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Purpose: Tinnitus is a common but obscure auditory disease to be studied. This study
will determine whether the connectivity features in electroencephalography (EEG) signals
can be used as the biomarkers for an efficient and fast diagnosis method for chronic
tinnitus.

Methods: In this study, the resting-state EEG signals of tinnitus patients with different
tinnitus locations were recorded. Four connectivity features [including the Phase-locking
value (PLV), Phase lag index (PLI), Pearson correlation coefficient (PCC), and Transfer
entropy (TE)] and two time-frequency domain features in the EEG signals were extracted,
and four machine learning algorithms, included two support vector machine models
(SVM), a multi-layer perception network (MLP) and a convolutional neural network
(CNN), were used based on the selected features to classify different possible tinnitus
sources.

Results: Classification accuracy was highest when the SVM algorithm or the MLP
algorithm was applied to the PCC feature sets, achieving final average classification
accuracies of 99.42 or 99.1%, respectively. And based on the PLV feature, the
classification result was also particularly good. And MLP ran the fastest, with an average
computing time of only 4.2 s, which was more suitable than other methods when a
real-time diagnosis was required.

Conclusion: Connectivity features of the resting-state EEG signals could characterize
the differentiation of tinnitus location. The connectivity features (PCC and PLV) were
more suitable as the biomarkers for the objective diagnosing of tinnitus. And the results
were helpful for clinicians in the initial diagnosis of tinnitus.

Keywords: tinnitus location, objective recognition, resting-state EEG, connectivity features, deep learning
algorithms
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INTRODUCTION

Tinnitus refers to patient’s perception of sound in the ear without
any external sound or electrical stimulation. Clinically, tinnitus is
divided into subjective and objective tinnitus, and most patients
report subjective tinnitus (Smit et al., 2015). There are 5–15%
of people in the world who have experienced tinnitus, among
them, 1–3% of tinnitus patients’ everyday life is seriously affected
and need medical treatment (Tunkel et al., 2014; Gallus et al.,
2015). Because tinnitus is a subjective perception for patients, its
clinical detection and treatment are significant challenges (Pan
et al., 2009). A multidisciplinary European guideline for tinnitus
points out uniformity in the assessment and treatment of adult
patients with subjective tinnitus (Cima et al., 2019). However, for
the initial diagnosis of tinnitus, an efficient and objective method
for recognizing and diagnosing tinnitus is still urgently needed.

Tinnitus is a health condition, not a disease. It is a
symptom of pathological neurological activity that manifests as
an unwanted auditory hallucination (Henry et al., 2020), and
the complex pathophysiologic mechanism of tinnitus is still
poorly understood.

On a sensory level, tinnitus is assumed to be caused by
cochlear damage, but many tinnitus patients have normal
audiograms, that is, there are no direct signs of cochlear damage
(Schaette and McAlpine, 2011; Eggermont and Roberts, 2012).
And the severance of the auditory nerve does not eliminate the
sensation of tinnitus, and tinnitus is also not associated with the
excessive activity of the auditory nerve (Müller et al., 2003). In rat
experiments, the degree of reorganization of the auditory cortex is
related to the intensity of tinnitus (Engineer et al., 2011). Tinnitus
may originate in the dorsal cochlear nucleus (DCN) (Krauss et al.,
2016), which is the auditory brainstem. The pathological changes
in the activity of spontaneous neurons in the auditory brainstem
can drive the reorganization of the auditory cortex (Rauschecker
et al., 2010). A survey of rock musicians who felt transient tinnitus
after practicing in a loud band (∼120 dB SPL for ∼2 h), showed
that the gamma frequency power of the right temporal cortex was
significantly increased during the appearance of transient tinnitus
(Schlee et al., 2011), and importantly, which was not correlated
with the degree of hearing loss (Ohlemiller et al., 2011).

On a macroscopic level, tinnitus was related to abnormally
oscillating brain activity patterns (Schoisswohl et al., 2021), and
neuroimaging studies also showed that there was a hyperactive
auditory cortex during tinnitus (Mirz et al., 1999; Cunnane,
2019). Weisz et al. (2005) found that there was a significant
enhancement of delta (1–4 Hz) and gamma (40–90 Hz) frequency
power and a concomitant reduction of alpha (8–12 Hz) activity
in tinnitus patients, and these changes mainly occurred in
the temporal area. This statement was very consistent with
the thalamocortical dysrhythmia model (TCD) (Llinás et al.,
2005; Vanneste et al., 2018). A decrease in alpha power was
associated with an increase in cortical excitability (Sauseng et al.,
2005; Klimesch et al., 2007; Romei et al., 2008), the alpha
desynchronization observed in chronic tinnitus reflected the
release of inhibition, and thus facilitated the synchronization
of neuronal activity. The synchronization by loss of inhibition
model (SLIM) also supported this view, which explained the

enhanced synchronization of auditory activity by a reduction of
cortical inhibition (Weisz et al., 2007). However, the changes in
brain activity that accompany tinnitus were not limited to the
auditory cortices, a global brain model of tinnitus pointed out
the phase coupling between the anterior cingulate cortex (ACC)
and the right frontal lobe and the phase coupling between the
ACC and the right parietal lobe were related to tinnitus. At
the same time, in participants with a shorter tinnitus history,
the gamma network was mainly distributed in the left temporal
cortex, while in participants with a longer tinnitus duration,
the gamma network was more widely distributed throughout
the cortex (Schlee et al., 2011). This also reminded us of the
potential relationship between the global brain function network
connection and tinnitus.

Schlee et al. (2008) showed the existence of a tinnitus network
by using a magnetoencephalogram (MEG) and found a wide
range of abnormal functional connections in the brain. When
conducting brain network anatomy research, we should focus
on the spatial information interaction between brain regions and
nodes (Zhang X. et al., 2021). Different brain regions did not work
independently of each other, instead, they were connected in
various long-distance networks (Bressler and Menon, 2010). One
study on tinnitus patients found aberrant functional connectivity
within the default mode network (DMN) (Cai et al., 2019).
Chronic tinnitus patients had abnormal functional connectivity
networks originating from ACC to other brain regions that
were associated with specific tinnitus characteristics (Chen et al.,
2018). Therefore, the brain functional network information may
be a potential biomarker for tinnitus. Though those existing
studies have evidenced the abnormal functional network in
tinnitus patients, whether functional connection information can
be used as the biomarker for tinnitus is less probed in previously
reported studies.

In past studies, the time-domain features (rhythm signals)
and frequency-domain features (power spectral density, PSD)
of EEG signals were usually used as biomarkers to distinguish
tinnitus and non-tinnitus, but these features were not obvious,
and the accuracy of the identification was as high as 87% (Wang
et al., 2017; Vanneste et al., 2018). We hope that functional
connectivity features can better reflect the pathological features
of tinnitus, and it will greatly improve the accuracy of the
identification of tinnitus by using functional connectivity features
as the biomarker.

At the same time, among studies that reported the localization
of tinnitus-related signals, in about half of tinnitus patients,
the percept occurred in the middle of the head or both ears.
For others, tinnitus was perceived to be mainly on the left
side, and some patients even feel that their tinnitus came from
outside of the head (Baguley et al., 2013). The tinnitus might
be heard as unilateral or bilateral (Meikle and Taylor-Walsh,
1984), some studies pointed out unilateral tinnitus was more
commonly associated with underlying disease processes than
bilateral tinnitus (Chari and Limb, 2018). Therefore, determining
the location of tinnitus was one of the most important steps for
the treatment of tinnitus in the cortex (Lee et al., 2019), because
this information determined the type or order of treatments
that the patient was given (Herraiz, 2008), and which might
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also enable us to probe the neurophysiology of tinnitus in ways
heretofore not considered (Searchfield et al., 2015). If we can
identify tinnitus symptoms and determine the location of tinnitus
by using functional connectivity features, it will be of great
help for clinicians.

Our research aim is to find the optimal solution for the
objective recognition of possible tinnitus sources. As far as
we know, there is no reference for the selection of functional
connectivity features in the field of tinnitus recognition. We
considered three functional connectivity features that were
widely used in the field of emotion recognition (Lee and
Hsieh, 2014; Gao et al., 2020; Moon et al., 2020), including
the PCC, PLV, and TE. At the same time, the PLI was also
included by us as a connected feature. PLV and PLI can
measure the phase synchronization between time series nodes,
and PCC and TE can measure the correlation between time
series nodes, both of which can represent the connection status
of network functions. At the same time, we also selected the
mean and standard deviation of the rhythm of the six bands
of EEG, such as δ delta (1–3.5 Hz), θ theta (4–7.5 Hz), α

alpha (8–12 Hz), β beta (12.5–30 Hz), low γ gamma (30.5–
48 Hz) and high γ(52–90 Hz), as well as the PSD, as the
comparison features. We selected four classification algorithms,
included two SVM, a MLP, and a CNN, to combine with the
extracted features.

MATERIALS AND METHODS

Participants
Participants with chronic tinnitus were recruited from the
Otolaryngology-Head and Neck Surgery Department of Chinese
PLA General Hospital and other hospitals from October 2018
to July 2019. Participants without tinnitus and hearing loss were
recruited from the general population.

All participants in the tinnitus group had signs of definitive
tinnitus for at least 3 months, and they also had normal hearing
on the conventional hearing tests. Normal hearing was defined as
follows: (1) A pure tone audiometric (PTA) threshold of 25 dB
hearing level (HL) or better for all octave frequencies from 250 to
8,000 Hz; (2) transient evoked otoacoustic emission (OAE) with
a signal-to-noise ratio (SNR) > 5 dB and a distortion product
OAE with an SNR > 3 dB on OAE tests; (3) a waves I-III
inter-peak latency < 2.4 ms and a wave V latency < 6.2 ms
on 90 dB nHL click-evoked auditory brainstem response (ABR)
tests; and (4) a normal tympanic membrane on otoscopy (Ahn
et al., 2017). It had been proposed that the people with tinnitus
who showed normal audiograms could have hidden hearing loss
defined as damage to the auditory nerve fibers (Gollnast et al.,
2017; Tziridis et al., 2021). Despite these possibilities, all patients
with tinnitus in this study showed normal latencies in waves
I-III of the ABRs and normal OAEs, which usually indicated
the integrity of the peripheral auditory nerves (Møller et al.,
1981; Møller and Jannetta, 1982) and normal function of the
cochlear hair cells (Kemp, 1978; Mills and Rubel, 1994). To
reduce the possibility of including patients with hidden hearing
loss, and to ensure the cognitive abilities between patients and

healthy participants were comparable, we included subjects who
(1) were between 20 and 50 years old; (2) had no current or
previous history of vertigo, Meniere’s disease, noise exposure,
hyperacusis, or psychiatric problems; (3) had no history of head
trauma or central nervous system disease and no anxiety or
depression; (4) were not exposed to ototoxic drugs; and (5)
had no complex or poorly defined tinnitus. Additionally, all
patients completed a tinnitus questionnaire, which included a
visual analog scale (VAS) and the Tinnitus Handicap Inventory
(THI) questionnaire.

Forty-two participants with valid EEG data were selected
for the study, which included 10 healthy participants, 12
bilateral tinnitus patients, 8 right-sided tinnitus patients,
and 12 left-sided tinnitus patients (Table 1). The difference
between the age and sex or duration of all participants was
analyzed using the between-group t∼test, and p > 0.05.
There was not a significant difference between these groups
in terms of age and sex or duration. All participants were
informed about the background and purpose of this study,
and they all gave written informed consent. This study
complied with the ethical principles of the Declaration
of Helsinki.

Electroencephalography Recordings
The 64-channel Neuroscan device recorded the EEG signals. The
electrode position was set according to the international 10–20
electrode distribution. The sampling rate was 1,000 Hz, and the
impedances were kept below 10 k�. During the EEG recording,
the participants were asked to stay still, awake, and close their
eyes in a sound and electrically shielded room. Each participant’s
resting-state EEG signals were recorded for an estimated 10 min.
According to reports, the global connectional properties in the
brain stabilize with acquisition times as little as 5 min (van Dijk
et al., 2010). And to ensure the availability of data, after acquiring
the EEG data, the subject was asked whether he\she was sleepy
during the resting state.

Data Preprocessing
We used MATLAB-EEGLAB v14.1.2 toolbox for preprocessing.
First, we performed interpolation processing on the insufficient
lead data and deleted abnormally fluctuating time-period signals.
Then, EEG signals were filtered by 50 Hz power frequency
and bandpass-filtered to 0.5–90 Hz. Some research methods
directly performed 0.5–48 hz band-pass filtering and ignored
the beneficial components in the high-frequency signal, but the
high-frequency γ rhythm (52–90 hz) was also related to tinnitus
(Pierzycki et al., 2016). Next, baseline correction and REST re-
reference of EEG signals (Yao, 2001) were performed. Last, the
interference signals in EEG signals include ocular electricity,
electrocardiogram (ECG), and other artifacts were filtered out
by independent component analysis (ICA). The preprocessed
signals were segmented at an interval of 10 s to expand the
sample capacity.

Thalamocortical dysrhythmia (TCD) was a model proposed to
explain divergent neurological disorders (Vanneste et al., 2018),
which utilized the resting-state EEG signals of the left and right
auditory cortex (AUD) areas to perform oscillation analysis of
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TABLE 1 | Overview of the patients with tinnitus.

Number Sex Age (year) Localization Duration ( ) Tinnitus frequency (kHz)

1 Female 21 Both ears 2 y 4

2 Male 25 Both ears 3 y 0.5

3 Male 23 Both ears 3 y 8

4 Male 43 Both ears 1 y 6 m 4

5 Male 50 Both ears 6 y 4

6 Male 40 Both ears 8 y 4

7 Male 32 Both ears 1 y 4

8 Male 29 Both ears 0 y 3 m 4

9 Female 25 Both ears 0 y 6 m 0.5

10 Female 31 Both ears 5 y 4

11 Female 36 Both ears 5 y 4

12 Female 48 Both ears 7 y 4

13 Female 37 Right ear 4 y 0.125

14 Female 44 Right ear 0 y 4 m 8

15 Female 50 Right ear 1 y 3

16 Male 28 Right ear 0 y 3 m 4

17 Female 45 Right ear 0 y 3 m 8

18 Male 42 Right ear 1 y 0.5

19 Male 30 Right ear 3 y 4

20 Female 44 Right ear 1 y 8

21 Male 31 Left ear 1 y 0.5

22 Female 31 Left ear 0 y 6 m 0.125

23 Female 45 Left ear 0 y 6 m 0.125

24 Male 37 Left ear 0 y 3 m 0.125

25 Male 42 Left ear 0 y 6 m 0.2

26 Male 25 Left ear 0 y 3 m 6

27 Female 38 Left ear 0 y 3 m 0.15

28 Female 25 Left ear 0 y 4 m 1

29 Female 46 Left ear 1 y 2.175

30 Female 45 Left ear 5 y 6

31 Male 48 Left ear 1 y 4

32 Female 28 Left ear 0 y 5 m 4

FIGURE 1 | Cortical areas are associated with tinnitus (Vanneste et al., 2018). dACC dorsal anterior cingulate cortex, sgACC subgenual anterior cingulate cortex,
PCGC posterior cingulate cortex, AUD auditory cortex, PHC parahippocampus, INS insula.

tinnitus disorders (Figure 1), including the parahippocampus
(PHC), the dorsal anterior cingulate cortex (dACC), the
subgenual anterior cingulate cortex (sgACC), the posterior
cingulate cortex (PCGC) and the right insula (rINS). Imaging

studies in patients with tinnitus had shown functional and
structural abnormalities distributed in the auditory areas of
the brain, including the cingulate cortex, PHC, and INS, and
there was an increase in the activation of ACC and INS
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(Elgoyhen et al., 2015). Therefore, this study also selected the
channel data of the auditory cortex on the left and right sides
of the brain to be included in the next calculation and analysis,
as shown in Figure 2, the channels including FT7, FC5, C5, T7,
TP7, CP5, FC6, FT8, C6, T8, CP6, TP8. The efficiency of data
processing can be greatly improved by reducing the calculation
of channel data, and this targeted reduction will not make us lose
important reference information. In the future, we may apply
this research method to clinical diagnosis. As we all know, the
12-channel EEG acquisition experiment is easier than the 64-
channel acquisition experiment, and the simplified method can
also improve the efficiency of clinical diagnosis.

Connectivity Measures
Four different connectivity measures were used in this study:
PLV, PLI, PCC, and TE, which denoted the connection
characteristics between different EEG channel signals. This study
also considered the time-frequency domain features, including
the rhythm and PSD.

Phase Locking Value
The PLV (Lachaux et al., 1999) denotes the phase synchronization
between two signals, which is calculated as the average of the
absolute phase difference. The value range of PLV is from 0 to
1, indicating perfectly independent or perfectly synchronization

FIGURE 2 | Channel selection display. The highlighted channels cover the auditory cortex on the left and right sides of the brain, and these channel data were used
for subsequent analysis to improve the efficiency of clinical diagnosis.
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TABLE 2 | CNN-LSTM model architecture.

Layers Types Activation function Output shape Size of kernels Filters/units Stride Rate of dropout

0 Input – 1 × 66 – – – –

1 1DCNN Relu 1 × 16 3 × 1 16 1 –

2 1DCNN Relu 1 × 32 3 × 1 32 1 –

3 LSTM Tanh 1 × 32 – 32 – –

4 LSTM Tanh 32 – 32 – –

5 Batch normalization – 32 – – – –

6 Flatten – 32 – – – –

7 Dense Relu 16 – 16 – –

8 Dropout – 16 – – – 0.2

9 Dense Relu 8 – 8 – –

10 Dropout – 8 – – – 0.2

of the two signals, respectively. PLV is also an undirected
connectivity feature.

PLV
(
i, k
)
=

1
T

∣∣∣∣∣
T∑
t=1

(
ϕt
i − ϕt

k
)∣∣∣∣∣

Where ϕt is the phase of the signal at time t.

Phase Lag Index
PLI (Stam et al., 2007) is also a measure of phase synchronization.
PLI between the signals is defined as follows:

PLI
(
i, k
)
=

1
T

T∑
t=1

sgn (Im(Zi(t)Zk(t)∗))

where Zi(t) and Zk(t) for t = 1, . . ., T is the time-frequency
representations of i and k signal in a given frequency band, note
that Zi and Zk are complex-valued, Sgn denotes the sign function
and the superscript, ∗ denotes complex conjugation.

Pearson Correlation Coefficient
The PCC measures the linear relationship between two signals
as a continuous number in [−1,1]. PCC values of −1 and 1
correspond to perfectly negative and positive linear relationships,
respectively, and a PCC value of zero indicates that the two signals
are not correlated. Let xi

{
x1
i , x

2
i , . . . . . ., xTi

}
indicate an EEG

signal of the ith electrode, where T is the time length of the signal.
The PCC of two signals xiand xkis calculated as:

PCC
(
i, k
)
=

1
T
∑T

t=1
[(
xti − µi

)
∗
(
xtk − µk

)]
σi ∗ σk

where µ and σ are the mean and standard deviation of the
signal, respectively.

Transfer Entropy
The TE (Schreiber, 2000) describes the directed flow of
information from a signal xi to another signal xk:

TE
(
i→ k

)
=

1
T − 1

T−1∑
t=1

[
p
(
xti , x

t
k, x

t+1
k
)
∗ log2

(
p
(
xt+1
k

∣∣ xti , xtk)
p
(
xt+1
k

∣∣ xtk)
)]

A TE value of zero indicates that there is no causal relationship
between the two signals, and TE belongs to the directed
connectivity feature.

Classification Methods
We selected four different machine learning algorithms to avoid
the classification differences caused by the algorithm itself. The
first two were the support vector machines (SVM) with a linear
kernel function and two different cross-validation methods to
improve the classification accuracy of the model, one was leave-
one-out cross-validation (Loo-CV), and the other was 10-fold
cross-validation (10-CV); The third was a multi-layer perception
network (MLP), with parameter settings: the optimizer was
“adam”, the alpha was 10−7, the hidden layer nodes were 200
for each of the two layers, the maximum number of iterations
was 380, the initial learning rate was 0.001, and other parameters
were the default parameter settings; The fourth was convolutional
neural network (CNN) with long short-term memory model
(CNN-LSTM), the layer details and parameters used for the
CNN-LSTM model were shown in Table 2. All classification
algorithms developed in the open-source Python libraries Scikit-
Learn and TensorFlow.

In this study, a total of 2,312 valid segment data were
calculated (including data from the healthy control group and
three types of tinnitus patients), and the category calibration
was completed for each valid segment, 1,622 groups were
randomly selected as the training set, and 690 groups as the
validation set. Each group of classification tests was repeated
10 times, and the results were the average of the classification
accuracy and model computing time, respectively. The computer
configuration: CPU Core I5 8th generation processor, GPU AMD
R620, the highest frequency 1.8 GHz, and the running memory
16 GB. It is necessary to explain that the difference in calculator
configuration will bring about differences in computing power
and model computing time.

Statistical Analysis
The one-factorial ANOVAs and the Kruskal-Wallis ANOVAs
(non-parametric) methods were used in the statistical analysis in
this article. We used the one-factorial ANOVAs to analyze the
recognition accuracy of the same feature combined with different
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machine learning algorithms (Figure 3) which could test whether
there were significant differences between different classification
methods. At the same time, the Kruskal-Wallis ANOVAs (non-
parametric) were utilized to evaluate the calculation time for
different approaches.

It is known from the literature that low-frequency tinnitus
(LFT) is perceived and processed differently from high-frequency
tinnitus (HFT) (Zhang et al., 2020). However, in the tinnitus
participants recruited in this study, we did not deliberately
distinguish between patients with LFT or HFT. Among the
tinnitus participants recruited in this study, there were two LFT
patients and ten HFT patients in the bilateral tinnitus group;
seven LFT patients and five HFT patients in the left-sided tinnitus
group; and two LFT patients and five HFT patients in the right-
sided tinnitus group. To explore whether the EEG data of patients
with LFT or HFT has an impact on the diagnostic methods
of this study, we selected the left-sided tinnitus group with an
almost balanced LFT and HFT for testing. We combined the LFT
and HFT in the left-sided tinnitus group with the data of the
same healthy control group into a new data set and then used
the method in this study to classify tinnitus disorders. Next, we
used the one-factorial ANOVAs method to evaluate the difference
between the LFT and HFT during using different combinations of
methods (Figure 4).

We also did a statistical analysis of the two connectivity
features PCC and PLV with excellent recognition accuracy, and
the results are shown in Figure 5. Both the green block and the
blue block indicated that there were significant differences in the
feature data between the healthy control group and the tinnitus
group in this area, and the green block was the difference area
that both existed in the three tinnitus groups.

FIGURE 3 | Comparison of the classification accuracy in different
combinations of classifiers and features. Four machine learning algorithms
were used to calculate the six feature data sets one by one to distinguish the
healthy group and the three types of tinnitus patients. For the same feature
set, the classification accuracy of the four models were significantly different
(∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005). And the standard deviation showed
that the SVM and MLP models were more stable than the CNN model.

RESULTS

Results for Classification
Table 3 shows the results of the SVM-LooCV, SVM-10CV, MLP,
CNN-LSTM algorithms when classifying data based on Rhythm,
PSD, PLI, PLV, PCC, TE features alone or the combination of
PCC and PLV features. Figure 3 shows classification accuracy
using four methods with different features (PLI is not mentioned
here because its identification result is lower than other features).
As can be seen from Table 3, classification accuracy is better
when using connectivity features, especially PLV, PCC, and TE.
The SVM-10CV classifier based on the PCC feature shows the
highest classification accuracy (99.42%), and included the PLV
feature achieves an accuracy of 98.9%, at the same time, the MLP
classifier based on the PCC feature achieves an accuracy of 99.1%
and included the PLV feature achieves an accuracy of 98.7%.
These four combinations of classifier and alone feature are the
best result so far.

At the same time, the statistical analysis of the calculation
results shows that there are significant differences in the
recognition accuracy of different classification models (p < 0.01).
The standard deviation can show that the SVM and MLP models
are more stable than the CNN model. The possible reason is that
CNN needs a larger sample size to make the experimental results
more accurate and stable.

Comparing the classification results from Table 3 and
Figure 3, it is shown that the use of the PLV or PCC features
results in about 6.5% higher classification accuracy than the
PSD feature, regardless of the classification algorithm, and the
difference is even greater than Rhythm feature. Thus, PLV and
PCC show to be more suitable than other features when used to
classify tinnitus.

In addition to the classification accuracy, there is another
important factor for judging the quality of a classifier, which
is computing time. As can be seen from Table 3, there are
significant differences in the average calculation time of the four
model algorithms (p < 0.001). The computing time of SVM-
LooCV and CNN-LSTM is similar, and they are the longest in the
four classifiers. Compared with them, the computing efficiency
of SVM-10CV is improved by 2.4 times. And MLP runs the
fastest, with an average computing time of only 4.2 s, which
is 52 times that of CNN-LSTM and 120 times that of SVM.
Thus, MLP is more suitable than other methods when a real-time
classification is required.

There was a difference in the recognition accuracy between
LFT patients and HFT patients, as shown in Figure 4. Among the
groups that showed significant differences (p < 0.05), only when
the SVM-10CV combined with PLI, the recognition accuracy of
HFT patients was lower than LFT patients. And the other groups
were all HFT patients with better recognition results, which were
1.92% higher on average. The MLP classifier based on the PLV
or PCC feature had the best comprehensive performance in this
article. The MLP classifier combined with PLV features had very
significant differences in the classification results of LFT and
HFT, and the classification accuracy of HFT was 0.54% higher
than that of LFT. Although the average classification accuracy
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FIGURE 4 | Differences between LFT and HFT in left-sided tinnitus patients in the combination of different methods. There were some combinations that showed a
significant difference between LFT and HFT (*p < 0.05, **p < 0.01, ***p < 0.005). Among the groups that showed significant differences (p < 0.05), only when the
SVM-10CV combined with PLI, the recognition accuracy of HFT was lower than LFT. And the other groups were all HFT with better recognition results.

of LFT patients was higher than that of HFT patients, there
was no significant difference between them during the MLP
classifier based on the PCC feature. In summary, the impact
of LFT and HFT in this method was very small, and would
not affect the identification of the location of tinnitus with low-
frequency and high-frequency. However, this did not mean that
we denied the difference between LFT and HFT, and it was also
worthy of attention.

The calculation idea of SVM is to find the most suitable
“linear segmenter,” also called hyperplane, for the input data
set. This process generally needs to project the data set into a
high-dimensional space, and the kernel function keeps working
to find a hyperplane that can converge. It is more suitable
for two classification problems, but for multi-class classification
problems, it takes a long time. The calculation idea of the MLP
network is to map a set of input vectors to a set of output
vectors. It is a process of continuous simplification through the
calculation of non-linear activation functions, so the calculation
speed of the MLP is the fastest. In addition, it also has a
back-propagation mechanism, which can continuously optimize
the weight coefficients, and ultimately make the prediction
error smaller and smaller. CNN is more commonly used in
the classification of two-dimensional data, such as image data.
However, the EEG data this time is one-dimensional data,
which does not fully utilize the operating capabilities of the
model. This may also be the reason for the poor performance
of the model. During the analysis of the connectivity feature

matrix, we assume that if the two-dimensional data of the
matrix is used as the feature input in the future, it is likely to
improve the classification accuracy and calculation efficiency of
tinnitus again.

Relationship of Connectivity Features
and Tinnitus
In this paper, the classification accuracy of features PLV and
PCC are excellent and stable. Therefore the values of PLV
and PCC between each of the 12 selected channels are used
to construct functional connection matrices for subsequent
analysis. Since PLV and PCC are both undirected connection
characteristics, there is only one value between the two channels,
so in Figure 6, the upper left area represents the PLV matrices,
and the lower right area represents the PCC matrices. Visual
inspection shows clear differences in the PLV matrices and
PCC matrices.

In Figure 5, the significant differences in most regions
show the effectiveness of the two connectivity features (PLV
and PCC) as biomarkers for tinnitus. In addition to areas
with significant differences in common, there are many areas
with significant differences in a single disease. Which also
improves the classification accuracy of different localizations
of tinnitus.

We use the method of multidimensional cluster statistics
(MCS) to analyze the connectivity feature value from another
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FIGURE 5 | Statistical analysis of Phase lock value and Pearson correlation coefficient matrix. Both the green block and the blue block indicated that there were
significant differences (p < 0.05) in the feature data between the healthy control group and the tinnitus group in this area, and the green block was the significant
difference area that both existed in the three tinnitus groups.

TABLE 3 | Classification accuracy and computing time using four methods with different features.

Features SVM-LooCV SVM-10CV MLP CNN-LSTM

Accuracy Times Accuracy Times Accuracy Times Accuracy Times

Rhythm 90.09 480 89.7 420 88.9 4.6 91.3 502

PSD 88.88 540 93.27 150 92.76 3.5 68.5 533

PLV 93.16 366 98.9 142 98.7 3 96.5 474

PLI 45.65 600 54.7 220 52.9 6.8 43 570

PCC 95.24 300 99.42 104 99.1 3 94.4 578

TE 82.09 600 97.9 390 95.2 5.2 90.3 461

PLV+PCC 92.3 800 98.5 120 98.7 3.3 98.9 470

perspective, the MCS allows for a comparison of clusters
of data points in multidimensional space, and which can
quantify the similarities and dissimilarities of cortical activation
patterns across recording channels (Krauss et al., 2018). First,
multidimensional scaling (MDS) is used to reduce the dimension
of the connection matrix (Burt and Torgerson, 1959; Kruskal,
1964a,b), then we visualize the data, and we calculate the
Euclidean distance between points (channels) and perform
clusters division finally (Figure 7). First, we look at the cluster
analysis of the PLV. There are three similar connectivity
activations (SCA) between the channels on both sides of the
brain in the healthy control group. Compared with the healthy

control group, the SCA between the channels on both sides
of the brain is reduced to one in the bilateral tinnitus group,
and there is one SCA on the right side of the brain at the
same time. In the left-sided tinnitus group, there are two SCA
on the right side of the brain, and there is also one SCA on
the left side of the brain. In the right-sided tinnitus group,
there are two SCA on the left side of the brain. Although
it contains one channel on the right side of the brain, most
of the similar channels are located on the left side of the
brain. Then, we look at the cluster analysis of the PCC. There
are two SCA on the left side of the brain and one SCA
between both sides of the brain in the healthy control group;
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FIGURE 6 | Phase lock value and Pearson correlation coefficient matrix. PLV and PCC are both undirected connection characteristics, there is only one value
between the two channels. The upper left area represents the PLV matrices and the lower right area represents the PCC matrices in each picture. Visual inspection
shows clear differences in the PLV matrices and PCC matrices. The value range of PLV is from 0 to 1, indicating perfectly independent or perfectly synchronization of
the two signals, respectively. PCC values of –1 and 1 correspond to perfectly negative and positive linear relationships, respectively, and a PCC value of 0 indicates
that the two signals are not correlated. (A) Healthy control group. (B) Bilateral tinnitus group. (C) Left-sided tinnitus group. (D) Right-sided tinnitus group.

The binaural tinnitus group also has two SCA between both
sides of the brain, and the similarity is stronger, compared to
the healthy control group, the SCA on the left side of the
brain disappears. Compared with the healthy control group,
the left-sided tinnitus group has two new SCA on the right
side of the brain, but the SCA between both sides of the
brain disappears. Compared with the left-sided tinnitus group,
the right-sided tinnitus group has stronger SCA on the right
side of the brain, and the SCA between both sides of the
brain also appears.

DISCUSSION

Two cross-validation methods were selected to match the
SVM algorithm model which greatly improve the classification
accuracy of the SVM classifier, but they also increased the
calculation time, especially the Loo-CV. The SVM model with
the Loo-CV always used almost 100% data in each training. It
was very effective for small sample classification problems, but
when the sample size became larger (for example, this experiment
had 2,300 data samples), the calculation time of the model
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FIGURE 7 | The data point clusters of multidimensional scaling of connectivity feature value were obtained by multidimensional cluster statistics. The highlighted
area was a cluster of data points. The channels in the same cluster were highlighted with the same color in the brain topographic map, and which is in the upper
right area of each picture. (1) Clusters of data points of PLV; (2) Clusters of data points of PCC.
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would be greatly increased, which also meant that the model
was not suitable for real-time diagnostic evaluation. Compared
with SVM, the classification efficiency of MLP was higher, mainly
because the core solution of the classification model was different.
The former was to find the global optimal solution, while the
latter was the local optimal solution, so the calculation speed
of the MLP was faster. At the same time, the classification
accuracy of MLP was also close to SVM, which was more suitable
for real-time diagnostic evaluation. Similarly, the CNN model
usually performed multi-layer pooling of data, the computational
efficiency was not too high, and the running time was close
to the worst SVM-LooCV. The statistical results also showed
that the classification accuracy obtained by different methods
had significant differences (p < 0.01). In other words, the four
machine learning models had significant differences. And MLP
model performed excellently in the four model algorithms in
terms of classification accuracy and computing time.

The classification accuracy of PCC or PLV features in the
four classification models was better than other features, which
verified that the functional connectivity feature, especially PCC
or PLV, was more suitable as a biomarker of tinnitus. However,
the result of the PCC+PLV was not better than the accuracy
of a single feature, and there was a reduction. In the future,
we should adopt a more effective combination mechanism to
improve the classification accuracy, for example, extracting the
more relevant parts of the single feature for combination. In the
left-sided tinnitus group, there is a significant difference in the
classification accuracy of LFT patients and HFT patients, but the
difference in the recognition accuracy of the two is very small.
And it will not affect the diagnosis of tinnitus location. In our
research on the identification of tinnitus location, the difference
between LFT and HFT patients can be ignored.

A recent study on the neural connection of tinnitus recruited
a group of special tinnitus patients who can actively turn on
the state of tinnitus through physical stimulation or sound
stimulation (Zhang J. et al., 2021). The study noted that the
occurrence of unilateral tinnitus would have an effect on the EEG
signals in the contralateral brain area by locating the EEG signals
source, and the symptoms of bilateral tinnitus mainly affected
the EEG signals in the left side of the brain. Still, this conclusion
might have individual differences because the data was only from
one participant. Some research supported that the changes in the
EEG signals in the left auditory area were related to the formation
of tinnitus and did not distinguish the effects of unilateral and
bilateral tinnitus (Ashton et al., 2007; Schecklmann et al., 2013).

In this study, the cluster analysis of the PLV and PCC showed
that bilateral tinnitus mainly affected the connectivity of the
auditory cortex on both sides of the brain and the connectivity
of the right or left auditory cortex. The left-sided tinnitus mainly
affected the connectivity of the right auditory cortex. And the
right-sided tinnitus affected the connectivity of the left auditory
cortex, and it also affected the connectivity of the right auditory
cortex. An interesting finding was that tinnitus patients always
had increased causal connectivity on the right side of the brain
(Cai et al., 2020).

As far as we know, there is no previous study on the
objective classification of tinnitus location through neural

network algorithms, and this study also confirms that functional
connectivity features, especially PCC or PLV, are more efficient in
identifying the location of tinnitus. This study provides evidence
for the effectiveness of the functional connectivity features of
resting-state EEG as biomarkers for tinnitus.

In addition, an epidemiologic perspective on tinnitus pointed
out that the prevalence of tinnitus among military veterans
was relatively high. In a tinnitus screening survey for veterans,
the prevalence rate reached 63%, and the participants were
young veterans with an average age of 34.8, who had been
out of the army for less than 3 years. A more noteworthy
problem was that only approximately 20% of them would
seek clinical intervention, and most of them respected tinnitus
as being “not a problem” or “a small problem” (Henry
et al., 2020). If we realize the rapid detection and objective
diagnosis of tinnitus, it will greatly improve the life happiness
index of military veterans, and this is especially true for the
general population.

This study also has certain limitations. Considering that we
want to carry out the objective diagnosis of tinnitus more
conveniently in the future, we utilize 12-channel EEG on
the auditory cortex on both sides of the brain for analytical
research, because the 12-channel EEG acquisition experiment
is simpler and faster than 64-channel. Although the 12-channel
EEG signal can show obvious differences, the connectivity of
the auditory regions on both sides of the brain cannot fully
represent the functional network connectivity of the whole
brain. In addition, the audiogram measured in this study is
8 khz. Although extending to higher frequencies above 8 khz
may improve our ability to detect invisible hearing loss, the
clinical significance of the high-frequency hearing test is still
unclear (Balatsouras et al., 2005; Schmuziger et al., 2007). Finally,
our work only researches tinnitus patients without hearing
loss, but it is necessary to conduct further experiments on
tinnitus patients with hearing loss to confirm the superiority
of connectivity features in distinguishing tinnitus patients
from healthy people.

CONCLUSION

This study showed that connectivity features, especially PLV and
PCC, could be biomarkers of tinnitus location in the resting-
state EEG signals. Classification accuracy was highest when the
SVM-10CV algorithm or the MLP algorithm was applied to the
PCC feature sets, achieving final average classification accuracies
of 99.42 and 99.1%, respectively. And based on the PLV feature,
the classification result was also particularly good. Together,
these results confirmed the feasibility of this method and the
method could also meet the needs of objective diagnosis of
tinnitus location.
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