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Abstract: Curved continuous girder bridges (CCGBs) have been widely adopted in the civil
engineering field in recent decades for complex interchanges and city viaducts. Unfortunately,
compared to straight bridges, this type of bridge with horizontal curvature is relatively vulnerable
to earthquakes characterized by large energy and short duration. Seismic damage can degrade
the performance of CCGBs, threatening their normal operation and even resulting in collapse.
Detection of seismic damage in CCGBs is thus significantly important but is still not well resolved.
To this end, a new method based on wavelet packet singular entropy (WPSE) is proposed to
identify seismic damage by analyzing the dynamic responses of CCGBs to seismic excitation.
This WPSE-based approach features characterizing damage using synergistic advantage of the
wavelet packet transform, singular value decomposition, and information entropy. To testify the
algorithm, a finite element model of a typical CCGB with two types of seismic damage is built,
in which the seismic damage is individually modeled by stiffness reductions at the bottom of piers
and at pier-girder connections. The displacement responses of the model to El Centro seismic
excitation is used to identify the damage. The results show that damage indices in the WPSE-based
approach can correctly locate the seismic damage in CCGBs. Furthermore, the WPSE-based method
is competent to identify damage with higher accuracy in comparison with the wavelet packet energy
based method, and has a strong immunity to noise revealed by robustness analysis. An array of
responses used in this approach paves the way of developing practical technologies for detecting
seismic damage using advanced distributed sensing techniques, typically the optical sensors.

Keywords: wavelet packet singular entropy; structural health monitoring; seismic damage;
damage identification; dynamic response; curved continuous girder bridge; seismic excitation

1. Introduction

Curved continuous girder bridges (CCGBs) are key components of urban traffic, extensively used
as complex interchanges and city viaducts in civil infrastructure [1,2], due to their improved structural
performance including strong ductility and energy consumption capability under earthquakes and
strong dynamic excitations. To ensure their safety in service, a number of analytical and experimental
studies of the complex static and dynamic behavior of CCGBs [3–6] have been performed. In particular,
Rodgers et al. [7] reported that the structural responses of CCGBs are more complex than expected,
due to their highly symmetrical geometry with significant torsion during strong shaking at the top of
concrete piers.
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In recent years, the health assessment of CCGBs after earthquake has attracted much attention
in the interest of ensuring safe operation. The visual inspection for local and visible flaw [8–10] is an
extensively adopted method for condition assessment of CCGBs after earthquake; nevertheless, such a
method works with strongly dependent on subjective judgment and lacking the capability of
evaluating the strength and/or deformation capacity reserve of a bridge. In recent decades,
structural health monitoring (SHM) has become an innovative way of inspecting structural damage
in a rapid, remote, automated, and objective fashion, especially with the rapid development of
advanced sensing technologies, such as distributed optical fiber sensors [11,12]. However, there is
as yet a lack of advanced damage identification methods matched with such advanced sensing
technologies. Existing SHM based damage detection methods employ dynamic characteristics such as
natural frequencies [13–17], mode shapes [18–21], modal curvatures [22–25], and wavelet transform
coefficients [26–28], to establish damage features. Among those methods, wavelet transform based
diagnosis of damage has been adopted extensively with advantages in the time-frequency and
multi-resolution analysis of measured dynamic responses of structures.

Representative studies of wavelet transform based damage identification of bridge structures
subjected to seismic excitations are described as follows. Wang and Chan [29] reported that wavelet
coefficients showed more sensitivity than the original signals to local changes in structural properties.
Cruz and Salgado [30] compared six damage detection methods based on vibration monitoring in two
case studies of bridges. They concluded that wavelet transform based methods could identify damage
location successfully, with the wavelet packet signature producing the best performance for noisy
data and non-extensive damage. Todorovska and Trifunac [31] utilized the highest resolution detailed
sub-band from multiresolution analysis with expansion on the basis of bi-orthogonal wavelets to detect
novelties in recorded seismic responses. They concluded that the method could identify the time of
occurrence and roughly the spatial distribution and degree of the major damage in the imperial county
services (ICS) building. Vafaei and Adnan [32] investigated the applicability of the continuous wavelet
transform (CWT) and discrete wavelet transform (DWT) to seismic damage detection of tall airport
traffic control towers, numerically proving that CWT could successfully detect seismic damage even
with noise-polluted signals. Aguirre et al. [33] explored the feasibility of using output-only model-free
wavelet-based techniques for damage detection in reinforced concrete structures subjected to seismic
excitations. They numerically and experimentally revealed that wavelet analysis methods were
capable of identifying rebar fracture episodes and partially detecting frequency shifts in structures as
the inelastic demand increased. Bagheri and Kourehli [34] proposed a DWT-based damage diagnosis
method for structures under seismic excitation, with the effectiveness numerically demonstrated
by analysis of a concrete shear wall and the first phase of an IASC-ASCE benchmark structure.
Balafas and Kiremidjian [35] studied several data-driven damage sensitive features based on the CWT
of both input acceleration signal and output acceleration response. Kaloop et al. [36] applied wavelet
analysis methods when investigating the performance of an administration building during earthquake
shaking. They indicated that the wavelet spectrum could illustrate the dominant frequency and
reveal the elasticity responses of the structure during such shaking. Furthermore, Kaloop and Hu [37]
adopted the energy of wavelet transform and correlation coefficients to detect the performance of a
damaged building, with the feasibility numerically verified by regular and irregular simulation models
manifesting that the energy of DWT showed significantly superior performance to that of CWT in
detecting damage to the building.

Apart from wavelet transform coefficients, various methods based on wavelet entropy,
wavelet packet energy entropy, and wavelet singular entropy have been developed to identify damage
in bridges in recent years. Ren and Sun [38] provided wavelet entropy based features by combining
the wavelet transform and the Shannon entropy, including wavelet entropy, relative wavelet entropy,
and wavelet-time entropy. Their numerical and experimental cases showed that wavelet entropy
based methods were effective to detect and locate structural damage. Diao et al. [39] proposed
an entropy based two-step method for identifying damage in an offshore platform under seismic
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excitation. They argued from numerical and experimental cases that the entropy based two-step
methodology could provide satisfactory damage identification results. Lee et al. [40] proposed a
continuous relative wavelet entropy based reference-free damage detection algorithm for truss bridge
structures. They emphasized that the method was sensitive to slight damage and suitable for highly
nonlinear and nonstationary random response data due to the multiresolution signal analysis feature
of CWT. He et al. [41] presented a wavelet packet energy entropy based method for structural damage
identification using impulse responses. They experimentally revealed that the proposed wavelet packet
energy entropy based method was capable of identifying single and multiple damage in pile structures.
Li et al. [42] proposed a wavelet singular spectrum entropy to evaluate the damage condition of
building structures, with the applicability of the proposed method numerically and experimentally
verified by the damage analysis of a timber structure. In summary, the entropy based method has
advantages in improving the accuracy of damage identification and shows significant applicability to
damage detection in bridges, especially in curved bridges.

Most extant methods have been focused on detecting damage in straight bridges subjected
to seismic excitation, with emphasis on revealing abnormality of wavelet coefficients of dynamic
responses to characterize damage. However, CCGBs are more complex than straight bridges,
because the horizontal curvature makes curved bridges more vulnerable to extensive damage and
possible collapse. There are few dedicated methods for detecting seismic damage for CCGBs,
especially fairly lacking effective methods that match the advanced distributed optical measurement.

To this end, this study develops a method for health assessment and damage identification in
CCGBs. A new wavelet packet entropy based method is proposed to identify seismic damage by
analyzing the dynamic responses of CCGBs subject to seismic excitation. This method is employed
to identify two types of seismic damage in CCGBs, located at the bottom of piers and at pier-girder
connections, respectively. Damage identification in numerical CCGB model subjected to El Centro
seismic excitation shows the superiority of the proposed method in damage identification accuracy
and noise immunity. The proposed method is expected to provide an effective and applicable
tool for damage identification using dynamic responses recorded by advanced sensing techniques,
especially by distributed optical fiber sensors.

The rest of the paper is organized as follows. The fundamentals of wavelet packet, singular value
decomposition, and information theory are introduced in Section 2. A wavelet packet entropy based
algorithm for damage identification is presented in Section 3. The damage model of the CCGB is
fabricated in Section 4. Identification of damage in the CCGB is presented in Section 5, and discussion
of influential factors on algorithm effectiveness is presented in Section 6.

2. Fundamentals

This section introduces the fundamentals of the wavelet packet transform (WPT), singular value
decomposition (SVD), and information entropy (IE).

2.1. Wavelet Packet Transform (WPT)

The WPT is defined by the following recursive relationships [43]:
u(j)

2n (t) =
√

2 ∑
k

h(k)u(j)
n (2t− k)

; n, k = 0, 1, 2, · · · ,

u(j)
2n+1(t) =

√
2 ∑

k
g(k)u(j)

n (2t− k)
(1)

where j, k, and n are the decomposition level, translation factor, and modulation parameter, respectively.
The terms h(k) and g(k), satisfying g(k) = (−1)kh(1− k), are quadrature mirror filters associated with
the scaling function and the mother wavelet function. The scaling function is u(0)

0 (t) = φ(t), and the

mother wavelet function is u(0)
1 (t) = ψ(t).
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The WPT contains complete decomposition at each level to achieve a higher resolution in the high
frequency region at the next level. The recursive processes between the jth and the (j + 1)th level of
WPT are: 

f i
j (t) = f 2i−1

j+1 (t) + f 2i
j+1(t)

f 2i−1
j+1 (t) = H f i

j (t) ,

f 2i
j+1(t) = G f i

j (t)

(2)

where H and G are filtering-decimation operators, that represent the low-pass filter and the high-pass
filter, respectively. They can be obtained from the discrete filters h(k) and g(k) through:

H {·} =
∞

∑
k=−∞

h(k− 2t)
.

G {·} =
∞

∑
k=−∞

g(k− 2t)
(3)

After being decomposed j times, the sum of WPT sub-bands can represent the original signal
f (t) as

f (t) =
2j

∑
i=1

f i
j (t). (4)

The WPT sub-band f i
j (t) can be derived by the linear superposition of wavelet packet functions

ψi
j,k(t) as

f i
j,k(t) =

∞

∑
k=−∞

ci
j,kψi

j,k(t), (5)

where ci
j,k is the coefficient of sub-band i at decomposition level j and can be calculated from:

ci
j,k =

∫ ∞

−∞
f (t)ψi

j,k(t)dt. (6)

All coefficients at the jth level construct a matrix C, containing the hidden intrinsic information in
both low and high frequency regions, especially the higher resolution in high frequency regions.

2.2. Singular Value Decomposition (SVD)

According to the theorem of the SVD, a matrix A with the size m× n can be decomposed as

Am×n = Um×mΛm×nV T
n×n, (7)

where U and V are unitary matrices and their columns are orthonormal bases satisfying UUT = I
and VV T = I; Λ is a diagonal matrix with non-negative diagonal elements λi sorted in descending
order, that is, λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. These diagonal elements are called the singular values of the
matrix A.

By selecting the dominant singular values, a large matrix can be represented by a smaller one
without losing its major characteristic. This feature provides the theoretical basis for the broad
applications of SVD [44–47].

2.3. Information Entropy (IE)

Information entropy is a measure of uncertainty. Suppose pi is the probability of output i and N
is the total number of all probable outputs, then the information entropy of this type of source can be
defined by the following Shannon’s formulation:
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H = −
N

∑
i=1

pilog10 pi. (8)

Shannon’s entropy defined by Equation (8) is efficient in quantifying the uncertainty and
complexity of a source. The higher the H, the more complex is the system. It has been adopted
in recent decades as a feature extraction tool in SHM [48,49].

3. Algorithm for Damage Identification

3.1. Damage Indices

For a measured vibration signal, x = {x(t)} |t=1,2,··· ,N , together with the application of WPT in
Equation (6), a coefficient matrix at the jth decomposition level, Dj

m×n, can then be obtained as

Dj
m×n =

[
c1

j , c2
j , · · · , cn

j

]
, (9)

where ci
j is the coefficient vector of the ith sub-band at the jth decomposition level; m is the row number

representing the length of wavelet packet sub-bands; n = 2j is the column number representing the
total number of wavelet packet sub-bands. For convenience, Dj

m×n is hereinafter denoted as D.
Singular value decomposition can be applied to a coefficient matrix according to Equation (7):

D = UΛV T . (10)

Then, following Equation (8), the wavelet packet singular entropy of signal x is defined as

WPSE = −
q

∑
i=1

pilog10 pi, (11)

where
pi =

λi

∑
q
i=1 λl

; (12)

λi and λl are the diagonal elements of matrix Λ; q is number of selected singular value orders.
Wavelet packet singular entropy takes synergistic advantage of WPT, SVD, and IE, with the

characteristics manifested in the following aspects: (1) WPSE retains the high time frequency
multiresolution characteristics of WPT, permitting highlighting and characterization the intrinsic
peculiarity of damage in the full frequency band; (2) WPSE retains the feature space mapping
characteristics of SVD, enabling quantificational extraction the linear independent features
from the wavelet space; (3) WPSE retains the system complexity metric characteristics of IE,
facilitating characterization of the information feature. In summary, WPSE can highlight, extract,
and quantificationally characterize the information characteristics, allowing it to be used as a
characteristic factor for damage identification.

A WPSE-based damage index is defined as

DIWPSE =
|WPSEd −WPSEh|

WPSEh , (13)

where superscripts “h” and “d” denote healthy and damaged status, respectively. DIWPSE represents
the relative difference ratio between the two statuses, quantificationally formulating the occurrence of
damage. Because WPSE is positive according to Equations (11) and (12), the value of DIWPSE tends
to be zero if the structure is in a healthy status. If the structure is in a damaged status, the value of
DIWPSE at a damage location increases to be a positive number of greater magnitude than those in its
neighborhood. Thus, DIWPSE can be used to identify and locate structural damage.
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To demonstrate the damage location more clearly, a threshold value is established with the
application of the one-sided confidence limit of DIWPSE from successive measurements [38]:

DITH
WPSE = µ + Zα

(
σ√
n

)
, (14)

where n is the total number of sensors distributed in a structure; µ and σ are the mean value and the
standard deviation of the n damage indices; Zα is the value of a standard normal distribution such
that the cumulative probability is 100(1− α)%, and α represents the significance level. DITH

WPSE can
be considered as a threshold value that is an entrance point to possible abnormality in the damage
feature. From a statistical point of view, the location of sensors whose DIWPSE values exceed the
DITH

WPSE implies an area where possible damage exists.
Further, the damage pre-warning index (DPWI) is defined as

DPWI = DIWPSE − DITH
WPSE. (15)

The index DPWI specifies the differences between damage indices DIWPSE and their thresholds
DITH

WPSE. Thus, the sign of DPWI indicates the structural status: a negative sign implies that the
structure is healthy and there is no damage, whereas a positive sign indicates that the structure
is unhealthy at the corresponding measured point where the damage is located. This kind of
damage criterion is convenient for use in practical engineering. It is still recommended, however,
to pre-set a positive DPWI as a warning value to reduce false alarms caused by measurement error,
environmental noise, or other interferences.

3.2. Procedure of Damage Identification

The basic procedures of the WPSE-based methodology for damage identification of CCGBs
subjected to seismic excitation are as follows:

Step 1: Measure the dynamic responses of the investigated CCGB subject to an earthquake excitation,
along with consideration of the least favorable input angle and specific sensor arrangement.

Step 2: Calculate the value of damage index DPWI after completion of the following
preparatory work:

(a) determine the appropriate effective structural dynamic responses from measuring
various types of responses in different directions;

(b) select the optimal wavelet parameters used in WPT, including wavelet basic function
and decomposition level;

(c) choose the dominant order of singular values in calculating WPSE to eliminate the
influence of noise.

Step 3: Identify damage in CCGBs with the constructed warning curve according to DPWIs.

These procedures are illustrated in Figure 1. Verification and detailed discussion of the proposed
methodology are presented in the following sections.
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Figure 1. Roadmap of WPSE-based damage identification method for CCGBs.

4. Damage Model of CCGB

The damage model of a real investigated CCGB is elaborated in this section. Two typical damage
types are considered, with damage individually located at the bottom of piers and at pier-girder
connections. Sixteen damage scenarios are configured. The El Centro seismic excitation is applied
to generate the displacement dynamic responses, which are measured by sensors arranged on the
curved bridge.

4.1. Finite Element Model

The geometry of the CCGB, including the plane, elevation, and cross sections, is illustrated in
Figure 2. The finite element (FE) model of the bridge is built with 8-node 3D solid elements using the
commercial software ANSYS, as presented in Figure 3. The model refers to the upper part of the ground
with the boundary conditions of the fixed bottom end of the pier adopted. The material parameters for
the FE model follow that the bridge deck is made of C50 concrete (elastic modulus E1 = 3.45× 104 MPa,
Poisson’s ratio ν = 0.2, and density ρ = 2500 kg/m3) and the other components are C40 concrete
(elastic modulus E2 = 3.25× 104 MPa, Poisson’s ratio ν = 0.2, and density ρ = 2500 kg/m3).

Figure 2. Geometry of the CCGB: (a) plane view; (b) elevation view; (c) cross-sections of piers and
curved girder; unit: m.
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Figure 3. FE model of the investigated CCGB with zoomed-in Damage I and II (E3, E4 < E2).

4.2. Seismic Damage Scenarios

Two typical damage instances, Damage I at the bottom of a pier and Damage II at a pier-girder
connection, are introduced into the FE model to create damage cases. The damage is modeled
by reducing the stiffness of relevant elements in damage areas, as shown in Figure 3. In fact, it is
acknowledged that Damage I and II usually do not occur simultaneously for the same pier, as evidenced
by many examples of bridge failure in practical engineering [50]. Thus, only a single damage scenario
is considered in this study. Table 1 presents a set of sixteen damage scenarios, specified by individually
reducing stiffness from 5% to 35% by steps of 5% to form Damage I and Damage II. For completeness,
a fairly small reduction of stiffness, 0.01%, is considered for Damage I and Damage II simultaneously,
with the purpose of modeling initial structural damage during manufacturing or concreting.

Table 1. Seismic damage scenarios for the CCGB.

No. Damage Type Damage Severity

I II 0% 0.01% 5% 10% 15% 20% 25% 30% 35%

1 ?
2 ? ? ?
3 ? ?
4 ? ?
5 ? ?
6 ? ?
7 ? ?
8 ? ?
9 ? ?

10 ? ?
11 ? ?
12 ? ?
13 ? ?
14 ? ?
15 ? ?
16 ? ?

’?’ represents the damage type and severity for each corresponding damage scenario.
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4.3. Seismic Excitation

The El Centro earthquake record from the El Centro Earthquake webpage [51] is adopted to excite
the CCGB, which is considered as an inertial force. The acceleration wave is shown in Figure 4a. As an
inertial force, the input angle of the wave has a significant impact on the maximum seismic response
of the bridge. Empirically, the input angle, represented by θ in Figure 4b, is set as θ = 45◦.

Figure 4. El Centro earthquake: (a) acceleration wave; (b) input angle.

4.4. Sensor Arrangement

The sensor arrangement is illustrated in Figure 5. Both x- and y-direction displacements of each
pier are recorded by specific sensors, marked as Sx and Sy in Figure 5a. These sensors are numbered
from 1 + 31(n− 1) to 31n from bottom to top of piers, where n represents the pier ID in Figure 5a
and 31 is the number of sensors on each pier, as illustrated in detail in Figure 5b. Herein, damage is
introduced into pier 3#, measured by sensors 64–66 for Damage I and sensors 92–93 for Damage II.

Figure 5. Sensor arrangement on CCGB piers: (a) pier number and sensor position; (b) vertical
distribution of sensors.
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Figure 6 shows the displacement contour of the CCGB subjected to El Centro seismic excitation.
The global trends of the displacement contours at different times are similar. The displacement
responses at the top of pier 3# are presented in Figure 7. Figure 7a,b are the displacement responses in
the x- and y-directions, represented by Ux and Uy, manifesting that the overall trends are basically
similar in the time domain, but with evident differences in magnitude. Figure 7c shows the Ux and Uy

in the frequency domain. The dominant frequency of both Ux and Uy is 2.2 Hz according to Figure 7c.

Figure 6. Displacement contour of the CCGB.

Figure 7. Displacement responses of the CCGB: (a,b) Ux and Uy in time domain; (c) Ux and Uy in
frequency domain.

5. Identification of Damage in CCGB

The WPSE-based damage identification method is utilized to identify Damage I and II in the
CCGB described in Section 4, following the procedures presented in Figure 1.
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5.1. Effective Seismic Responses

Structural damage identification is a typical inverse problem, with structural dynamic response
as the object of analysis. There are many kinds of measurement data in practical engineering, such as
acceleration, velocity and displacement. It is important to select an appropriate response type that
is effective and sensitive to damage. In this study, Ux and Uy, are obtained by applying the sensor
arrangement as shown in Figure 5. When subjected to El Centro seismic excitation, Ux and Uy of pier
3# for Damage I are shown in Figure 7. It is clear that there is no significant difference between Ux and
Uy in either time or frequency domains.

The damage index DPWI, defined by Equation (15), is calculated using Ux and Uy, with the
results presented in Figure 8. As shown in both Figure 8a,b, the DPWI values are relatively large near
the measurement points 64–66, indicating that damage may occur near this area. However, the DPWI
curve in Figure 8a is smoother than that in Figure 8b, which fluctuates more due to the boundary
effect. Therefore, Ux is more suitable for damage identification and localization, and is adopted in the
subsequent analysis in this study.

Figure 8. Comparison of DPWIs individually from Ux and Uy: (a) Ux; (b) Uy.

5.2. Optimal Wavelet Packet Parameters

The wavelet basis function and the decomposition scale are the most common wavelet
parameters, both having important influences on the wavelet analysis results. The essence of
wavelet analysis is to project the signal to a wavelet basis function, and the wavelet coefficients
obtained characterize the dynamic features of the original signal. If the wavelet basis function is not
properly selected, the unsuitable wavelet coefficients obtained reduce the accuracy of wavelet analysis.
Simultaneously, the larger the decomposition scale, the higher the time frequency resolution of the
signal, contributing to higher accuracy of the wavelet analysis. Nevertheless, this maneuver also
increases the amount of calculation, resulting in information redundancy and a decrease in wavelet
analysis efficiency. Therefore, the choice of optimal wavelet parameters is constantly an important
topic in the field of wavelet analysis [52].
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Currently, no uniform standard exists to determine optimum wavelet parameters. The Shannon
entropy based cost function method is an effective method for determining the wavelet basis function.
In this calculation, a Shannon entropy based cost function [53] is defined as

M (s) = −
2j−1

∑
k=0

pklog10 pk, (16)

where pk = Ek
j (s)/ ∑2j−1

k=0 Ek
j (s) is the energy probability distribution of the wavelet coefficients,

and Ek
j (s) is the energy of the kth packet node at the jth decomposition level of signal s. For a given

signal, the wavelet basis function corresponding to the lowest cost function value M is regarded as the
optimal wavelet base. The decomposition scale can be considered comprehensively based on the cost
function value and the calculation efficiency.

In this study, twelve candidate wavelet basis functions, identified as db2, db4, db10, db15, sym2,
sym4, sym6, sym8, rbio3.5, rbio3.9, rbio4.4, and rbio6.8, and five candidate optimal decomposition
scales ranging from 3 to 7 are considered. The displacement response of the CCGB excited by El
Centro seismic wave is taken as the analysis object. The values of cost function M are calculated
using Equation (16), with the results presented in Figure 9. In accordance with Figure 9, rbio6.8 was
determined to be the most appropriate basis for this case study because its M values of are relatively
small within the global trend. There are no specific approaches for selecting the optimal decomposition
scale. With synthetic consideration of the efficiency and accuracy of wavelet analysis, together with
the ’trial-and-error’ method, level 6 was selected as the optimal decomposition scale in this study.
Thus rbio6.8 and level 6 are used in the following analysis.

Figure 9. Value curves of the cost function M vs wavelet basis functions and decomposition scales.

5.3. Effectiveness

As discussed in Section 3, the WPSE-based damage index DPWI can be used to characterize
structural status, with the negative sign implying a healthy status and the positive sign implying an
unhealthy status. Figure 10 shows the identification results for different damage levels using the DPWI.
For the identification of Damage I as presented in Figure 10a, the DPWI only has an extreme value near
the damage location, consistent with the damage criterion of DPWI > 0. However, for identification
of Damage II as presented in Figure 10b, there is a wide range of positive DPWI near the damage
location, and values of the DPWI become negative with a significant decline within the damage
area. Therefore, the DPWI has certain damage recognition and localization capability for Damage I,
but seems inappropriate for Damage II.
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Figure 10. Damage identification results using DPWI: (a) Damage I; (b) Damage II.

To make it applicable for identifying Damage II, the DPWI is modified following the curve feature
presented in Figure 10b. According to the DPWI curve, significant decline occurs within the damage
area only, and the curve integrity is well maintained in the area without damage. Thus, a modified
index is constructed by adopting the second-order position derivative of DPWI:

SDPWIi = DPWIi+2 − 2DPWIi+1 + DPWIi, (17)

where i represents the position or number of the measuring point. The index SDPWI has the
characteristics of removing the overall trend, highlighting the magnitude and maintaining the position
information of any abrupt change.

Identification results of Damage II using the SDPWI are shown in Figure 11. The overall trend in
Figure 10b has been successfully removed, and SDPWI has a maximum value within the damage area
only. Therefore, the SDPWI is capable of identifying Damage II and has a high accuracy in localization
of damage.

Figure 11. Damage identification results using SDPWI for Damage II.
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It must be noted that, although the SDPWI has advantages in identifying Damage II, it has the
disadvantage of low noise immunity. This is because of performing the second order derivation,
with the additional introduction of computational noise amplifying the noise influence. The noise
immunity of the DPWI and SDPWI is discussed in detail in the next section.

On the basis of the DPWI and SDPWI, an early warning of damage can be triggered when the
value of DPWI or SDPWI reaches the threshold of damage. The thresholds for the DPWI or SDPWI
are set up independently. Here, the thresholds are taken as 0.8 DPWI, 6.2× 10−3, and 0.8 SDPWI,
7.343× 10−5, to warn of 5% seismic damage for Damage I at the bottom of piers and Damage II at
pier-girder connections, respectively.

Specifically, those thresholds of the DPWI and SDPWI for damage warning are applied to seismic
responses from six piers to identify damage at different piers. The identification results for Damage
I and II are presented in Figures 12 and 13, respectively, in which the normalized threshold level is
marked with a black dotted line. In Figure 12, only the DPWI at the fixed end of pier 3# exceeds the
threshold warning value, distinctly indicating the location of seismic damage. In Figure 13, the SDPWI
exceeds the warning values not only in pier 3# but also in pier 4#, implying that pier 4# might also be
damaged, which is inconsistent with the known seismic damage situation. This effect can be attributed
to the symmetry of pier 3# and 4# along the curved structure, as illustrated in Figure 5.

Figure 12. Identification results of Damage I for all six piers using warning values.

Figure 13. Identification results of Damage II for all six piers using warning values.
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6. Discussions

6.1. Comparison with Wavelet Packet Energy-Based Method

For a performance illustration, the proposed DPWI is compared to the wavelet packet energy
(WPE) method [54] involving the damage index of WPE (DIWPE):

DIWPE =

√√√√∑2N
i=1
(
ed

i − eh
i
)2

∑2N
i=1
(
eh

i
)2 , (18)

where eh
i and ed

i denote the energy level corresponding to healthy and damaged status, respectively.
Figure 14 presents the damage identification results using the DIWPE index. It is clear that Damage

I is recognized correctly in Figure 14a, like the results shown in Figure 10a based on the DPWI index.
However, following the damage criteria of DIWPE>0, Damage II is not characterized accurately by the
energy-based index DIWPE, as shown in Figure 14b, which can be identified exactly with the SDPWI
index as presented in Figure 11.

Figure 14. Damage identification results of the CCGB using WPE-based index DI: (a) Damage I;
(b) Damage II.

The identification results for all piers using DIWPE for Damage I and II are shown in Figures 15 and 16,
respectively. It is clear that the WPE-based method is not as effective as the method based on WPSE,
because redundant peaks occur in areas without damage or on healthy piers. Moreover, the boundary
condition effect seems to be more obvious in the WPE-based method, in which the values of DIWPE
near the boundaries are much greater than those in other areas. These findings provide evidence that
the WPSE-based method provides a better result for evaluation of the condition of CCGBs.
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Figure 15. Identification results for Damage I using WPE-based method for all six piers.

Figure 16. Identification results for Damage II using WPE-based method for all six piers.

6.2. Effect of Seismic Excitation

The effect of seismic excitation is investigated to confirm the adaptability of the proposed method.
The strong Whittier Narrows earthquake (Figure 17) is adopted as another seismic excitation for the
FE model of the CCGB. Given the employment of the WPSE-based method, the identification results
for Damages I and II in pier 3# are presented in Figure 18. It is clear that values of both DPWI and
SDPWI designate damage correctly. This finding indicates that seismic excitations have no significant
influence on the results of seismic damage identification.
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Figure 17. Acceleration history of Whittier Narrows earthquake.

Figure 18. Damage identification results of the CCGB under Whittier Narrows earthquake:
(a) Damage I, (b) Damage II.

6.3. Robustness against Noise

In practical applications, measured dynamic responses are inevitably polluted by noise. In the
assessment of any damage identification method, effective identification of damage under noisy
conditions is essential. Here, structural damage identification is undertaken using displacement
responses with Gaussian white noise, and the robustness against noise of the WPSE-based damage
detection method is discussed.

To label the noise level, a signal-to-noise ratio (SNR) definition is presented as

SNR = 20log10

(ASignal

ANoise

)
, (19)

where ASignal and ANoise denote the root-mean-square (RMS) magnitude of the vibration signal and
added noise, respectively. Figure 19 shows the noiseless and noisy signals of Ux with SNR = 60 dB.
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Figure 20 presents the identification results with the application of noisy responses for Damages I
and II. As illustrated in Figure 20, the effectiveness of the structural damage detection method is
diminished because redundant peaks appear in areas with no damage.

Figure 19. Comparison of noiseless and noisy signals of Ux with SNR = 60 dB: (a) noiseless data;
(b) noisy data; (c) differences between noiseless and noisy data.

Figure 20. Damage identification results of the CCGB using noisy responses: (a) Damage I;
(b) Damage II.

SVD is one of the most effective denoising tools. It can basically eliminate random noise and
retain most of the useful information by choosing appropriate orders of singular values. This adaptive
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anti-noise technique can be used to enhance the robustness of WPSE-based indices because the WPSE
inherits the characteristics of SVD, as discussed in Section 3.

Wavelet packet singular values of Ux with SNR = 60 dB are shown in Figure 21. Singular values
of the order greater than 15 tend to be zero, and the predominant singular values are concentrated
within orders 1 to 10. In this study, singular values of the fifth order are adopted in calculating the
WPSE; that is, q equals 5 rather than the total number of singular values in Equations (11) and (12)
when considering the adaptive anti-noise technique. The damage identification results with the SVD
denoising technique for Damages I and II are presented in Figure 22. Compared with the results in
Figure 20, the redundant peaks are eliminated and the damage location can be recognized correctly.
Thus, the robustness of the damage indices DPWI and SDPWI against noise can be significantly
enhanced by use of the adaptive anti-noise technique without additional noise reduction techniques.

Figure 21. Wavelet packet singular values of noisy Ux with SNR=60 dB.

Figure 22. Damage identification results using first 5 singular values: (a) Damage I; (b) Damage II.

Monte Carlo simulations are performed at different SNR levels to determine the maximum noise
immunity and damage identification accuracy of the proposed method in noisy conditions. Two indices,
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the missing report rate (MRR) and the accuracy of damage warning (ADW), are established to
quantitatively represent the accuracy of damage detection. They are calculated in accordance with the
following formulas:

MRR =
∑N

i=1 ni

N
× 100%, (20)

ADW =
∑N

i=1 ci/mi

M
× 100%, (21)

where N is the total number of Monte Carlo simulations; M is the total number of occurrences of
warning during N simulations; mi is the number of early warnings reported in the ith simulation; ni is
the number of missed damage reports in the ith simulation; ci is the number of correct warnings in the
ith simulation.

In Equations (20) and (21), MRR refers to the probability that damage has occurred but is
not detected, and ADW refers to the probability of correctly identifying damage location when an
early warning occurs. At different noise levels, a stronger robustness damage identification method
corresponds to a lower MRR and a higher ADW.

In this study, N = 1000 simulations are performed with SNR ranging from 40 dB to 90 dB for
Damages I and II. The results are listed in Table 2. From Table 2, MRR is generally less than 5%,
indicating the damage is to a great extent detected when it occurs. However, for damage scenario 3,
the failure rate MRR is increased to 15% by SNR = 50 dB, implying that the identification of damage
below 5% will result in a greater error. In terms of ADW, the accuracy of early warning of damage is
generally greater than 90% for SNR = 50 dB, but the accuracy of early warning of damage decreases
quickly to less than 80% for SNR = 40 dB. Therefore, the damage indices DPWI and SDPWI based on
WPSE proposed in this paper are suitable for SNR ≥ 50 dB.

To simplify the application of MRR and ADW, a joint-index MA is defined as

MA = (1−MRR) · ADW. (22)

If we select MA = 0.9 as the accuracy criterion, the results presented in Table 3 demonstrate that
the proposed method can identify damage in the presence of SNR ≥ 50 dB with high precision.

Table 2. Monte Carlo simulation results for different noise levels.

Damage MRR (%) ADW (%)
Scenario SNR (dB) SNR (dB)

No. 40 50 60 70 80 90 40 50 60 70 80 90

3 32.40 15.00 4.80 1.60 0.30 0.20 92.75 98.00 99.26 99.59 99.90 100.00
4 9.80 3.70 1.20 0.40 0.10 0.00 94.90 98.23 99.49 99.60 99.80 100.00
5 6.10 1.80 1.10 0.40 0.00 0.00 95.21 99.39 99.80 99.80 100.00 100.00
6 3.90 1.10 0.70 0.00 0.10 0.00 95.84 99.29 99.50 100.00 100.00 100.00
7 2.10 0.90 0.30 0.00 0.00 0.00 96.53 99.39 99.70 99.80 100.00 100.00
8 1.40 0.50 0.30 0.00 0.00 0.00 96.75 99.30 99.60 99.90 100.00 100.00
9 1.50 0.40 0.10 0.00 0.00 0.00 96.95 98.90 99.50 99.90 100.00 100.00

10 2.90 1.40 0.60 0.20 0.00 0.00 65.81 87.93 95.88 98.40 99.60 99.80
11 0.00 0.00 0.00 0.00 0.00 0.00 74.50 90.70 96.70 98.90 99.90 99.90
12 0.00 0.00 0.00 0.00 0.00 0.00 80.80 93.80 98.10 99.10 99.90 100.00
13 0.00 0.00 0.00 0.00 0.00 0.00 82.10 93.80 98.10 99.40 100.00 99.90
14 0.00 0.00 0.00 0.00 0.00 0.00 82.90 94.10 97.70 99.20 99.90 100.00
15 0.00 0.00 0.00 0.00 0.00 0.00 85.80 94.80 98.00 99.40 99.90 100.00
16 0.00 0.00 0.00 0.00 0.00 0.00 86.10 94.70 98.10 99.40 100.00 100.00
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Table 3. MA values from Monte Carlo simulations for different noise levels.

Damage MA
Scenario SNR (dB)

No. 40 50 60 70 80 90

3 0.627 0.833 0.945 0.980 0.996 0.998
4 0.856 0.946 0.983 0.992 0.997 1.000
5 0.894 0.976 0.987 0.994 1.000 1.000
6 0.921 0.982 0.988 1.000 0.999 1.000
7 0.945 0.985 0.994 0.998 1.000 1.000
8 0.954 0.988 0.993 0.999 1.000 1.000
9 0.955 0.985 0.994 0.999 1.000 1.000

10 0.639 0.867 0.953 0.982 0.996 0.998
11 0.745 0.907 0.967 0.989 0.999 0.999
12 0.808 0.938 0.981 0.991 0.999 1.000
13 0.821 0.938 0.981 0.994 1.000 0.999
14 0.829 0.941 0.977 0.992 0.999 1.000
15 0.858 0.948 0.980 0.994 0.999 1.000
16 0.861 0.947 0.981 0.994 1.000 1.000

7. Conclusions

In this study, two WPSE-based evaluation indices were proposed to identify seismic damage in
CCGBs, by taking synergistic advantage of the wavelet packet transform, singular value decomposition,
and information entropy. The effectiveness of the proposed approach was numerically verified by
a finite element model of a real CCGB subjected to El Centro seismic excitation. Numerical results
showed that the two WPSE-based indices, DPWI and SDPWI, are capable of identifying the existence
of damage and can locate damage at the bottom of piers and at pier-girder connections, respectively.
Moreover, it was demonstrated that the robustness of the proposed indices against noise were enhanced
by application of the adaptive anti-noise technique, specifically by choosing the first 5 singular
values during WPSE analysis. In addition, the Monte Carlo simulation results suggested that the
WPSE-based approach can effectively detect seismic damage in noisy conditions with SNR ≥ 50 dB.
The benefit of the WPSE-based method was further clarified by comparisons with the WPE-based
method. The comparison results showed that the WPSE-based method recognized the location of
damage with higher accuracy. Thus, the proposed WPSE-based approach is reliable and applicable to
seismic damage identification in CCGBs. This WPSE-based approach holds significant promise as a
support to advanced distribution sensing techniques, especially to the distributed optical fiber sensors
used in SHM of critical civil infrastructures.
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