP) 3 trimer with MD
simulations. We investigated changes in the relative
distance of R585 and R588 and their orientation
toward each other (Figures 4D and S5). Unsurpris-
ingly, the loop of AAV2 possesses a single conforma-
tion with a distance between R585 and R588 normally
distributed around 5 Å. Similarly, a single conformation
around 5 Å was observed for MLIV.A, with the peptide
insertion sterically impairing HSPG to bind to K532, as
reflected in our heparin docking experiments (Fig-
ure S5). Therefore, a lower heparin‐binding affinity for
MLIV.A would be likely, as observed experimentally
(Figure 3). In contrast, the flexible structure of MLIV.K
can adapt alternative conformations distributed around
9 Å. Thereby, the MLIV.K peptide insertion engages at

F IGURE 4 Comparison of adeno‐associated virus (AAV) 2 structure and heparin binding to structural models of MLIV.K and MLIV.A. (A)
Overlay of variable region (VR)VIII loop tertiary structure of MLIV.K (orange) and MLIV.A (blue) with AAV2 (green). Capsid variant sequences
include wild‐type AAV2 sequence RGN[…]R and left (AAA) and right (AA) peptide linker. Highlighted AA residues are illustrated as stick
representation. (B) Surface model of heparin docking in the heparin‐binding pocket of AAV2, MLIV.K, and MLIV.A viral protein (VP) 3 trimer. (C)
Closeup of heparin interactions with the VRIII loop, with crucial residues highlighted in stick representation. For clarity, residue numbering follows
the AAV2 numbering scheme, with exception of K591 (in peptide insertion of MLIV.K, orange) and H596 (in peptide insertion of MLIV.A, blue). (D)
Violin plot of the distance between R585 and R588/R600 in AAV2, MLIV.K, and MLIV.A MD simulations. For each variant, three 500 ns long
simulations were performed
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least two transient conformational states of a partially
covered and uncovered heparin‐binding pocket.
Docking heparin to these two conformations
highlighted that only one is binding heparin
(Figure S6), in line with the experimental data
(Figure 3). Rendered movies of the MD trajectories
can be found in Movies S1, S2, and S3.

Up to 400% of physiological FIX activity in
FIX‐knockout mice treated with MLIV
variants

To challenge our capsid variants, we i.v. injected FIX−/

− HB mice with a dose of 5 × 1010 vg encoding for
human FIX, which corresponds to the low‐dose

regimens in liver‐directed preclinical gene therapy
approaches.[4] All AAV vectors rescued blood clotting
in the HB model to the levels observed in healthy Bl6
control animals. For AAV2, therapeutic effect ranged
around 100% of physiological FIX activity. In contrast,
MLIV.K and MLIV.A mediated 300%–400% of physio-
logical FIX activity, respectively. Strikingly, mice that
had received MLIV.A reached FIX activity compa-
rable with the AAV8 cohort (Figure 5A,B). Albeit
administered at a rather low dose, already 1 week
postadministration, all AAV vector–treated animals,
except those receiving AAV2, reached their maximum
FIX activity. In line with the FIX activity, hFIX serum
levels after 2 weeks revealed 54‐ to 79‐fold higher
hFIX antigen levels for the MLIV mouse cohorts
compared with mice receiving AAV2 (Figure 5C).

F IGURE 5 Capsid variants mediate correction of blood clotting factor 9 (FIX) deficiency in hemophilia B (HB) mice. Animals were administered
with 5 × 1010 particles of indicated vectors delivering scAAV.LP1.hFIX genomes. HB CTRL: nontreated HB (FIX−/−) mouse model; Bl6: healthy
mouse control. (A) FIX activity analyzed by activated partial thromboplastin time (aPTT) measurement at 1 week (W1), 2 weeks (W2), and (A + B)
8 weeks (W8) post transduction (p.t.). normalized to human serum reference standard; because of background blood clotting effects, all samples
were spiked with HB serum. Data shown in (A) log10‐scale and (B) linear scale as FIX activity in % of normal FIX activity with mean and SD. (C)
Human blood clotting factor (hFIX) serum level analyzed by enzyme‐linked immunosorbent assay (ELISA) W2 p.t.; normalized to human serum
reference standard. Data shown in log10‐scale as hFIX antigen (AG) in nanograms per milliliter with mean and SD. Animal cohorts aPTT: adeno‐
associated virus (AAV) 2 n(W1) = 6/n(W2) = 7/n(W8) = 7; MLIV.K n(W1) = 9/n(W2) = 10/n(W8) = 8; MLIV.A n(W1) = 8/n(W2) = 10/n(W8) = 9; n
(W1) = 8/n(W2) = 10/n(W8) = 9; AAV8 n(W1) = 10/n(W2) = 10/n(W8) = 8; HB CTRL: n(W1) = 9/n(W2) = 9/n(W8) = 6; Bl6 CTRL: n(W1) = 9/n
(W2) = 10/n(W8) = 10. Animal cohorts ELISA: AAV2 n(W1) = 6/n(W2) = 7/n(W8) = 6; MLIV.K n(W1) = 9/n(W2) = 10/n(W8) = 1 n(W1) = 8/n
(W2) = 10/n(W8) = 9; MLIV.A n(W1) = 7/n(W2) = 10/n(W8) = 3; AAV8 n(W1) = 8/n(W2) = 10/n(W8) = 4; HB CTRL: n(W1) = 9/n(W2) = 9/n
(W8) = 3; Bl6 CTRL: n(W1) = 9/n(W2) = 10/n(W8) = 5. Statistics: (B,C) ordinary one‐way ANOVA with log10‐transformed data, Tukey's multiple
comparisons; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. For simplification, the statistical significances of AAV2 vs. MLIV.K and MLIV.A;
AAV8 vs. MLIV.K and MLIV.A; and HB CTRL vs. MLIV.K and MLIV.A are shown exclusively (see Supporting Information S6 for complete post‐hoc
p‐value reports).
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F IGURE 6 MLIV.K and MLIV.A efficiently transduce human and mouse hepatocytes in the humanized (h)FRG mouse model. (A) Representative
immunohistochemical liver tissue analysis of the hFRGmouse model (n = 1) administered with 5× 1010 particles of indicated vectors delivering ss.AAV.
LSP.eGFP.BC genomes after 7 days. Red: human glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH); green: adeno‐associated virus (AAV) vector‐
expressed eGFP; blue: 4′6‐diamidino‐2‐phenylindole (DAPI) (nuclei). Scale bar, 100 μm. (B–F) In vivo comparison of cell entry (DNA) and functional
transduction (complementary DNA [cDNA]) of MLIV variants in the xenograft liver of the hFRGmouse model (B–E: n = 1; F: n = 2) administered with an
equimolar pool of the indicated vectors (defined as input) delivering ss.AAV.LSP.eGFP.BC genomes (n = 8 uniquely barcoded genomes per capsid,
1 × 1010 particles per capsid) after (B–E) 1 and (F) 2 week(s). (B) Percentages of next‐generation sequencing reads assigned to each capsid at entry
(DNA reads normalized to input DNA reads) and expression (cDNA reads normalized to input DNA reads) level in human and murine hepatocytes. Data
are shown in linear scale as%of reads in parts‐of‐a‐whole bars. (C) Hepatocyte entry index per BC (DNA reads normalized to input DNA reads) in human
(gray diamonds) and murine (clear diamonds) hepatocytes. (D) Overall expression per BC in hepatocytes (cDNA reads normalized to input DNA reads)
in human and murine hepatocyte populations. (E) Hepatocyte expression index per BC (cDNA reads normalized to DNA reads). (F) Average human
hepatocyte entry (DNA reads normalized to input DNA reads), overall expression (cDNA reads normalized to input DNA reads), and expression index
(cDNA reads normalized to DNA reads). (C–E) Data are shown in linear scale as the respective ratio (C,D) in % (C–E) with mean and SD. Statistics: (B–
E) two‐way ANOVA (interaction species/AAV: p < 0.001; Species: p < 0.0001; AAV: p < 0.0001), Tukey's multiple comparisons test; (F) Ordinary one‐
way ANOVA (p < 0.0001), Tukey’s multiple comparisons test; For a clear overview, only the following statistical (non)significances are depicted: (C–E)
AAV2 human andmurine hepatocytes vs. the equivalent hepatocyte population of MLIV.K andMLIV.A; AAV8 human hepatocytes vs. MLIV.K andMLIV.
A human hepatocytes; human vs. murine hepatocytes within each group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 (see Supporting
Information S6 for complete post‐hoc p‐value reports of 6C–F). eGFP, enhanced green fluorescent protein; RI, replacement index
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MLIV.K and MLIV.A efficiently transduce
human hepatocytes in xenograft mice

MLIV.K and MLIV.A efficiently transduced PMH and
PHH in cell culture (Figure 2). To investigate this
feature in vivo, we assayed our capsid variants as
barcoded enhanced green fluorescent protein–
expressing vectors in humanized FRG (hFRG) mice.
In line with the previous in vivo results (Figures 2 and
5), immunofluorescent imaging revealed enhanced
transduction of the murine hepatocyte (MH)
population by the variants compared with AAV2 as
well as strongly improved transduction of the human
hepatocyte (HH) population, in particular for MLIV.A
(Figure 6A).

Next, vector preparations (n = 8 barcoded genomes/
capsid = input DNA) were pooled to an equimolar mix of
each capsid type for a direct comparison. Although
delivering comparable barcoded vector DNA levels to
the HH (Figure 6B), the highest overall expression
(detected as complementary DNA [cDNA] reads) was
mediated by our variants (Figure 6B,D). Compared with
AAV2, significantly more MLIV cDNA/input DNA BC
reads were found in HH (6‐ to 9‐fold) and MH (7‐ to 11‐
fold) (Figure 6B,D). In detail, MLIV.K and MLIV.A BCs
were found in 30% and 45% of cDNA reads of HH,
respectively, and in 35% and 23% of MH cDNA reads,
respectively, as compared with AAV8 (19% [HH] and
39% [MH]) and AAV2 (5% [HH] and 3% [MH]). Both
capsid variants also showed a superior expression
index in human and murine hepatocytes (both 9‐fold)
compared with AAV2 (Figure 6E). Furthermore, AAV8
was significantly less efficient at transgene expression
in the HH compared with the MLIV variants (overall
expression: up to 2.3‐fold lower; expression index: up to
1.6‐fold lower, Figure 6D,E).

Next, we compared our variants with AAV3.B and
capsid variants, all known for their preference for HH.
The latter are LK03,[12] NP59,[13] and SYD12,[14]

derived from high‐throughput selection screens of
capsid shuffled libraries. As described before, hFRG
mice were injected by a BC vector pool including
AAV8 as control based on its MH tropism. HH were
isolated by FACS and analyzed for DNA and cDNA BC
reads by NGS (Figure 6F). Interestingly, although our
capsid variants show HH and MH tropism in hFRG
mice (Figure 6D,E)—a challenge when compared with
variants with a clear preference for HH—they showed
solely a 1.5‐fold (MLIV.K) and 1.9‐fold (MLIV.A) lower
average HH transgene expression (cDNA/input DNA)
than the most efficient capsid SYD12. In addition, both
variants showed comparable transduction efficiency to
LK03 and its closest relative, AAV3.B (Figure 6F).
These results were substantiated on protein level in
PHH, in which AAV3.B was even outperformed by
MLIV.K and MLIV.A (2.8‐ and 2.5‐fold respectively,
n = 1, Figure S7).

DISCUSSION

AAV vectors have proven their potential as in vivo gene
delivery tools, especially in liver‐directed clinical trials.
Nevertheless, there is ample room for improvement.
Consequently, research focuses on improving vector
efficacy to lower doses in clinical applications and on
reducing sensitivity toward preexisting anti‐AAV neu-
tralizing antibodies. Regarding translatability, next‐gen-
eration vectors ought to show a comparable tropism
across species, a caveat of natural serotypes. Here, we
report on MLIV.K and MLIV.A, derived from an AAV2
peptide display library screen in mice, which possess all
of these properties.

The MLIV capsid variants clearly differ from AAV2
and AAV8 because they transduce both primary human
and murine hepatocytes in vitro and in vivo with high
efficiency (Figures 2 and 6). Regarding the latter,
barcoded MLIVs were applied to hFRG mice,
revealing not only efficient liver transduction but also
superiority to AAV2 or AAV8 in transducing HH in vivo
(Figure 6). The observation of enhanced ratios of
transcript reads (cDNA) to vector genome reads
(DNA) in human and murine hepatocytes, indicates
that our capsid variants are processed differently in both
species (9‐fold higher than AAV2, Figure 6E). The
improved liver transduction compared with AAV2 is
accompanied by detargeting from common off‐target
tissues contributing to vector safety (Figures 2B–D and
S2). Vector efficacy is further highlighted by results from
our murine HB mouse model (Figure 5), in which a
relatively low dose (~2.5 × 1012 vg/kg body weight [BW])
mediated the rescue of a minimum of 300% of regular
FIX activity.

The success of directed evolution approaches is
based on the possibility of screening large AAV capsid
libraries for variants that efficiently transduce the
respective target cells. With the exception of our MLIV
variant screen and a single further study, which was
reported while preparing the revision of this
manuscript,[41] to the best of our knowledge, only
shuffled capsid libraries have been explored by in vivo
screens for liver‐directed gene therapy so far. The first
and so far most promising capsid shuffled variant
selected for liver‐directed gene therapy is LK03.[12]

LK03, which has close homology to AAV3.B, was
selected in hFRG mice and transduces HH with
remarkable efficiency. More recent examples of shuffled
capsid variants that clearly outperform natural AAV
serotypes are NP40, NP59,[13] and SYD12.[14] Instead
of combining natural AAV capsid sequence motifs or
domains, AAV peptide display libraries explore the
inherent features of a single AAV capsid backbone and
genetically inserted random peptide sequences that
affect capsid properties. These are exemplified by
changes in thermal stability (Figure S4), which correlate
with uncoating efficiency,[10] a rate‐limiting step in
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transduction,[9,10] and by changes in the host interaction
both at the pre‐ and post‐entry level (Figures S3 and 3).

Our study explores an in vivo AAV peptide display
library for variants with improved hepatocyte tropism in
an adenovirus‐free selection approach in immunocom-
petent mouse models, whereas other studies have
either selected in vitro[42] or, most recently, in hFGR
mice.[41] As an alternative strategy to adding peptide
insertions with random sequences, Havlik and col-
leagues permutated capsid loop structures.[43] This
strategy—applied as in vitro screen on a hepatocyte
cell line—led to the identification of hum.AAV8.
Because the latter so far was investigated with a
notably higher dose (5 × 1013 vg/kg BW), it is not
possible to compare results reported for hum.AAV8 with
our MLIV variants. However, for the promising capsid
shuffled variants LK03,[12] NP59,[13] and SYD12[14] as
well as HH tropic AAV3.B, we performed a direct
comparison in hFRG mice (Figure 6F). This comparison
revealed that our variants showed a comparable
average efficiency to AAV3.B and LK03 but failed to
match SYD12, the most efficient variant in mediating
HH transduction, by 1.5 to 1.6‐fold. These results were
surprising as we expected that MLIV.A and MLIV.K
would be “decoyed” by the mouse hepatocyte
population[14] because our variants did not seem to
prefer HH in the simultaneous presence of human and
murine hepatocytes in hFRG mice (Figure 6).

The improved liver transduction efficiencies of
MLIV.A and MLIV.K argued for changes in the host–
vector interaction, which we investigated regarding
their interaction with HSPG, the natural attachment
receptor of AAV2 (Figures 3, 4, S5, and S6). Both
variants showed significantly reduced heparin/HSPG
binding capabilities. MLIV.A and MLIV.K thereby
confirmed the previously published results on AAV2‐
based variants that transduced hepatocytes with
higher efficiency with respect to reduced heparin/
HSPG binding capability compared with AAV2.[24,44]

Furthermore, the sterically impaired heparin binding of
K532 on the MLIV.A capsid resembles the reduced
heparin affinity of the K532E mutants in general[13,45]

and correlates with the enhanced hepatotropism of
K532E mutant NP40.[13] This improved host–vector
interaction that is due to low‐affinity HSPG binding
may lead to advantages in accumulation[46] and
entry,[6] and might facilitates release from the glycan
and thereby likely enhances intracellular vector
processing.[47] These features are combined in MLIV.
A and MLIV.K with peptide insertions directing our
variants toward an entry receptor, as shown for other
peptide display selected variants,[16,48,49] which distin-
guishes our variants from shuffled or point‐mutated
variants. Although the receptor identity remains to be
elucidated, the receptor interaction enables MLIV.K
and MLIV.A to transduce hepatocytes of different
species.

Besides high vector doses and off‐target trans-
duction, preexisting antibodies in the human popula-
tion, particularly against AAV2, are acknowledged as a
challenge for the AAV vector system. Corresponding
to the peptide insertion site (C‐terminal of N587), we
expect differences in response to sera with anti‐AAV2
neutralizing antibodies (NAbs) that recognize epitopes
at the threefold symmetry axis of the capsid ‐ the
capsid area we modified.[39,50] Nevertheless, this can
be sufficient to enable transduction at a serum
concentration, which neutralizes the parental
serotype.[39,50] For MLIV.A and MLIV.K, we observed
that the peptide insertion moderately impacted the
sensitivity to human sera, which nevertheless may
already be sufficient to make a difference for individual
patients. In order to improve the immune escape
phenotype, the MLIV peptide insertions might be
explored in the context of serotypes with lower
seroprevalence than AAV2, e.g., AAV5. Alternatively,
as NAb epitopes for AAV2 have been identified and
mapped,[51] the capsid of MLIV.A and MLIV.K could
also be subjected to further genetic modifications
focusing on those epitopes while maintaining the
improved hepatotropism.

In summary, we report on two AAV2‐based liver‐
directed capsid peptide insertion variants, which show
promise for overcoming cross‐species barriers. More-
over, because of favorable hepatotropism and improved
transduction efficiencies, these human‐serotype–based
variants may represent a valuable advance in the field
of liver‐directed gene therapy.
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