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Some candidate genes have been robustly reported to be associated with complex
traits, such as the fat mass and obesity-associated (FTO) gene on body mass index
(BMI), and the fibroblast growth factor 5 (FGF5) gene on blood pressure levels. It is of
interest to know whether an environmental factor (E) can attenuate or exacerbate the
adverse influence of a candidate gene. To this end, we here evaluate the performance
of “genetic risk score” (GRS) approaches to detect “gene-environment interactions”
(G × E). In the first stage, a GRS is calculated according to the genotypes of variants in
a candidate gene. In the second stage, we test whether E can significantly modify this
GRS effect. This two-stage procedure can not only provide a p-value for a G× E test but
also guide inferences on how E modifies the adverse effect of a gene. With systematic
simulations, we compared several ways to construct a GRS. If E exacerbates the
adverse influence of a gene, GRS formed by the elastic net (ENET) or the least absolute
shrinkage and selection operator (LASSO) is recommended. However, the performance
of ENET or LASSO will be compromised if E attenuates the adverse influence of a gene,
and using the ridge regression (RIDGE) can be more powerful in this situation. Applying
RIDGE to 18,424 subjects in the Taiwan Biobank, we showed that performing regular
exercise can attenuate the adverse influence of the FTO gene on four obesity measures:
BMI (p = 0.0009), body fat percentage (p = 0.0031), waist circumference (p = 0.0052),
and hip circumference (p = 0.0001). As another example, we used RIDGE and found the
FGF5 gene has a stronger effect on blood pressure in Han Chinese with a higher waist-
to-hip ratio [p = 0.0013 for diastolic blood pressure (DBP) and p = 0.0027 for systolic
blood pressure (SBP)]. This study provides an evaluation on the GRS approaches, which
is important to infer whether E attenuates or exacerbates the adverse influence of a
candidate gene.
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INTRODUCTION

The detection of “gene-environment interactions” (G × E) is
important and is even more challenging than the detection of
main effects of genes (Greenland, 1983; Hunter, 2005; Aschard,
2016). Although some gene-based G × E methods have been
developed (Jiao et al., 2013; Lin et al., 2013; Chen et al.,
2014; Lin et al., 2016; Lin et al., 2019), very few G × E
findings have reached the genome-wide significance level (i.e.,
p < 0.05

20,000 = 2.5× 10−6. Because there are∼20,000 genes across
the genome, 2.5 × 10−6 is the commonly used significance
level in genome-wide gene-based analyses) (Chen et al., 2014;
Lin et al., 2019). Most evidence of G × E was discovered by
candidate gene analyses in which genome-wide association study
(GWAS) hits were targeted. For example, physical activity has
been found to attenuate the influence of the fat mass and obesity-
associated (FTO) gene on obesity risk (Vimaleswaran et al., 2009;
Kilpelainen et al., 2011). This means that the association of the
FTO risk alleles with obesity measures is weaker in physically
active subjects than in physically inactive subjects.

Another example is related to blood pressure levels. The
fibroblast growth factor 5 (FGF5) gene is associated with blood
pressure levels in Han Chinese (Liu et al., 2011; Lin et al., 2019).
Obesity has been reported to exacerbate the adverse influence of
FGF5 on blood pressure. That is, the association of the FGF5 risk
alleles with blood pressure is stronger in obese subjects than in
lean subjects (Li et al., 2015).

A candidate gene usually harbors multiple risk variants. It
is of interest to know whether an environmental factor (E)
attenuates or exacerbates the effects of these risk variants.
However, most G × E methods provide only p-values without
any inference for the direction of interaction (Lin et al., 2013,
2016, 2019; Chen et al., 2014). In contrast, a genetic risk
score (GRS) approach aggregates the effects among an ensemble
of single-nucleotide polymorphisms (SNPs) and can indicate
whether the GRS interacts synergistically or antagonistically
with E. A GRS is a linear combination of risk allele counts,
where risk alleles and weights are usually retrieved from large
published GWASs or meta-analyses. However, the vast majority
of genetic studies have been performed on subjects of European
ancestry (Sirugo et al., 2019). Appropriate external GWAS
results may not be available for G × E studies in other
ethnic populations.

To address this issue, GRS approaches using internal weights
have been proposed for pathway-based G× E studies (Huls et al.,
2017; Huls et al., 2017) and GWASs (Lin et al., 2018, 2019, 2020).
The internal weights come from marginal effects of SNPs that
can be estimated by a multivariate elastic net (ENET) regression
(Huls et al., 2017; Huls et al., 2017).

In this study, we described how to use GRS approaches to
infer whether E attenuates or exacerbates the adverse influence
of a gene (therefore, GRS here aggregates the effects among
an ensemble of SNPs in a gene). Moreover, we compared GRS
approaches with the “Set-Based gene-EnviRonment InterAction
test” (SBERIA) (Jiao et al., 2013), the “interaction sequence
kernel association test” (iSKAT) (Lin et al., 2016), and our
previously developed “adaptive combination of Bayes factors

method” (ADABF) (Lin et al., 2019). These methods were then
applied to the Taiwan Biobank (TWB) data.

MATERIALS AND METHODS

Genetic Risk Score Approaches
Usually, a GRS combines information of multiple nearly
independent SNPs across the genome (Ahmad et al., 2013;
Rask-Andersen et al., 2017; Lin et al., 2019, 2020). However,
there have been few applications of using GRS in gene-based
G × E tests. To have a clear description, we first explain
covariate adjustment in the GRS gene-based G × E approach.
Suppose there are L SNPs in a gene or a pathway. Let g [·]
be the link function, Yi be the phenotype that can be either
continuous or binary, Gij be the number of minor alleles (0,
1, or 2, by additive genetic model) at the j-th SNP (j = 1, . . .,
L), Ei be the environmental factor, Xi be the vector of non-
genetic covariates such as the age and sex, and the subscript
“i” represents data for the i-th subject (i = 1,· · ·, n). In
addition to the additive model (by counting the number of minor
alleles), Gij can also be coded according to the dominant or
recessive genetic model.

Some GRS approaches involve SNP selection and then
aggregate the information of selected SNPs. Therefore, we leave
Gij (j = 1, ..., L) later and first regress Yi on Xi by a linear model
or a logistic regression model, as follows:

g [E (Yi)] = α0 + α′Xi, i = 1, . . . , n. (1)

Let µ̂0i = α̂0 + α̂′Xi (for continuous Yi) or

µ̂0i =
exp
(
α̂0 + α̂′Xi

)
1 + exp

(
α̂0 + α̂′Xi

) (for binary Yi) be the predicted

mean of Yi under model (1). Therefore, the covariate-adjusted
phenotype for the i-th subject is ε̂i = Yi − µ̂ 0i.

Subsequently, we regress ε̂i on Gi1, · · · , GiL, as follows:

g [E (ε̂i)] = β0 +
∑L

j = 1
βjGij, i = 1,· · ·, n. (2)

Let β′ =
[
β0 · · · βL

]
be the vector of regression coefficients in

model (2). The ordinary least squares (OLS) estimate of β is as
follows:

β̂ =
argmin

β

[∑n

i = 1

(
ε̂i − β0 −

∑L

j = 1
βjGij

)2
]
=

(
G′G

)−1 (G′ε̂) , (3)

where n is the sample size, G is the n × (L + 1) matrix with
the i-th row of [1 Gi1 · · ·GiL], and ε̂ is the n-length vector of
covariate-adjusted phenotypes. Because of linkage disequilibrium
(LD), the SNPs in a gene are usually highly correlated with each
other. In this situation, G′G may be singular and not invertible.

Ridge regression (RIDGE) (Hoerl and Kennard, 1970) is used
to address the collinearity problem in model (2), where the
regression coefficients are estimated by minimizing the residual
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sum of squares and an l2-norm penalty, as follows:

β̂ =
argmin

β

[∑n

i = 1

(
ε̂i − β0 −

∑L

j = 1
βjGij

)2
+

λ
∑L

j = 1
β2

j

]
. (4)

The regularization parameter λ controls the amount of shrinkage.
When λ is close to 0, β̂ from RIDGE will approximate the β̂ from
OLS. When λ is large, β̂1, · · · , β̂L will approach 0, and model (2)
will be reduced to an intercept-only model.

Least absolute shrinkage and selection operator (LASSO) was
later proposed to estimate regression coefficients by minimizing
the residual sum of squares and an l1-norm penalty (Tibshirani,
1996) as follows:

β̂ =
argmin

β

[∑n

i = 1

(
ε̂i − β0 −

∑L

j = 1
βjGij

)2
+

λ
∑L

j = 1

∣∣βj
∣∣] . (5)

The regularization parameter λ controls the amount of shrinkage.
Moreover, variable selection can be performed by shrinking some
βjs to 0 (j = 1, ..., L). Because equation (5) selects SNPs that
are marginally associated with the covariate-adjusted phenotype
(ε̂i, i = 1,· · ·, n), this is called the marginal-association filtering
by LASSO. The term “marginal” is used here because the Ei and
Gij × Ei interaction term have not been included in Eq. (5). If
βj is shrunk to 0, the j-th SNP is regarded as unassociated with
the covariate-adjusted phenotype and will not be used for the
construction of a GRS.

ENET (Zou and Hastie, 2005) strikes a balance between
RIDGE and LASSO by estimating regression coefficients while
minimizing the residual sum of squares and a mixture of an
l1-norm and an l2-norm, as follows:

β̂ =
argmin

β

{∑n

i = 1

(
ε̂i − β0 −

∑L

j = 1
βjGij

)2
+

λ
∑L

j = 1

[
1
2

(1− α) β2
j + α

∣∣βj
∣∣]} . (6)

The regularization parameter λ controls the amount of shrinkage,
whereas α is a penalty weight ranging from 0 (RIDGE) to 1
(LASSO). As suggested by Huls et al. (2017), α = 0.5 is used
for ENET throughout this work to achieve an optimal balance
between RIDGE and LASSO. Eq. (6) is the marginal-association
filtering by ENET.

Similar to genetic studies using penalized regression
approaches (Waldmann et al., 2013; Huls et al., 2017; Huls et al.,
2017), we used the R package “glmnet” (Friedman et al., 2010) to
obtain β̂. The optimal values of the regularization parameter λ in
Eqs (4–6) were determined by 10-fold cross-validation. GWASs
(Waldmann et al., 2013) and pathway-based G× E studies (Huls
et al., 2017; Huls et al., 2017) have recommended choosing the
largest λ such that the mean squared error (MSE) is within 1
standard error of the minimum MSE, to avoid selecting too

many SNPs in ENET or LASSO. However, most complex traits
are polygenic, and a single gene usually explains little phenotypic
variation. In our simulations and real data analyses, this criterion
usually selected 0 SNPs for ENET or LASSO. Therefore, in
gene-based G × E studies, we recommend using the λ that leads
to the minimum MSE.

RIDGE, LASSO, and ENET are all techniques for regression
models that suffer from multicollinearity. Therefore, the pruning
stage to remove SNPs with LD is not required here. After
obtaining β̂ from RIDGE, LASSO, or ENET, the GRS of the
i-th subject is constructed by GRS′i =

∑L
j = 1 β̂jGij, where Gij

is the number of minor alleles (0, 1, or 2) at the j-th SNPof
the i-th subject. A positive β̂j indicates that the minor allele is
associated with an increase in phenotype. Therefore, a subject
with more copies of the minor allele (more phenotype-increasing
alleles) will obtain an increase in his/her GRS′. In contrast, a
negative β̂j indicates that the minor allele is associated with
a decrease in phenotype, and a subject with more copies of
the minor allele (more phenotype-decreasing alleles) will obtain
a decrease in his/her GRS′. The GRS′ is then transformed
into a Z-score that represents how many standard deviations
the GRS′ is from the mean. The standardized GRS Z-score is
denoted as GRSi. A larger GRS is always associated with an
increased phenotype.

Afterwards, we fit the following generalized linear
model (GLM):

g [E (Yi)] = γ0 + γGGRSi + γEEi + γIntGRSi × Ei +

γ′CXi,i = 1,· · ·, n, (7)

where γG > 0 because a larger GRS is always associated with an
increased phenotype. Adding a constraint (γG > 0) is expected
to improve power, although for simplicity we here perform a
GLM without this constraint. By testing H0 : γInt = 0 vs. H1 :

γInt 6= 0, we evaluate whether G × E exists. For continuous
traits, each 1 standard deviation (SD) increase in GRS is
associated with a γ̂Int change in phenotype for subjects exposed
to E = 1 than for subjects exposed to E = 0. For binary traits,
each 1 SD increase in GRS is associated with an odds ratio of
exp(γ̂Int) for subjects exposed to E = 1 compared to subjects
exposed to E = 0. A positive (negative) γ̂Int indicates that E = 1,
or a larger E, exacerbates (attenuates) the adverse influence of
a candidate gene.

The whole data can be used to estimate β1, · · · , βL (Eqs 4–
6) and then to test H0 : γInt = 0 vs. H1:γInt 6= 0 (model 7)
without data splitting. Theoretically, β̂j (j = 1, · · · , L) and γ̂Int
are asymptotically independent under the null hypothesis of no
SNP-by-environment interaction, proved by corollary 1 of Dai
et al. (2012). A two-stage approach that first filters SNPs by a
criterion independent of the test statistic (γ̂Int estimated from
model 7) under the null hypothesis, and then only uses SNPs
that pass the filter, can maintain type I error rates and boost
power (Bourgon et al., 2010; Frost et al., 2016). Empirically,
our following simulation studies confirmed that GRS using
internal weights is a valid approach in the sense that type
I error rates match the nominal significance level. Moreover,
studies on genes (Jiao et al., 2013; Frost et al., 2016), pathways
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(Huls et al., 2017; Huls et al., 2017), and GWASs (Lin et al., 2018)
have presented the validity of using internally weighted GRSs to
test for G× E.

Competing Methods
The abovementioned GRS approaches with some form of
penalized regression (RIDGE, LASSO, or ENET) were compared
with the SBERIA (Jiao et al., 2013), iSKAT (Lin et al., 2016), and
ADABF (Lin et al., 2019) methods.

SBERIA is the first gene-based G × E test based on the GRS
concept. The phenotype is first regressed on each SNP separately,
while adjusting for covariates such as sex, age, and ancestry
principal components (PCs), as follows:

g [E (Yi)] = β0 + βjGij + β
′

CXi,i = 1,· · ·, n; j = 1,· · ·, L.
(8)

Let β̂j be the estimated regression coefficient of the j-th
SNP and pj be the p-value of testing H0 : βj 6= 0 vs. H1 :

βj 6= 0. The GRS of the i-th subject is constructed
by GRS′i =

∑L
j = 1

[
I
(
pj < 0.1

)
sign

(
β̂j
)
+ ν

]
Gij, where

I
(
pj < 0.1

)
is an indicator variable with a value of 1 if pj < 0.1

and 0 otherwise, sign
(
β̂j
)

is either 1 or −1 depending on the
sign of β̂j, and ν is a very small value (e.g., 0.0001). Therefore,
SBERIA GRS includes both SNP selection (only SNPs marginally
associated with the phenotype are used to construct the GRS) and
SNP weighting (only the directions of how SNPs influence the
phenotype are used in the GRS). The standardized GRS Z-score
is denoted as GRSi. Then, the following GLM is fitted:

g[E(Yi)] = γ0+
∑L

j = 1
γGj Gij + γEEi + γIntGRSi × Ei + γ′CXi,

i = 1,· · ·, n; j = 1,· · ·, L.
(9)

By testing H0:γInt = 0 vs. H1:γInt 6= 0, we can evaluate
whether G× E exists (Jiao et al., 2013).

There are two fundamental differences between SBERIA and
ENET (or LASSO). First, in the marginal-association filtering
stage, SBERIA fits L regression models, respectively (Eq. 8),
whereas ENET and LASSO fit a multivariate model incorporating
L SNPs simultaneously (Eqs 5 and 6). Second, in the model
for testing GRS × E, SBERIA includes the main effects of all
the L SNPs (

∑L
j = 1 γGj Gij in Eq. 9), whereas ENET and LASSO

incorporate only a GRS term as the aggregated genetic main
effects (γGGRSi in Eq. 7).

We compared the abovementioned GRS tests with iSKAT (Lin
et al., 2016) and ADABF (Lin et al., 2019). In iSKAT, the following
model is considered:

g[E(Yi)] = δ0 +
∑L

j = 1
δGj Gij + δEEi +

∑L

j = 1

δIntj GijEi + δ′CXi, i = 1,· · ·, n, (10)

where δIntj is the interaction effect between the j-th SNP and
E. Assuming δIntj s(j = 1,· · ·,L) follow a distribution with a
mean of 0 and a variance of τ, the null hypothesis of all

δIntj s = 0 (j = 1,· · ·,L) can be reduced to τ = 0. The iSKAT is a
score statistic for testing the variance component, i.e., H0:τ = 0
vs. H1:τ > 0. The statistic can be referred to as Eq. (6) in
Lin et al. (2016). The iSKAT method is regarded as optimal in
the class of variance component tests (Lin et al., 2013; Chen
et al., 2014). Therefore, we chose iSKAT as the representative of
variance component tests.

In ADABF, we consider the following model for the j-th
SNP (j = 1,· · ·, L):

g [E (Yi)] = δ0 + δGj Gij + δEEi + δIntj GijEi + δC
′Xi,

i = 1, · · · , n. (11)

The SNP × E interaction is of interest, and therefore,
H0:δIntj = 0 vs. H1:δIntj 6= 0 for the j-th SNP (j = 1,· · ·, L).
A Bayes factor (BF) was calculated for each SNP × E, where
BF = Pr (Data|H1)/Pr (Data|H0). A larger BF indicates that
the relative evidence in favor of H1 (SNP × E interaction
exists) is stronger. Because the number of SNPs exhibiting
interactions with E varies gene by gene, ADABF exhaustively
searches for the evidence of G × E interaction by considering
the largest BF, combining the largest 2 BFs, combining the
largest 3 BFs,. . ., to aggregating all the L BFs in the gene.
The significance of G × E interaction is then determined
by the efficient sequential resampling procedure (Liu et al.,
2016). ADABF was selected for comparison because it was
recommended as a powerful and robust gene-based G × E test
in a recent study (Lin et al., 2019). The iSKAT and ADABF
methods do not test for G × E through a GRS term. Therefore,
these two methods do not make inference for the direction
of G× E.

Simulation Study
To reflect the real LD structures of the human genome, we
used the genotypes of 18,424 TWB subjects as our simulation
material. Three genes (i.e., TNNT3, RFX3, and FTO) were drawn
for simulations, including 48, 95, and 242 SNPs, respectively. It
is common to see multiple trait-associated SNPs to be included
in the same gene (Willer et al., 2007; Fawcett and Barroso,
2010). Therefore, we randomly specified 4 trait-associated
SNPs in each simulation replicate. We considered binary and
continuous exposures, respectively. For binary exposures, E
was randomly sampled from 1 (exposed) or 0 (non-exposed),
with P (E = 1) = 0.2 and P (E = 1) = 0.5, respectively.
For continuous exposures, E was randomly selected from
the normal distribution with a mean of 0 and a standard
deviation of 0.5.

The continuous trait of the i-th subject was simulated
as follows:

Yi =
∑4

d = 1
βGd Gid + βEEi +

∑D

d = 1
βIntd GidEi + εi,

(12)
where βGd is the SNP main effect of the d-th trait-associated SNP
(d = 1, · · · , 4), βIntd is the effect size of interaction between
the d-th trait-associated SNP and E (d = 1,· · ·, D), D is the
number of trait-associated SNPs that also exhibit interactions
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with E (D = 4 or 2 in our simulation), and εi is the random error
term following the standard normal distribution.

The binary trait of the i-th subject was simulated as follows:

log
P (Yi = 1)

1− P (Yi = 1)
= β0 +

∑4

d = 1
βGd Gid + βEEi +

∑D

d = 1

βIntd GidEi,
(13)

where the intercept β0 was log(0.1/0.9) = −2.2 or
log(0.4/0.6) = −0.4. Yi = 1 represents that the i-th
subject was diseased whereas Yi = 0 indicates that he/she was
non-diseased. This setting corresponds to a disease prevalence
of 10% or 40%. A disease prevalence of 40% is also a reasonable
setting for some complex diseases. For example, the worldwide
prevalence of hypertension among adults aged ≥25 years was
∼40% (Abebe et al., 2015).

The magnitudes of SNP main effects,
∣∣βGd

∣∣ s (d = 1,· · ·, 4),
were uniformly sampled from 0.04 to 0.08 for continuous traits or
uniformly sampled from log (1.05) to log (1.15) for binary traits.
This simulation setting for binary trait (odds ratios uniformly
sampled from 1.05 to 1.15) concurs with broad GWAS findings,
where most odds ratios < 1.5 and many odds ratios < 1.2 (Baxter
and Jordan, 2012; Hodge and Greenberg, 2016).

Unlike small effect sizes for SNPs, the effect size of E was
assumed to be larger, because some E is critical to traits (e.g.,
regular exercise and dietary habits are important to obesity
measures). The magnitude of E, |βE|, was assigned to be 0.3
for continuous traits and log (1.3) = 0.2624 for binary traits,
respectively. When evaluating type I error rates, data have to be
generated from the null hypothesis of no SNP × E interactions,
and therefore we specified all βIntd s = 0 (d = 1,· · ·, D). When
assessing power, the magnitudes of SNP × E interaction effects,
|βIntd |s (d = 1,· · ·, D), were uniformly sampled from 0.04 to
0.08 for continuous traits or uniformly sampled from log (1.05)
to log (1.15) for binary traits. To not favor GRS-based approaches
that construct GRSs with SNPs marginal effects, the sampling
of
∣∣βIntd

∣∣ s (d = 1,· · ·, D) was independent of the sampling of∣∣βGd

∣∣ s (d = 1,· · ·, 4). Power was evaluated under 14 simulation
scenarios listed in Table 1, in which “+” indicates a positive effect
and “−” means a negative effect. As summarized by Table 1, we
always assumed 4 trait-associated SNPs, but the number of trait-
associated SNPs that also exhibited interactions with E could be 2
or 4. This setting mimics the common situation that some trait-
associated SNPs may also present interactions with E (Jonsson
et al., 2009; Chen et al., 2014; Li et al., 2015).

Scenarios 1–7 describe that a larger E is associated with an
increase in trait, whereas scenarios 8–14 represent that a larger
E is associated with a decrease in trait. Suppose that a higher trait
is linked to a less healthy situation, e.g., Yi = 1 in binary traits.
Scenarios 1, 3, 6, 8, 10, and 13 indicate that a larger E exacerbates
the adverse effect of a candidate gene, whereas scenarios 2, 4, 7,
9, 11, and 14 present that a larger E attenuates the adverse effect
of a candidate gene. Scenarios 5 and 12 are cross-over situations,
representing that a larger E exacerbates the adverse effect of 50%
of trait-associated SNPs while attenuating the adverse effect of the
remaining 50% of trait-associated SNPs.

Application to the Taiwan Biobank Data
The TWB aims to build a research database that integrates
the genomic profiles and lifestyle patterns of residents aged
30–70 years in Taiwan (Chen et al., 2016). Community-based
volunteers provided blood samples and a range of information
via a face-to-face interview and physical examination. This study
included 20,287 TWB individuals and was approved by the
Research Ethics Committee of the National Taiwan University
Hospital (NTUH-REC No. 201805050RINB). To remove cryptic
relatedness, we used PLINK 1.9 (Purcell et al., 2007) to calculate
the genome-wide identity by descent (IBD) sharing coefficients
between any two subjects. Similar to many genetic studies
(Lowe et al., 2009; Mok et al., 2014; Ombrello et al., 2014), we
excluded one subject from each pair with PI-HAT ≥ 0.125,
where PI-HAT = Probability (IBD = 2) + 0.5 × Probability
(IBD = 1). Through this step, relatives within the third-degree of
consanguinity were removed. Finally, 18,424 unrelated subjects
(9,093 males and 9,331 females) were remained in the following
analysis. Table 2 shows basic characteristics of TWB participants
stratified by sex.

The majority of TWB subjects were of Han Chinese ancestry
(Chen et al., 2016). The Axiom Genome-Wide TWB genotyping
array was designed for Han Chinese in Taiwan, which was run
on the Axiom Genome-Wide Array Plate System (Affymetrix,
Santa Clara, CA, United States). A total of 646,783 autosomal
SNPs were genotyped in this TWB array. After removing
51,293 SNPs with genotyping rates <95%, 6,095 SNPs with
Hardy-Weinberg test p-values < 5.7× 10−7 (WTCCC, 2007),
and 1,869 variants with minor allele frequencies (MAFs) <1%,
587,526 SNPs were used to construct ancestry PCs. Because
variants with MAF <1% have been excluded, no rare variants
were included in our following analyses. Removing variants with
MAFs <1% is a commonly used quality control step in genetic
association studies, because the chances of errors in genotype
calling increase with decreasing MAFs (Goldstein et al., 2012;
Coleman et al., 2016).

RESULTS

Type I Error Rates
To evaluate type I error rates, continuous traits and binary traits
were simulated according to models (12) and (13), respectively.
Scenarios 1 and 8 in Table 1 were simulated, but all βIntd s
(d = 1,· · ·, 4) have to be set at 0 in order to evaluate type I
error rates. The main effects of SNPs,

∣∣βGd

∣∣s (d = 1,· · ·, 4),
and the environmental factor, |βE|, have been described in
section “Simulation study.” Based on 10,000 replications for each
scenario, Figure 1 and Supplementary Figure S1 show that all
methods were valid in the sense that their type I error rates
matched the nominal significance level.

Power of 6 G × E Methods
We compared the power of the 4 GRS-based tests and 2 G × E
methods: iSKAT (Lin et al., 2016) and ADABF (Lin et al., 2019).
The power of the 4 GRS-based tests is defined as the probability of
rejecting H0:γInt = 0 (p-value < 0.05) and correctly specifying
the sign of γInt (γInt can be found from models 7 and 9). The
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TABLE 1 | The 14 simulation scenarios for power comparison, where “exacerbation” and “attenuation” mean that E = 1 (or a larger continuous E) exacerbates or
attenuates the adverse effect of a candidate gene, respectively.

Scenario E βG1 βG2 βG3 βG4 βInt1 βInt2 βInt3 βInt4

1 Exacerbation + + + + + + + + +

2 Attenuation + + + + + − − − −

3 Exacerbation + + + + + + + 0 0

4 Attenuation + + + + + − − 0 0

5 Cross-over + + + + + + + − −

6 Exacerbation + + + − − + + − −

7 Attenuation + + + − − − − + +

8 Exacerbation − + + + + + + + +

9 Attenuation − + + + + − − − −

10 Exacerbation − + + + + + + 0 0

11 Attenuation − + + + + − − 0 0

12 Cross-over − + + + + + + − −

13 Exacerbation − + + − − + + − −

14 Attenuation − + + − − − − + +

TABLE 2 | Basic characteristics of TWB participants stratified by sex.

Overall Males Females

Total, n (%) 18,424 9,093 9,331

Age (years), mean (SD) 48.9 (11.0) 49.0 (11.0) 48.9 (10.9)

Smoking, n (%) 2, 134 (11.6) 1, 882 (20.7) 252 (2.7)

Drinking, n (%) 1, 345 (7.3) 1, 178 (13.0) 167 (1.8)

Regular exercise, n (%) 7, 652 (41.5) 3, 896 (42.8) 3, 756 (40.3)

Educational attainment, mean (SD) 5.46 (0.99) 5.62 (0.92) 5.29 (1.02)

BMI (kg/m2), mean (SD) 24.31 (3.66) 25.2 (3.4) 23.5 (3.7)

Body fat %, mean (SD) 27.29 (7.38) 22.9 (5.5) 31.5 (6.5)

Waist circumference (cm), mean (SD) 83.93 (10.03) 87.4 (9.1) 80.5 (9.7)

Hip circumference (cm), mean (SD) 96.34 (6.90) 97.6 (6.5) 95.2 (7.0)

Waist-hip ratio, mean (SD) 0.87 (0.068) 0.90 (0.06) 0.85 (0.07)

Diastolic blood pressure (mmHg), mean (SD) 73.11 (11.10) 76.9 (10.6) 69.4 (10.3)

Systolic blood pressure (mmHg), mean (SD) 117.62 (17.37) 121.9 (16.1) 113.5 (17.6)

iSKAT (Lin et al., 2016) and ADABF (Lin et al., 2019) methods
can only provide a p-value for testing G× E, without an inference
of how E modifies the genetic effects. Therefore, their power is
defined as the probability of rejecting the null hypothesis of no
G × E (p-value < 0.05). Figure 2 presents the power based on
1,000 simulation replications under each scenario, for continuous
traits and P (E = 1) = 0.2. If E exacerbates the adverse effect
of a gene, ENET and LASSO outperform the other methods
(scenarios 1, 3, 6, 8, 10, and 13). If E attenuates the adverse effect
of a gene, RIDGE is more powerful (scenarios 2, 4, 7, 9, 11, and
14). Moreover, ADABF was the optimal test under the cross-over
scenario (scenarios 5 and 12).

Among the 4 GRS-based tests, ENET, LASSO, and SBERIA
first select SNPs marginally associated with the phenotype.
ENET and LASSO select SNPs according to the multivariate
ENET regression (Eq. 6) and multivariate LASSO regression
(Eq. 5), respectively. SBERIA selects SNPs based on regressions
considering one SNP at a time (Eq. 8). The performance of these
three methods to detect G × E depends on their ability to find
the true trait-associated SNPs. Supplementary Figures S2, S3

summarize the sensitivity (SEN) and positive predictive value
(PPV) of the marginal-association filtering in ENET, LASSO, and
SBERIA. As described in Eq. (12) and Table 1, 4 trait-associated
SNPs were randomly assigned in each simulation replication.
SEN is defined as the percentage of true positives among the 4
trait-associated SNPs, whereas PPV is defined as the percentage
of true positives among the total findings.

Because SBERIA takes a liberal p-value threshold of 0.1, in the
filtering stage it usually selects more SNPs than ENET and LASSO
do. Therefore, as shown in Supplementary Figures S2, S3,
SBERIA generally has a higher SEN but a lower PPV, compared
with ENET and LASSO. For each method, SEN was much
lower in attenuation scenarios than in exacerbation scenarios.
This means that pinpointing true trait-associated SNPs is more
difficult in attenuation scenarios. In the filtering stage (Eqs 5,
6, and 8), Gid × Ei cannot be included; therefore, a βIntd in
the opposite direction to βGd will weaken the magnitude of the
marginal effect of the d-th trait-associated SNP. In contrast, a
βIntd in the same direction to βGd will strengthen the magnitude
of the marginal effect of the d-th trait-associated SNP. Therefore,
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FIGURE 1 | Empirical type I error rates under the nominal significance level of 0.05 (continuous trait).

for each method, the ability to pinpoint true trait-associated SNPs
is inferior in attenuation scenarios than in exacerbation scenarios
(as shown in Supplementary Figures S2, S16 for continuous
traits and binary traits, respectively).

Because there is no SNP selection in RIDGE, true trait-
associated SNPs are all reserved for constructing GRS. Therefore,
RIDGE is the optimal GRS-based test in attenuation scenarios
(Figure 2). In exacerbation scenarios, ENET and LASSO are the
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FIGURE 2 | Power given a significance level of 0.05, for continuous traits and P (E = 1) = 0.2.

best two methods because of their superior ability in finding
trait-associated SNPs (Supplementary Figures S2, S16).

We then investigated the percentage of sign-misspecifications
for each GRS-based method. In the presence of G × E, we
calculated the percentage of wrongly specifying the sign of
γInt (in models 7 or 9) among all rejections of H0:γInt = 0
(p-value < 0.05). With 1,000 simulation replications under
each scenario, Figure 3 presents the percentages of sign-
misspecifications, for continuous traits and P (E = 1) = 0.2.
The true γInt is positive under scenarios 1, 3, 6, 8, 10, and 13;
negative under scenarios 2, 4, 7, 9, 11, and 14. The cross-over
scenarios (5 and 12) were not considered here, because the true
sign of γInt was unclear when E = 1 (or a larger continuous E)
exacerbates the adverse effect of 50% of trait-associated SNPs
but attenuates the adverse effect of the remaining 50% of trait-
associated SNPs.

Figure 3 shows that the signs of γInt were usually correctly
specified except scenarios 4 and 11. SBERIA generally makes
more mistakes in indicating the true direction for γInt , because
it filters SNPs by considering only one SNP at a time
(Eq. 8). Supplementary Figures S4–S7 present the power
and percentages of sign-misspecifications in continuous-trait
simulations, given P (E = 1) = 0.5 and a continuous E,
respectively. Each method under P (E = 1) = 0.5 was slightly more
powerful than that under P (E = 1) = 0.2, but the comparisons
across methods were similar to those shown in Figures 2, 3.

The performance of each method for binary-trait simulations
can be found in Supplementary Figures S8–S21. Regarding
different prevalence values, each method was more powerful
under P (Y = 1) = 0.4 than under P (Y = 1) = 0.1. Concerning
different probabilities of being exposed, each method was more
powerful under P (E = 1) = 0.5 than under P (E = 1) = 0.2.

Nonetheless, the comparisons across methods were similar to
those described for continuous traits.

Regarding the 14 simulation scenarios listed in Table 1, only 2
SNP× E interactions (rather than 4) were simulated in scenarios
4 and 11, and βInts were in the opposite direction to βGs.
Therefore, detecting G × E and correctly specifying the sign for
γInt were more challenging under scenarios 4 and 11.

Regarding the computation time (Supplementary Figures
S22–S29), SBERIA is the fastest method, followed by the three
penalized regression methods: RIDGE, ENET, and LASSO.
ADABF uses the sequential resampling procedure (Liu et al.,
2016), and therefore, it takes a longer time in the presence
of G × E. A recent study concluded that ADABF is a
computationally feasible method in a GWAS context (Lin
et al., 2019). This is because in a real GWAS usually very
few genes can be detected to interact with E. Therefore, a
genome-wide analysis using ADABF takes a much shorter
time than the power evaluation performed here (power is
always evaluated in the presence of G × E). On average, the
iSKAT method requires the longest time in most situations
(Supplementary Figures S22–S29).

FTO × Exercise Interaction on Five
Obesity Measures
The FTO gene is obesity-associated and has been replicated by
many studies (Frayling et al., 2007; Scuteri et al., 2007; Fawcett
and Barroso, 2010). It spans from 53, 737, 875 to 54, 148, 379
base pairs on chromosome 16, according to the human genome
GRCh37/hg19 assembly. Similar to many gene-based tests (Liu
et al., 2010; Wray et al., 2012; Alonso-Gonzalez et al., 2019;
Lin et al., 2019), 50 kb in the 3′ and 5′ regions that might regulate
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FIGURE 3 | Percentages of sign-misspecifications for γInt, under continuous traits and P (E = 1) = 0.2.

a gene were also incorporated in our analysis. Specifying a large
boundary would be difficult to pinpoint the exact gene interacting
with E, whereas a small boundary may not fully capture the
regulatory regions (Liu et al., 2010). A total of 242 SNPs (all with
MAF > 1%) were included in this chromosomal region. Here,
we used the 6 G × E tests to investigate whether the influence
of FTO can be modified by performing regular physical exercise.
A total of five obesity measures were analyzed: body mass index
(BMI), body fat percentage (BFP), waist circumference (WC), hip
circumference (HC), and the waist-to-hip ratio (WHR).

Regular physical exercise was defined as engaging in 30 min
of “exercise” three times a week. “Exercise” indicated leisure-time
activities such as jogging, yoga, mountain climbing, or playing
basketball. According to the TWB questionnaire, activities during
work were not counted in “exercise.” Among the 18,424 subjects,
7,652 (41.5%) reported performing regular exercise, while 10,764
reported no regular exercise. A total of eight subjects did not
respond to this question. Covariates adjusted in all models
included sex, age (in years), educational attainment, drinking
status, smoking status, and the first 10 ancestry PCs.

Table 3 presents the results of six methods. We may miss
possibly important findings due to a harsh penalty of multiple
testing. Because this study focuses on G × E detection for
candidate genes, we set the significance level at 0.05. The results of
RIDGE show that regular physical exercise attenuates the adverse
effect of the FTO gene on BMI, BFP, WC, and HC. The other
three GRS-based tests (ENET, LASSO, and SBERIA) provided
significant results for three obesity measures, respectively. All
γ̂Ints were negative, indicating that regularly performing exercise
attenuates the adverse influence of FTO on obesity measures.

Genetic risk score-based tests are more powerful than iSKAT
and ADABF because performing regular exercise generally
blunted the effects of the trait-increasing alleles in FTO. Take

BMI-associated SNPs as examples. A total of 12 out of the 242
SNPs reached the genome-wide significance (p-value < 5× 10−8)
when testing H0 : βj = 0 vs. H1:βj 6= 0 in the following model:

E(Yi) = β0 + βjGij + β
′

CXi, (14)

Where Yi is BMI, Gij is the number of minor alleles (0, 1, or 2)
at the j-th SNP (j = 1, . . ., 242), and Xi is the vector of covariates
of the i-th subject (i = 1,· · ·, 18, 424). All β̂js of the 12 genome-
wide significant SNPs were positive, representing that their minor
alleles were associated with increased BMIs.

When exercise (Ei = 1 if yes; Ei = 0 if no) and the
SNP × exercise interaction were included in the 12 models,
as follows:

E (Yi) = β0 + βjGij + βEEi + βIntjGij × Ei + β
′

CXi,

j = 1,· · ·, 12,
(15)

all β̂js were positive, and all β̂Intjs were negative (j = 1,· · ·, 12).
This indicated that the minor alleles of the 12 SNPs were
associated with increased BMIs, but their effects were blunted by
performing regular exercise. As mentioned above, a βIntj in the
opposite direction to βj weakens the magnitude of marginal effect
of this SNP, and therefore β̂j from model (15) >β̂j from model
(14). This is a situation similar to our simulation scenario 9 in
Table 1, because exercise is associated with a decrease in obesity
measures. According to Figure 2 (scenario 9, 242 SNPs), RIDGE
is the most powerful test. In real data, the FTO gene harbors more
BMI-associated SNPs than our simulation scenario 9, and these
SNPs interact with E in the same direction. Therefore, GRS-based
tests are more powerful than iSKAT and ADABF.
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TABLE 3 | FTO × exercise interaction on five obesity measures.

Trait RIDGE ENET LASSO SBERIA iSKAT ADABF

BMI (kg/m2) γ̂Int −0.1743 −0.0821 −0.0964 −0.1482

PInt 0.0009 0.1192 0.0671 0.0067 0.2043 0.1700

Body fat % γ̂Int −0.2661 −0.2069 −0.2081 −0.2259

PInt 0.0031 0.0212 0.0205 0.0160 0.2430 0.2200

Waist circumference (cm) γ̂Int −0.3854 −0.3719 −0.3760 −0.2786

PInt 0.0052 0.0069 0.0063 0.0512 0.5369 0.3700

Hip circumference (cm) γ̂Int −0.3868 −0.3286 −0.3291 −0.2902

PInt 0.0001 0.0011 0.0011 0.0055 0.5061 0.3300

Waist-to-hip ratio γ̂Int −0.000116 −0.000775 −0.000374 −0.000314

PInt 0.8951 0.3773 0.6699 0.7308 0.7994 0.3100

Significant results with PInt < 0.05 are highlighted in bold values. Negative γ̂Ints sindicate that regular physical exercise attenuates the adverse influence of FTO on
obesity measures.

FIGURE 4 | The effect of GRS on the five obesity measures. The regression model was built as Obesity measure = β0 + βGRSGRS+ βCCovariates+ ε, where GRS
was obtained by RIDGE. (A–E) are results for BMI, BFP, WC, HC, and WHR, respectively. Three regression models were built for each obesity measure, one for all
18,424 subjects, one for 7,652 exercisers, and one for 10,764 non-exercisers. The bars represent β̂GRS on an obesity measure, and the black segments mark the
95% confidence intervals, i.e., [̂βGRS − 1.96 × standard error of β̂GRS, β̂GRS + 1.96 × standard error of β̂GRS]. Covariates adjusted in all models included sex, age
(in years), educational attainment, drinking status, smoking status, and the first 10 ancestry PCs.

According to RIDGE, each 1 SD increase in BMI-GRS was
associated with a 0.1743 kg/m2 lower BMI in exercisers than in
non-exercisers (p = 0.0009, Table 3). Each 1 SD increase in BFP-
GRS was associated with a 0.2661% lower BFP in exercisers than
in non-exercisers (p = 0.0031). Each 1 SD increase in WC-GRS
was associated with a 0.3854 cm lower WC in exercisers than
in non-exercisers (p = 0.0052). Each 1 SD increase in HC-GRS
was associated with a 0.3868 cm lower HC in exercisers than in
non-exercisers (p = 0.0001). As shown by Figure 4, except WHR,
GRS effect on each obesity measure was smaller in exercisers than
in non-exercisers. For each obesity measure, γ̂Int in Table 3 is
approximately equal to the length of blue bar – the length of red

bar in Figure 4. In the whole study population, each 1 SD increase
in BMI-GRS was associated with a 0.2420 kg/m2 (the length
of orange bar in Figure 4A) higher BMI (P = 1.1 × 10−20).
This association was stronger in non-exercisers than in exercisers
(PInt = 0.0009, Table 3). In non-exercisers, each 1 SD increase
in BMI-GRS was associated with a 0.3136 kg/m2 (the length
of red bar in Figure 4A) higher BMI (P = 3.4 × 10−18); in
exercisers, each 1 SD increase in BMI-GRS was associated with
a 0.1382 kg/m2 (the length of blue bar in Figure 4A) higher BMI
(P = 1.4 × 10−4).

Performing regular exercises is associated with an attenuation
of the adverse influence of the FTO gene on both WC and HC,
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but not on WHR because it is a ratio of WC to HC. This negative
result for WHR is in line with the result from polygenic analyses
(i.e., aggregating information of multiple nearly independent
SNPs across the genome) (Lin et al., 2019).

FGF5 ×WHR Interaction on Blood
Pressure Levels
In addition to binary exposures, we also provide an example for
continuous exposures. The FGF5 gene is associated with blood
pressure levels in Han Chinese (Liu et al., 2011; Lin et al., 2019).
FGF5 spans from 81, 187, 742 to 81, 212, 171 base pairs on
chromosome 4, according to the human genome GRCh37/hg19
assembly. Similar to many gene-based tests (Liu et al., 2010), our
analysis region also included 50 kb in the 3′ and 5′ regions that
might regulate the gene. A total of 38 SNPs (all with MAF >1%)
were included in this chromosomal region. It has been known
that central obesity is a risk factor for hypertension (Parrinello
et al., 1996). Therefore, we used the 6 G × E tests to investigate
whether the influence of FGF5 can be modified by an indicator of
central obesity, WHR. Covariates adjusted in all models included
sex, age (in years), drinking status, smoking status, and the first
10 ancestry PCs. As described above, a total of 18,424 unrelated
TWB subjects were included in our analysis, where 9,093 were
males and 9,331 were females.

Table 4 presents the results of six methods. All six tests
suggested the significance of FGF5 ×WHR interaction on DBP
and SBP (PInt < 0.05). Positive γ̂Ints from GRS-based tests
represent that a higher WHR exacerbates the adverse influence
of FGF5.

The above two examples demonstrate using GRS-based
methods to infer whether E attenuates or exacerbates the adverse
influence of a candidate gene (FTO and FGF5, respectively).

DISCUSSION

Detecting G × E has been an important but challenging issue.
Although set-based G × E tests have been evaluated in a
genome-wide context, very few genes have been found to interact
with some exposures at the genome-wide significance level
(i.e., p < 0.05

20000 = 2.5 × 10−6. Because there are ∼20,000
genes across the genome, 2.5 × 10−6 is the commonly used
significance level in genome-wide gene-based analyses) (Chen
et al., 2014; Lin et al., 2019). Searching for evidence of G × E for
candidate genes may still be a more feasible strategy.

It is common to see a GRS that aggregates information of
multiple nearly independent SNPs across the genome (Ahmad
et al., 2013; Rask-Andersen et al., 2017; Lin et al., 2019, 2020).
However, there have been few applications of using GRS in gene-
based G × E tests. In this work, we evaluate the performance
of GRS gene-based G × E approach, with simulations and real
applications. GRS-based tests can outperform other methods if
interactions tend to go in the same direction (Aschard, 2016). The
filtering stage of SBERIA overlooks LD among SNPs because it
considers L SNPs in L respective regressions (Eq. 8). RIDGE has
the advantage of accommodating LD among SNPs and providing
regression coefficients that lead to minimum MSE. Although
RIDGE has been used to address LD in genetic association
analysis (Malo et al., 2008), our study is the first attempt to use
the ridge regression to construct a GRS for G× E analyses. ENET
and LASSO can not only accommodate LD among SNPs, but they
also select SNPs by shrinking some regression coefficients to 0.

Although ENET has been suggested as a powerful G × E
test in pathway analyses (Huls et al., 2017; Huls et al., 2017),
in this study, we showed that its performance to find trait-
associated SNPs can be compromised if E attenuates the adverse
effect of a gene (simulation scenarios 2, 4, 7, 9, 11, and 14).
As a result, RIDGE is recommended if E attenuates the adverse
effects of most SNPs in a gene, as shown in the application of
FTO × exercise interaction on obesity measures (Table 3). In
contrast, if E exacerbates the adverse effects of most SNPs in a
gene, ENET and LASSO will be more powerful, as shown in the
application of FGF5×WHR interaction on SBP (Table 4).

In this work, we described how to use GRS approaches to
infer whether E attenuates or exacerbates the adverse effect of a
gene. GRS approaches can not only provide a p-value for G × E
but also infer how E interacts with the gene. The signs of γInt
were usually correctly specified except scenarios 4 and 11, where
only 2 SNP × E interactions were specified and their interaction
effects were in the opposite direction to the SNP main effects.
SBERIA usually makes more mistakes because its filtering stage
overlooks LD among SNPs by considering L SNPs in L respective
regressions (Eq. 8).

In the cross-over situations (simulation scenarios 5 and 12),
where E exacerbates the adverse effects of some SNPs but
attenuates the adverse effects of others, GRS approaches were
underpowered and ADABF became the most useful. None of the
six methods could outperform the others across all situations.
In this work, we performed simulations to explore the relative
performances of these six tests in detecting G × E and correctly
indicating the interaction direction.

TABLE 4 | FGF5 × WHR interaction on blood pressure levels.

Trait RIDGE ENET LASSO SBERIA iSKAT ADABF

DBP (mmHg) γ̂Int 0.2419 0.1980 0.2141 0.2378

PInt 0.0013 0.0082 0.0042 0.0014 0.0154 0.0096

SBP (mmHg) γ̂Int 0.3396 0.3548 0.3551 0.3261

PInt 0.0027 0.0017 0.0017 0.0039 0.0482 0.0480

Significant results with PInt < 0.05 are highlighted in bold values. Positive γ̂Ints sindicate that a higher WHR exacerbates the adverse influence of FGF5 on blood
pressure levels.
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To show the utility of GRS-based approaches, we provided
an example for binary exposure and an example for continuous
exposure: (1) FTO× exercise interaction on five obesity measures
(Table 3); (2) FGF5 × WHR interaction on blood pressure
levels (Table 4). The γInts in Table 3 were consistently negative,
representing that performing regular exercise attenuates the
adverse influence of the FTO gene on four obesity measures.
Moreover, γInts in Table 4 were consistently positive, indicating
that a higher WHR exacerbates the adverse effect of the FGF5
gene on blood pressure levels.

This work provides contributions to an important issue:
identify whether E attenuates or exacerbates the adverse influence
of a candidate gene. Genes exhibiting interactions with E are
usually difficult to detect and replicate (McAllister et al., 2017),
especially at the genome-wide significance level (2.5 × 10−6).
When testing for many genes simultaneously, even true positive
G × Es would have difficulty in standing out among all the noise
(Lin and Lee, 2010). Therefore, our discussions here are restricted
to candidate genes. As TWB keeps recruiting more subjects, in
the future we look forward to performing genome-wide G × E
analyses on a larger TWB cohort.
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