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A B S T R A C T   

The mechanistic target of rapamycin (mTOR) pathway integrates metabolic cues into cell fate decisions. A 
particularly fateful event during the adaptive immune response is the engagement of a T cell receptor by its 
cognate antigen presented by an antigen-presenting cell (APC). Here, the induction of adequate T cell activation 
and lineage specification is critical to mount protective immunity; at the same time, inadequate activation, which 
could lead to autoimmunity, must be avoided. mTOR forms highly conserved protein complexes 1 and 2 that 
shape lineage specification by integrating signals originating from TCR engagement, co-stimulatory or co- 
inhibitory receptors and cytokines and availability of nutrients. If one considers autoimmunity as the result of 
aberrant lineage specification in response to such signals, the importance of this pathway becomes evident; this 
provides the conceptual basis for mTOR inhibition in the treatment of systemic autoimmunity, such as systemic 
lupus erythematosus (SLE). Clinical trials in SLE patients have provided preliminary evidence that mTOR 
blockade by sirolimus (rapamycin) can reverse pro-inflammatory lineage skewing, including the expansion of 
Th17 and double-negative T cells and plasma cells and the contraction of regulatory T cells. Moreover, sirolimus 
has shown promising efficacy in the treatment of refractory idiopathic multicentric Castleman disease, newly 
characterized by systemic autoimmunity due to mTOR overactivation. Alternatively, mTOR blockade enhances 
responsiveness to vaccination and reduces infections by influenza virus in healthy elderly subjects. Such seem-
ingly contradictory findings highlight the importance to further evaluate the clinical effects of mTOR manipu-
lation, including its potential role in treatment of COVID-19 infection. mTOR blockade may extend healthy 
lifespan by abrogating inflammation induced by viral infections and autoimmunity. 

This review provides a mechanistic assessment of mTOR pathway activation in lineage specification within the 
adaptive and innate immune systems and its role in health and autoimmunity. We then discuss some of the recent 
experimental and clinical discoveries implicating mTOR in viral pathogensis and aging.   
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1. Structure and evolution of the mTOR pathway 

mTOR, a serine/threonine kinase [1-3], executes its cell control 
functions by forming at least two complexes — mTOR complex 1 and 2 
[4,5]. Both complexes control specific functions and share mTOR 
‘companion’ proteins but can be distinguished by differential partici-
pation of two scaffolding proteins, Raptor and Rictor (see Fig. 1A); 
additional mTOR complexes (Fig. 1B and C) have been postulated [6,7]. 

1.1. Activated mTORC1 increases protein synthesis and inhibits 
autophagy 

mTORC1 formation requires the participation of the mTORC1 spe-
cific scaffolding protein Raptor [8,9]. mTORC1 activates anabolic 
pathways such as protein synthesis and blocks catabolic pathways such 
as autophagy [10]. mTORC1 substrates that mediate these effects 
include the translational repressors 4E-BP1 [11] and 2 [12] and the 
kinase p70S6K [11]: Phosphorylation of 4E-BP1/2 ‘unleashes’ mRNA 
translation by releasing its inhibition of eiF4E; the phosphorylation of 
p70S6K ultimately activates the ribosomal machinery to increase pro-
tein synthesis. Phosphorylation of ULK1 mediates the inhibition of 
autophagy by activated mTORC1 [13]. 

1.2. mTORC2 can enhance mTORC1 activation by phosphorylating Akt 

The assembly of mTORC2 requires the presence of Rictor, an alter-
native scaffolding protein specific for mTORC2 [14]. mTORC2 phos-
phorylates several AGC family kinases [15], including Akt, leading to 
Akt activation [16]. Thus, via Akt, activated mTORC2 indirectly pro-
motes the activation of mTORC1. 

Additional effects of mTORC2 activation include cytoskeleton rear-
rangement via actin polymerization [17], relevant for cellular activation 
and migration, and increased lipid synthesis, which can promote 
tumorigenesis [18]. 

1.3. The TSC complex is a key node that controls mTORC1 

Rheb, a small GTPase, can activate mTORC1 (via antagonism of its 
endogenous inhibitor FKBP8, also known as FKBP38) [19]. Rheb activity 
is typically suppressed via the TSC complex of TSC1/TSC2 [20] but can 
be modulated depending on the specific inputs. Important sensors 
feeding into the TSC complex include AMPK, sensing energy ‘starvation’ 
as well as inhibitory signals originating from TNF (via IKK-β mediated 
suppression of TSC1 [21,22]) and Insulin/PI3K signaling via Akt/TSC2 
[23,24]). 

Thus, the TSC complex serves as a node that integrates growth sig-
nals with energy availability and controls mTORC1 by either inhibiting 
or releasing Rheb based on these upstream signals. In summary, the TSC 
complex can resolve potentially conflicting growth signals and low en-
ergy states to ensure context-appropriate mTORC1 activation. 

1.4. Regulating mTORC1 localization via the Ragulator/Rag complex 
provides additional opportunities to control its activation 

The spatial control of mTORC1 and its regulators provides an addi-
tional control mechanism of mTORC1. To effectively undergo activation 
by Rheb (which is anchored to the membranes of lysosome and Golgi 
apparatus [25]), mTORC1 must translocate to these membranes. 
Ragulator and Rag GTPases form a complex that senses nutrients [26]; 
based on nutrient sufficiency the Ragulator/Rag complex either permits 
or inhibits mTORC1 translocation [27]. 

In combination, the TSC and Ragulator/Rag complexes help ensure 
that the anabolic cellular programs resulting from activation of mTORC1 
are only executed when both growth signals (via the TSC complex) and 
sufficient substrate availability (via Ragulator/Rag GTPases) can sustain 
cellular growth or proliferation. 

Fig. 1. mTOR complexes. A) mTOR complexes 1 and 2 are defined by their scaffolding proteins Raptor and Rictor, respectively. mTORC1 is anabolic, via its 
substrates 4E-BP 1 and 2, p70S6K and ULK1. mTORC2 activation phosphorylates Akt, which in turn reinforces activation of mTORC 1 and 2. B) A proposed mTORC3 
assembles independent of Raptor and Rictor, is resistant to rapamycin and associates with ETV7. C) An alternatively proposed third rapamycin-sensitive complex that 
contains mLST8, here designated mTORC3’, has also been reported. Rapa: Rapamycin. 
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1.5. The mTOR pathway integrates signals in immune cells yet originated 
in unicellular life 

Basic components of mTOR signaling (Fig. 2, orange components) 
are preserved almost universally across eukaryotic life [28]. Immune 
cells can utilize mTOR to integrate cues during the contact with antigens 
to determine adequate lineage. This function is in part enabled by 
evolutionary newer inputs into the mTOR pathway such as the TNF and 
the Insulin signaling (Fig. 2, light blue components) highlighting the 
flexibility of this ancient pathway to provide integration necessary for 
cell fate decisions in a variety of contexts [28]. 

2. A model of the role of mTOR during immune responses 

In the context of the immune response, the mTOR pathway integrates 
cues that arise during the contact with antigens to determine T cell 
lineage. The relative activity of mTORC1 and 2 specifies resulting line-
ages of CD4+ [29] and CD8+ naïve T cells [30]. Highlighting the 
importance for adequate balance between the mTOR complexes is that 
overactivation of mTORC1 can lead to autoimmunity, including the 
systemic autoimmune disease SLE (reviewed in [31]). 

2.1. mTOR pathway and TLR integrate cues surrounding an antigen 

Upon contact between an antigen-presenting cell (APC) and an an-
tigen, the antigenic signal is contextualized (Fig. 3.1). Local signals 
provide cues to categorize the antigen in terms of its threat potential. 
Damage and pathogen-associated molecular patterns serve as cues, 
which are sensed via pattern recognition receptors such as TLR [32]. 
TLR can directly activate autophagy in APC [33,34] which overall en-
hances antigen uptake and presentation [35–37]. Alternatively, TLR can 
induce mTORC1 in APC [38], which attenuates autophagy [10]. 

Interestingly, mTOR/mTORC1 blockade leads to increased 

expression of CCR7 in human monocytes and dendritic cells [39] which 
can facilitate migration to lymphatic tissues to provide antigenic stim-
ulation to T cells. Thus, at least in some contexts, mTOR blockade, via 
enhanced antigen presentation to T cells could potentially confer 
enhanced protection against viral and other infections. 

2.2. T cells integrate antigen-specific and metabolic cues via mTOR 

Following successful migration to lymphatic tissues, the APC can 
form a synapse with a naïve T cell [40,41]. Here, the antigenic signal is 
transduced along with co-stimulatory and co-inhibitory signals 
(reviewed in [42]) and crosstalk with the JAK-STAT signaling pathways 
[43]. Appropriate APC signals can switch naïve T cell metabolism from a 
catabolic (reviewed in [44]) to an anabolic profile, characterized by 
mTOR/mTORC1 activation [45]. 

The totality of signals transduced by the APC can lead to differential 
activation of mTORC1 and 2 [29] within T cells to induce lineage 
defining master transcription factors (such as T-bet for TH1 [46]), thus 
shaping T cell differentiation (Fig. 3.2). 

2.3. mTOR complexes exert control over T effector functions beyond 
antigen presentation and lineage specification 

mTOR complex activity continues to influence the function of 
differentiated effector cells. (Fig. 3.3) For example, while low levels of 
mTORC1 and mTORC2 activity favor T reg differentiation [29,47], 
mTOR deficient T cells show lineage instability, defined as a loss of the 
transcription factor FoxP3 [48]. 

In summary, mTOR and associated proteins have a profound impact 
along the key events from antigen sensing to fine-tuning effector func-
tions to ensure appropriate inflammatory responses, explaining how 
dysregulation of mTOR can lead to the inappropriate immune responses 
that characterize SLE and other systemic autoimmune diseases. 

Fig. 2. mTOR signaling. The evolutionary conserved core of mTOR complexes 1 and 2 activated via PDK1, Akt, TSC2, and Rheb. In humans and other mammals, 
nutrients, insulin and TNF signaling pathways (light blue) provide additional upstream inputs. The TNF pathway is integrated with the starvation sensor AMPK via 
the TSC complex (bold dark blue); insulin via the PI3K/PDK1/Akt axis. The Ragulator/Rag complex provides spatial control over mTORC1 that is dependent on 
mitochondrial oxidative stress, nutrient sufficiency and traffic to the lysosome. Additional innovations in animals include PRAS40 [7,23] through which Akt provides 
a disinhibitory signal to Raptor, thus favoring assembly of mTORC1, which provides an additional regulatory axis for mTORC1 activation. 
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3. mTOR-dependent lineage differentiation controls 
inflammation 

This segment highlights results during the past four years concerning 
the immunological outcome of mTOR blockade in humans followed by 
some important advances on the understanding how mTOR and related 
proteins can modulate immune cell function. 

3.1. New insights into clinical effects of mTOR inhibition 

3.1.1. mTOR blockade can normalize T cell memory populations in SLE 
The benefit of mTOR inhibition for the treatment of the prototypical 

autoimmune disease SLE [49] occurs primarily by a normalizing effect 
on lymphocyte subpopulations [49], resulting in a net anti- 
inflammatory and tolerogenic effect that is mediated at least in part 
by inhibition of apoptosis of regulatory T cells and decreases in T and B 
cell activation in SLE patients [49]. Memory T cell subsets on the other 
hand, expanded in SLE patients following mTOR blockade with siroli-
mus (rapamycin) which suggests that in SLE patients, sirolimus treat-
ment may confer enhanced T cell mediated immunity to mTOR/ 
mTORC1 blockade treated individuals providing another potential axis 
through which mTOR blockade may enhance immune function. 

3.1.2. mTOR blockade is an effective treatment for idiopathic multicentric 
Castleman disease 

New data supports mTOR/mTORC1 inhibition as an effective treat-
ment for the autoimmune disease idiopathic multicentric Castleman 
disease (iMCD), a lymphoproliferative disease with autoimmune fea-
tures. iMCD is associated with increased mTORC1 activation as 
measured in both the serum proteome as well as the lymphatic tissue 
and, more importantly, iMCD patients refractory to the IL-6 antagonist 
tocilizumab, responded to the mTOR inhibitor sirolimus (rapamycin) 
[50,51] thus highlighting the efficacy of inhibiting this pathway in 

autoimmune diseases including in patients otherwise refractory to IL-6 
inhibition. 

3.1.3. Short term mTORC1 inhibition can be immunostimulatory 
Interestingly, although mTOR inhibition is generally regarded to be 

immunosuppressive, short term (6 week) low-dose mTORC1 inhibition 
using a combination of the allosteric and catalytic mTOR inhibitors 
daclotisib and everolimus reduced infection and enhanced antiviral 
vaccination responses in healthy elderly individuals [52]. Following 
mTORC1 inhibition, an upregulation of interferon related genes, as well 
as a decrease of CD4 and CD8 positive T cell subsets expressing the co- 
inhibitory receptor PD-1 occurred, along with an increase of the inter-
feron signature which may be underlying the protective effect of low- 
dose mTORC1 blockade. [52]. 

3.1.4. Discussion of clinical findings 
MCD and SLE share many clinical and pathophysiologic features and 

are unified by profound mTOR overactivation in lymphocytes. 
Following viral infection with KSHV (HHV-8), some individuals develop 
MCD, characterized by extensive polyclonal lymphoproliferation and 
systemic autoimmunity. 50% of MCD cases are negative for HHV-8 — 
referred to as idiopathic MCD — and additional viral triggers including 
other human herpesviridae are hypothesized to drive iMCD at least in a 
subset of cases. Because the majority of herpesvirus-infected individuals 
do not develop iMCD or SLE, other co-existing environmental or genetic 
hits must occur, either directly on lymphocytes or mediated via aberrant 
antigen presentation. Importantly, sirolimus (rapamycin) can prevent 
pathologic lymphocyte differentiation ‘downstream’ of these pathways 
which may in part explain its efficacy even in refractory cases. (Fig. 4). 

Fig. 3. A possible model how the mTOR pathway can integrate signals to achieve adequate lineage specification during immune responses. 1) Concomitantly with 
antigen uptake and processing, the mTOR pathway integrates cues received by pattern recognition receptors, such as DNA, RNA and monosodium urate to 
contextualize the antigenic signal. 2) The antigenic signal, along with co-stimulatory and inhibitory signals, is transduced and integrated via relative activity of 
mTORC1 and 2.3) Effector T cells, resulting from clonal expansion of adequate T cell lineages are guided by mTORC1 and 2 activation, execute the appropriate 
immune response to neutralize the pathogen or malignant cell.(Many additional important immune cell populations, not depicted here, participate in immune 
responses) AG: antigen, TCR: T cell receptor, MSU: monosodium urate. 
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3.2. New insights into mTOR complexes in lymphocytes 

3.2.1. mTOR complexes continue to define the function of differentiated T 
cell subsets after T cell differentiation 

While it has been known that mTORC1 and 2 suppression is required 
to induce Tregs, it remains less clear whether their activity is required for 
the functioning of differentiated Tregs. Treg function, especially migra-
tion to non-lymphoid tissues and their stability, are dependent on mTOR 
as Tregs deficient in mTOR showed lineage instability. mTOR-deficient 
Treg show migration defects (increased levels of CD62L and CCR7, 
S1P1; decreased expression of CD69; retention in lymphoid organs) and 
increasingly become “Ex-Treg” (Tregs that have lost the transcription 
factor Foxp3) suggesting that mTOR may be required for Treg effector 
function. [48] 

Regarding the effects of mTOR within conventional T cell (T conv) 
effectors, the presence of mTORC1 in CD4+ TH17 cells is required for 
their inflammatory effector function: Within TH17 cells, mTORC1 is 
critical for TH17 plasticity as mTORC1 deficient TH17 cells are unable 
to transdifferentiate into TH1-like (IFN-γ producing) TH17 cells after 
antigen stimulation; mice with mTORC1 (Raptor) deficient TH17 cells 
are protected from MOG-induced EAE. Phenotypically, the mTORC1 
positive TH17 subset can be distinguished by a lack of CD27 expression 
[53] whereas CD27 positive TH17 cells are associated with a memory- 
like transcriptome, express low levels of mTORC1 and are capable to 
proliferate and turn into CD27 negative TH17 cells. Overall, this sup-
ports a continued role of mTORC1 in inflammatory TH17 responses and 
may provide a rationale for mTORC1 blockade in TH17-mediated 
neuroinflammation. 

3.3. New insights into mTOR complexes in antigen-presenting cells (APC) 

As an important integrator of cell biology, mTOR can be expected to 
play a role within APC activation, but the precise effects have been a 
matter of debate. It is likely that individual APC subsets respond 
differently to mTOR induction or inhibition. For example, mTOR 

inhibition negatively regulates the activation of IL-4/GM-CSF- 
differentiated monocyte-derived dendritic cells while it augments 
maturation of conventional DC from human peripheral blood [54]. This 
section focuses on a few findings in recent years that helped delineate 
the role of mTOR in these cells; for an in depth discussion on these 
complexities we refer to a recent excellent review [55]. 

3.3.1. mTOR in APC shapes the character of inflammation via metabolic 
adaptation 

mTORC1 deficiency within APC can skew T cell differentiation to-
wards TH17 lineages by affecting cellular metabolism: Whereas 
mTORΔAPC mice (mice with a CD11c+-specific mTOR deletion) globally 
develop normally they show tissue-specific APC alterations with meta-
bolic reprogramming, most pronounced within the lung. Here, mTOR 
deficiency in APC shifts the APC composition: expansions of CD11c+

CD11b+ towards macrophage/monocytic lineages; CD11c+ MHC II+

SIRPalpha+ Heat stable antigen (HSA)+ cells were reduced; the same 
was observed in mice deficient in mTORC1 (Raptor) but not in mTORC2 
(Rictor) deficient mice. In a murine asthma model, these “inflammatory” 
mTOR-deficient APC skewed inflammation from eosinophilic T helper 
cell 2 (TH2) to neutrophilic TH17 polarity. Interestingly, targeting the 
two downstream mTORC1 substrates S6K and 4E-BP1 does not affect the 
APC composition suggesting that this effect is translation-independent. 
Rather, FAO inhibition using etomoxir abrogates the lineage shift thus 
showing that mTOR in APC influences the character of inflammation on 
the metabolic rather than on the translational level. [56] 

3.3.2. mTOR (mTORC1) activation in APC by regulatory T cells can 
ameliorate immune responses by inhibiting autophagy 

Demonstrating an anti-inflammatory role for mTORC1 in APC, 
autophagy inhibition of APC, induced by Tregs via mTORC1 ameliorates 
immune responses. Tregs, via CTLA-4, can activate the PI3K/AKT/ 
mTOR axis, leading to inhibition of autophagy, as determined by a 
decreased synthesis of the autophagy component Lc3b. In vitro phar-
macologic treatment with CTLA4-Ig led to decreased autophagosome 

Fig. 4. A possible model how viral and other environmental triggers may promote autoimmunity in predisposed individuals, and the responsiveness to mTOR 
inhibition using rapamycin (sirolimus). mTOR hyperactivation promotes lymphoproliferation and increased generation of TH17 cells while decreasing tolerogenic T 
reg formation. Acute and chronic infections, particularly by herpesviridae infecting lymphocytes, antigen-presenting cells, and other tissues are implicated as risk 
factors in the pathogenesis of lymphoproliferative and autoimmune diseases. Rapamycin, by reversing mTOR overactivation within lymphocytes, can ameliorate the 
hallmarks of autoimmunity. EM of Herpesvirus by Bernard Heymann, pH.D., NIAMS Laboratory of Structural Biology Research (CC BY NC 2.0). 
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formation; DC from RA patients treated with CTLA4-Ig showed 
decreased transcripts of Lc3b as compared to patients treated with 
alternative TNF inhibition [57] suggesting that the clinical benefit of 
CTLA4-Ig in RA may in part be mediated via its effect on decreased 
autophagy and antigen presentation. 

3.4. The effect of mTOR blockade on lifespan is context dependent 

Mice with growth hormone receptor knockout show a paradoxical 
effect. While rapamycin promotes longevity in mice and other model 
animals, mice with growth hormone receptor knockout showed the 
opposite effect — a shortening of life span — presumably related to 
increased levels of inflammation, as measured by circulating IL-6, and 
decreased IL-2 levels in growth hormone receptor knockout mice that 
was induced by rapamycin treatment [58]. Contrary to what was 
observed in healthy humans [52], rapamycin blockade in growth- 
hormone knockout mice led to increased levels of circulating PD1 posi-
tive CD4 and CD8 T cells, suggesting that mTOR blockade — although 
generally a promotor of lifespan [59,60] — may impair longevity under 
such growth inhibitory conditions. 

4. Activation and therapeutic blockade of mTOR in COVID-19 

Viruses hijack the ribosomal machinery of their host cells to enforce 
viral replication, which implicates mTOR/mTORC1 over-activation in 
viral disease pathogenesis and offers a potential antiviral treatment 
target. Indeed, rapamycin (sirolimus) is predicted to have direct anti-
viral efficacy, via its interference with mRNA translation [61,62]. mTOR 
inhibitors have demonstrated in vitro antiviral properties against SARS- 
CoV-2 [63] and the related MERS-CoV virus. [64] 

Beyond such expected direct antiviral properties, mTOR blockade 
has the potential to ameliorate excessive systemic and pulmonary 
inflammation, characteristic for severe Covid-19 [65], via its modu-
lating effects on the host immune system. As reviewed in the previous 
section, mTOR blockade can enhance primary immune responses [52], 
promote expansions of the T cell memory compartment [49], which 
could promote antiviral memory and recall responses, and shift differ-
entiation of T cell lineages away from excessively inflammatory phe-
notypes [49]. 

SARS-CoV-2 exploits the ACE2 receptor to invade host cells [66]. 
Interestingly, mitochondrial oxidative stress retains ACE2 in its func-
tional reduced form [67]. Consistent with its role in SLE [68], mTOR can 
sense mitochondrial oxidative stress in COVID-19 [69]. N-Acetylcys-
teine (NAC) can protect against oxidative stress and can ameliorate 
mTOR overactivation in T cells [70]. 

Thus, as supported by early clinical observations [71], NAC 

treatment may have therapeutic efficacy in COVID-19, via at least two 
mechanisms; by relieving the oxidative stress that facilitates viral entry 
through ACE2 and by blocking the virally-induced overactivation of the 
mTOR pathway that — similar to the situation in SLE and MCD — may 
drive the COVID-19 features of systemic autoimmunity. 

Ongoing clinical trials aimed to evaluate the safety and efficacy of 
mTOR blockade for treatment or prevention of Covid-19 are summa-
rized in Table 1. 

5. mTOR blockade in the context of longevity 

The enhanced antiviral immunity conferred by mTOR (mTORC1) 
blockade to healthy elderly individuals is in interesting contrast to the 
immunosuppressive effects traditionally ascribed to mTOR (mTORC1) 
antagonists. At least in SLE, mTOR blockade relieves the proliferative 
pressure of T lymphocytes towards inflammatory effector lineages 
which appears to permit expansion of T memory cell subsets. 

While healthy aged individuals would not be expected to show the 
same degree of T cell subset shifts as lupus patients, the immune system 
changes dramatically with age, leading to declines in T cell memory and 
susceptibility to infections and neoplasms. 

Thus, promoting the expansion of the T cell memory compartment by 
blocking mTOR/mTORC1 provides an important intervention to 
enhance T cellular immunity in elderly individuals, which could — by 
reducing mortality from neoplastic and infectious, particularly viral, 
threats — provide an important axis to promote human longevity. 

6. Concluding remarks 

Thirty years after the initial identification of TOR [1], these recent 
findings add new nuances to the understanding how an ancient signaling 
pathway can be highly conserved across eukaryotic cells and yet form a 
flexible network that is capable to maintain immune homeostasis under 
dynamic conditions and, how aberrant mTOR pathway activity can lead 
to autoimmune disease when this network fails. 

The findings in the treatment of SLE [49] and iMCD [51] further 
validate the concept of targeting mTOR to control aberrant inflamma-
tion as a treatment strategy for systemic autoimmunity. Additionally, 
there have been promising early reports in the treatment of vasculitis 
[72] and RA [73]. 

For the coming years, we anticipate that the integration of single cell 
technologies, high-dimensional flow cytometry and RNA sequencing, 
with traditional proteomics and metabolomics will further unravel how 
mTOR controls inflammation in health and disease. These studies could 
enable the development of new therapeutic options that extend healthy 
lifespan by protecting from autoimmunity while enhancing beneficial 

Table 1 
Overview of active clinical trials of mTOR blockade for the treatment or prevention of Covid-19 (www.clinicaltrials.gov) and a pilot study for the use of NAC. RTB101: 
a proprietary ATP-competitive mTORC1 inhibitor.  

Trial Name Population mTOR inhibitor and dose Control Primary 
Outcome 

Status (July 
2021) 

Efficacy and Safety of Sirolimus in COVID- 
19 Infection (NCT04461340) 

Adults ≥18 years with COVID-19 
pneumonia 

Rapamycin (sirolimus) 6 mg ×
1 (day 1) 
2 mg daily (days 2–10) 

Standard 
of care 

Time to clinical 
recovery 

Recruiting 

Sirolimus Treatment in Hospitalized 
Patients With COVID-19 Pneumonia 
(NCT04341675) 

Adults ≥18 years with Covid-19 
pneumonia, hypoxia, and poor 
prognostic biomarkers 

Rapamycin (sirolimus) 6 mg ×
1 (day 1) 
2 mg daily (days 2–14; or until 
hospital discharge) 

Placebo Survival free from 
advanced respiratory 
support at day 28 

Recruiting 

A Phase 2 Study of RTB101 as COVID-19 
Post-Exposure Prophylaxis in Older 
Adults (NCT04584710) 

Asymptomatic Adults ≥65 years with 
SARS-CoV-2 on a surveillance swab OR 
who live in the same building as 
someone who has COVID-19 

RTB101 10 mg daily for 14 days Placebo Time to first positive 
SARS-CoV-2 test 

Active, not 
recruiting 

Therapeutic blockade of inflammation in 
severe COVID-19 infection with 
intravenous N-acetylcysteine (https:// 
pubmed.ncbi.nlm.nih.gov/32707089/) 

Ten patients with ventilator-dependent 
Covid-19 pneumonia, one of which had 
G6PD deficiency 

Intravenous N-acetylcysteine 
varying doses; eight patients 
received 600 mg twice daily for 
2–9 days 

N/A N/A (clinical data, C- 
reactive protein and 
ferritin were assessed) 

Completed  
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immune responses, such as those directed against viral pathogens. 
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