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Abstract
Background: To explore the prognostic value and the role for treatment decision of 
pathological microscopic features in patients with nasopharyngeal carcinoma (NPC) 
using the method of deep learning.
Methods: The pathological microscopic features were extracted using the software 
QuPath (version 0.1.3. Queen's University) in the training cohort (Guangzhou train-
ing cohort, n = 843). We used the neural network DeepSurv to analyze the patho-
logical microscopic features (DSPMF) and then classified patients into high-risk and 
low-risk groups through the time-dependent receiver operating characteristic (ROC). 
The prognosis accuracy of the pathological feature was validated in a validation co-
hort (n = 212). The primary endpoint was progression-free survival (PFS).
Results: We found 429 pathological microscopic features in the H&E image. Patients 
with high-risk scores in the training cohort had shorter 5-year PFS (HR 10.03, 6.06-
16.61; P < .0001). The DSPMF (C-index: 0.723) had the higher C-index than the 
EBV DNA (C-index: 0.612) copies and the N stage (C-index: 0.593). Furthermore, 
induction chemotherapy (ICT) plus concomitant chemoradiotherapy (CCRT) had 
better 5-year PFS to those received CCRT (P < .0001) in the high-risk group.
Conclusion: The DSPMF is a reliable prognostic tool for survival risk in patients 
with NPC and might be able to guide the treatment decision.
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1  |   INTRODUCTION

Nasopharyngeal carcinoma (NPC) has obvious differences 
in regional distribution: the age-standardized incidence rates 
are much higher in south China than in white populations.1,2 
Radiotherapy is the primary treatment method for nondis-
seminated NPC because of its concealed anatomical location 
and sensitivity to irradiation. Great progress has been made in 
treating NPC because of the development of intensity-mod-
ulated radiation therapy (IMRT) and the use in combination 
with chemotherapy, but the major cause of treatment failure 
remains distant metastasis.3

Current treatment decisions and the prognosis of NPC de-
pend mainly on the TNM staging system. Although patients 
with NPC receive similar treatment at the same stages, their 
outcomes can be different. Epstein-Barr virus (EBV) DNA 
has been shown to be an effective prognostic marker and can 
be used to help guide treatment decisions for NPC.4,5 In 2015, 
Tang et al6 established and validated prognostic nomograms 
could predict prognosis in endemic NPC. Meanwhile, many 
scholars thought that biological heterogeneity among other 
possible explanations such as viral and environmental influ-
ences may lead to differences in prognosis. In 2012, Liu et 
al7 showed that the micro-RNA signature might inform treat-
ment choices for patients in high risk for progression. In 2016, 
Tang et al8 developed and validated a gene-based nomogram 
to predict distant metastasis of loco-regionally advanced 
(LA)-NPC.

Since 1889, when Stephen Paget put forward the the-
ory of "seed-soil",9 more and more evidence has indicated 
that cancer metastasis requires the coordination of tumor 
cells and the microenvironment. For example, chronic in-
flammation can promote tumorigenesis,10 the host immune 
system is equally capable of controlling tumor growth by 
activating adaptive and innate immune mechanisms,11 and 
so on. Many studies have shown that the microenvironment 
can be a prognosticator in solid tumors, including colon 
cancer,12 breast cancer,13 and ovarian cancer.14 Therefore, 
the emergence of digital pathology has made it feasible 
for us to study the microenvironment of tumors. With the 
advance in technologies, more and more tools have been 
developed and introduced to digitize pathological re-
sults, including Image J,15 CellProfiler,16 SlideToolKit,17 
and QuPath,18 allowing us to analyze pathological slides 
automatically.

The possibility of digitizing whole slide images (WSI) 
of tissue has led to the advent of artificial intelligence (AI) 
in digital pathology, which might ultimately improve pa-
tient management.19 In image recognition, tremendous 
progress has been made because of the availability of 
large-scale annotated datasets (ie ImageNet20) and the deep 
convolutional neural networks.21 In this study, we aimed 
to use the neural networks combined with the pathological 

microscopic features extracted by the software QuPath to 
assess survival risk in patients with NPC and to help make 
treatment decisions.

2  |   MATERIALS AND METHODS

2.1  |  Study design and ethical considerations

This retrospective clinical research enrolled patients with 
NPC at Sun Yat-Sen University Cancer Center (SYSUCC). 
The ethics committee of the Chinese Clinical Trial Registry 
(ChiECRCT20190034) reviewed and approved the study 
protocol. All included patients had provided signed in-
formed consent for their data to be reviewed for the later 
study.

2.2  |  Clinical specimens

We collected pathological slides in accordance with the regu-
lations of the Departments of Pathology at both SYSUCC. 
Hematoxylin-eosin (H&E)–stained slides of 1229 patients 
with NPC were collected from the Department of Pathology 
at SYSUCC (Guangzhou), 1055 passed quality control fi-
nally. The slides were divided into two groups using com-
puter-generated random numbers: 843 in the training group 
and 212 in the validation group. We restaged all patients 
based on the 8th edition of the American Joint Committee 
on Cancer/Union for International Cancer Control (AJCC/
UICC) Staging system through magnetic resonance imaging 
(MRI) before the initial treatment.

All patients had received radical IMRT. Recommended 
radiotherapy dose was 2.13 Gy-2.33 Gy per fraction adminis-
tered daily from Monday to Friday every week for 6-7 weeks. 
The total prescribed dose was 68-70 Gy, 62-68 Gy, 60 Gy, 
and 54 Gy, 30-32 fractions in total, according to the planned 
target volume of GTVnx, GTVnd, CTV1, and CTV2, re-
spectively. Specifically, GTVnx consisted of the sum of the 
primary tumor and the enlarged retropharyngeal nodes, and 
GTVnd included the volume of clinically involved gross cer-
vical lymph nodes. CTV1, the high-risk clinical target vol-
ume, was defined as the volume of GTVnx plus a 5-10 mm 
margin to encompass the high-risk sites of the microscopic 
extension and the whole nasopharynx. Low-risk clinical 
target volume (CTV2) covered the volume of CTV1 plus a 
5-10 mm margin to encompass the low-risk sites of the mi-
croscopic extension.

Most of the patients was administered to cispla-
tin-based chemotherapy, containing concomitant chemo-
radiotherapy (CCRT), induction chemotherapy (ICT), and 
adjuvant chemotherapy (ACT). ICT or ACT consisted 
of PF (cisplatin plus 5-fluorouracil)/TPF (cisplatin with 



1300  |      LIU et al.

5-fluorouracil and taxanes)/TP (cisplatin and taxanes) re-
gimes every 3 weeks for two or three cycles. CCRT based 
on cisplatin was received on weeks 1, 4, and 7 of radio-
therapy, or weekly.

2.3  |  Procedures

All slides were scanned as whole slide images (WSI) using 
the Aperio scanner (Leica Biosystems), with magnification 

T A B L E  1   The baseline and clinical characteristics

  Guangzhou training cohort Guangzhou validation cohort

 
Patients
(n = 843)

Low risk
(n = 716)

High risk
(n = 127)

Patients
(n = 212)

Low risk
(n = 172)

High risk
(n = 40)

Age (y)

<45 365 311 (85.2%) 54 (14.8%) 101 81 (80.2%) 20 (19.8%)

≥45 478 405 (84.7%) 73 (15.3%) 111 91 (82.0%) 20 (18.0%)

Sex

Male 628 528 (84.1%) 100 (15.9%) 151 120 (79.5%) 31 (20.5%)

Female 215 188 (87.4%) 27 (12.6%) 61 52 (85.2%) 9 (14.8%)

T stage

T1 89 77 (86.5%) 12 (13.5%) 28 24 (85.7%) 4 (14.3%)

T2 133 116 (87.2%) 17 (12.8%) 21 15 (71.4%) 6 (28.6%)

T3 398 351 (88.2%) 47 (11.8%) 109 90 (82.6%) 19 (17.4%)

T4 223 172 (77.1%) 51 (22.9%) 54 43 (79.6%) 11 (20.4%)

N stage

N0 89 82 (92.1%) 7 (7.9%) 21 18 (85.7%) 3 (14.3%)

N1 326 291 (89.3%) 35 (10.7%) 88 74 (84.1%) 14 (15.9%)

N2 276 220 (79.7%) 56 (20.3%) 63 52 (82.5%) 11 (17.5%)

N3 152 123 (80.9%) 29 (19.1%) 40 28 (70.0%) 12 (30.0%)

TNM stage

I 22 20 (90.9%) 2 (9.1%) 8 6 (75.0%) 2 (25.0%)

II 110 100 (90.9%) 10 (9.1%) 19 16 (84.2%) 3 (15.8%)

III 369 324 (87.8%) 45 (12.2%) 100 85 (85.0%) 15 (15.0%)

IV 342 272 (79.5%) 70 (20.5%) 85 65 (76.5%) 20 (23.5%)

EBVDNA copies

<1000 326 288 (88.3%) 38 (11.7%) 96 76 (79.2%) 20 (20.8%)

1000-9999 229 203 (88.6%) 26 (11.4%) 54 49 (90.7%) 5 (9.3%)

10 000-99 999 206 162 (78.6%) 44 (21.4%) 44 32 (72.7%) 12 (27.3%)

100 000-999 999 72 55 (76.4%) 17 (23.6%) 15 13 (86.7%) 2 (13.3%)

>1 000 000 10 8 (80.0%) 2 (20.0%) 3 2 (66.7%) 1 (33.3%)

Hemoglobin concentration (g/L)

<120 51 43 (84.3%) 8 (15.7%) 7 6 (85.7%) 1 (14.3%)

≥120 792 673 (85.0%) 119 (15.0%) 205 166 (81.0%) 39 (19.0%)

LDH concentration（U/L）
＜245 753 645 (85.7%) 108 (14.3%) 185 149 (80.5%) 36 (19.5%)

≥245 90 71 (78.9%) 19 (21.1%) 27 23 (85.2%) 4 (14.8%)

Treatment method

RT alone 67 61 (91.0%) 6 (9.0%) 0 0 0

CCRT 279 222 (79.6%) 57 (20.4%) 55 38 (69.1%) 17 (30.9%)

ICT + CCRT 492 428 (87.0%) 64 (13.0%) 137 118 (86.1%) 19 (13.9%)

CCRT + ACT 5 5 (100%) 0 (0) 20 16 (80.0%) 4 (20.0%)

Abbreviations: ACT, adjuvant chemotherapy; CCRT, concurrent chemoradiotherapy; EBVDNA, Epstein-Barr virus DNA; ICT, induction chemotherapy; LDH, serum 
lactate dehydrogenase levels; RT, radiotherapy.
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40×, resolution ratio 512 × 512 pixel, and each WSI stored 
as format.svs.

QuPath software (version 0.1.2. Queen's University) used 
to analyze the WSI. Each image represented one patient and 
429 microfeatures were extracted from each H&E image. We 
trained 900 cells to establish a cell classifier using the au-
tomated random tree method. The 429 features were saved 
as a file using the.txt format for each image. Means of cell 
features were then calculated and each was transformed into 
the.xlsx format for statistical analysis. The processes above 
were done in the server using the Intel Xeon Gold 6128 CPU 
(3.4GHz/6core/19.25MB/115W).

2.4  |  Statistical analysis

The main endpoint of this study was the 5-year progression-
free survival (PFS), calculated from the first day of initial 
treatment to the date of locoregional failure, or the date of 
distant metastasis or death from any cause, whichever oc-
curred first. Secondary endpoints were the 5-year distant me-
tastasis-free survival (DMFS), local recurrence-free survival 
(LRFS), and the overall survival (OS).

We did the random hyperparameter optimization search 
and used k-means cross-validation (k = 5) to evaluate the per-
formance of the configuration. In order to avoid models that 
overfit, we then choose the configuration with the largest val-
idation C-index. Risk values were constructed by the meth-
ods DeepSurv,22 a state-of-the-art survival method in order to 
provide personalized treatment choices for modeling interac-
tions between a patient's covariates and treatment effective-
ness based on Cox proportional hazards deep neural network. 
We used the time-dependent receiver-operator characteristic 
(ROC) curve to find the optimal cutoff value which separated 
patients into two groups (high-risk group and low-risk group). 
Statistically significant variables in the univariate analyses 
were entered into multivariable Cox regression analysis. The 
independent significance of different clinical factors were 
tested by the multivariate Cox regression analysis, of which 
the P value larger than 0.05 was removed from the analysis.8 
Kaplan-Meier method was used to calculate time-to-event 
data, and 95% confidence interval (CI) was calculated using 
Greenwood's formula.

Statistical analyses were executed using in R (version 
3.6.1, https​://www.r-proje​ct.org/). All statistical tests were 
two-sided, and P values of <.05 were considered significant.

3  |   RESULTS

Patients’ demographic data and baseline clinical characteris-
tics are shown in Table 1. Results of QuPath software analy-
sis of 429 microfeatures from the H&E slides of NPC patients 

are displayed in the Supplemental Methods. Figure 1 shows 
the study flow, and the process of extracting the 143 features 
using the software QuPath is shown in the Supplemental 
Methods.

3.1  |  Associations between pathological 
microfeatures and PFS

Risk scores were calculated for each patient using the meth-
ods DeepSurv. Patients were then divided into a high-risk 
group and a low-risk group according to the ROC curves 
(cutoff value  =  −0.563). A total of 127 of 843 patients 
from the training group were assigned to the high-risk 
group. In the training cohort, there were 43.0% (184/428) 
patients complete the 3-course concurrent chemotherapy in 

F I G U R E  1   Study flow. H&E, hematoxylin and eosin

://www.r-project.org/
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the low-risk group and 40.6% (26/64) patients completed 
(P = .721, chi-square test) in the high-risk group. Patients 
in the high-risk group had worse 5-year PFS than in the 
low-risk group, with 5-year PFS of 28.1% and 86.4%, 

respectively (HR 10.03, 95% CI 6.06-16.61, P  <  .0001, 
Figure 2A). The 5-year DMFS, LRFS, and OS were also 
significantly different between the two groups (Figure 
2B-D).

F I G U R E  2   Kaplan-Meier curves of survival analysis in the training cohort and validation cohort. A, 5-y PFS in the training cohort, (B) 
5-year DMFS in the training cohort, (C) 5-year OS in the training cohort, (D) 5-year LRFS in the training cohort, (E) 5-year PFS in the validation 
cohort, (F) 5-year DMFS in the validation cohort, (G) 5-year OS in the validation cohort, (H) 5-year LRFS in the validation cohort. DMFS, distant 
metastasis-free survival; HR, hazard ratio, CI, confidence interval.; LRFS, local recurrence-free Survival; OS, overall survival; PFS, progression-
free survival

F I G U R E  3   Kaplan-Meier curves of survival analysis about the clinical variables in the training cohort. A, 5-year PFS of the male vs the 
female in the training cohort; (B) 5-year PFS of the patients less than 45 years old vs more than 45 years old in the training cohort; (C) 5-year PFS 
of patients with T1-2 vs T3-4 in the training cohort; (D) 5-year PFS of patients with N0-1 vs N2-3 in the training cohort; (E) 5-year PFS of patients 
with STAGE I-II vs STAGE III-IV in the training cohort; (F) 5-year PFS of patients with LDH less than 245U/L vs LDH more than 245U/L in the 
training cohort; (G) 5-year PFS of patients with EBVDNA (every 10-fold increase)in the training cohort; (H) 5-year PFS of patients with HGB less 
than 120g/L vs HGB more than 120 g/L in the training cohort. HGB, hemoglobin concentration; HR, hazard ratio, CI, confidence interval.; LDH, 
serum lactate dehydrogenase levels; PFS, progression-free survival
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In the Guangzhou test cohort, the DSPMF categorized 40 
of 212 patients into the high-risk group using the same cutoff 
value (−0.563). In the testing cohort, 48 patients in the low-
risk group and 8 patients in the high-risk group completed 3 
cycles concurrent chemotherapy (P =  .907, chi-square test), 
respectively. Five-year PFS in the high-risk group was also 
worse than the low-risk group (HR 4.07, 95% CI 1.80-9.21; 
P < .0001, Figure 2E). The 5-year DMFS and OS were also 
significantly different between the two groups (Figure 2F-G). 
Because the number of patients suffered from local recurrence 
was small, the 5-year LRFS did not have significant difference.

3.2  |  DSPMF is an independent prognostic 
risk factor

We also did univariate analysis about the clinical varia-
bles based on some studies, the variable included gender, 
age (<45 years vs ≥45 years), the primary tumor (T) stage 
(T1-2 vs T3-4), regional lymph nodes (N) stage (N0-1 vs 
N2-3), TNM stage (Stage I-II vs Stage III-IV), serum lactate 
dehydrogenase (LDH) (≥245 vs <245  U/L), hemoglobin 
(HGB) (<120 vs ≥120 g/L), and EBV DNA (every 10-fold 
increase).6 Results of univariate analysis showed that N 
stage, TNM stage, EBV DNA and LDH were significantly 

associated with 5-year PFS (Figure 3). We did a multivari-
ate analysis which the covariates included the EBV DNA, 
LDH, N stage, TNM stage, and DSPMF. Results showed 
that the EBV DNA, LDH, and DSPMF are the independent 
prognostic risk factors for 5-year PFS in patients with NPC 
(Table. 2).

3.3  |  DSPMF associated with 
treatment decisions

In the Guangzhou training cohort, in the low-risk group 222 
patients received concurrent chemoradiotherapy (CCRT) 
alone vs 428 patients received induction chemotherapy 
(ICT)+CCRT and in the high-risk group 57 patients received 
CCRT alone vs 64 patients received ICT  +  CCRT. The 
5-year PFS between ICT  +  CCRT and CCRT in the low-
risk group was similar (HR 0.67, 95%CI:0.42-1.06, P = .069; 
Figure 4A), whereas in the high-risk group, patients who re-
ceived ICT + CCRT had longer 5-year PFS than CCRT alone 
(HR 0.50, 95%CI 0.32-0.78, P =  .0008, Figure 4B). These 
outcomes were validated in the validation cohort. (Figure 
4C-D).

4  |   DISCUSSION

As far as we know, this is the first research to predict pa-
tients’ survival risk in NPC combined pathological micro-
features with deep learning. When we used the validated 
DSPMF to categorize patients into two groups (high-risk 
group and low-risk group), results showed significantly 
different survival risks for PFS, DMFS, and OS between 
the two groups.

In many solid tumors, the pathological features have been 
shown to be an effective tool with which to predict survival 
risk associated with various disease states.13,23-25 The 149 fea-
tures included count ratio, nucleus perimeter, and Nucleus: 
Hematoxylin OD. About the count ratio, Ma et al26 found 
that tumor-infiltrating lymphocytes (TILs) were independent 
prognostic indicators for disease-free survival (DFS) in NPC. 
Pathologists have observed that NPC tumor cells have obvious 
morphologic variations, with cells that are small and round, 
large and round, spindle-shaped, with or without vesicular nu-
clei, or mixed round and spindle-shaped. The tumor cell with 
vesicular nuclei had lower value of optical density than that 
without vesicular nuclei. Owing to this, Shao et al27 proposed 
a new NPC histopathologic classification that can potentially 
be used to predict treatment response and prognosis. Combined 
the study of Shao, the Nucleus: Hematoxylin OD may be neg-
atively correlated with the prognosis of patients with NPC. 
Whether these characteristics are related to some genes or other 
biological information remains to be further studied.

T A B L E  2   Univariate and multivariate analysis for 5-year PFS in 
the Guangzhou training cohort

Variable HR (95%CI) P value C-index

N stage   .083 0.593

N0-1 Reference    

N2-3 2.05 (1.53-2.75)    

TNM stage   .133 0.551

I-II Reference    

III-IV 2.45 (1.66-3.61)    

EBVDNA (copy/mL)   .019 0.612

<1000 Reference    

1000-9999 1.45 (0.94-2.23)    

10 000-99 999 2.54 (1.72-3.76)    

100 000-999 999 2.99 (1.59-5.62)    

>1 000 000 2.25 
(0.41-12.25)

   

LDH（U/L）   .008 0.538

<245 Reference    

≥245 1.96 (1.20-3.19)    

Risk group   <.001 0.723

Low-risk Reference    

High-risk 10.03 
(6.06-16.61)

   

Abbreviations: CI, confidence interval; EBVDNA, Epstein-Barr virus DNA; 
HGB, hemoglobin; HR, hazard ratio; LDH, serum lactate dehydrogenase levels
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In digital pathology, artificial intelligence approaches 
have been applied to many image processing, such as detec-
tion,28,29 segmentation,30 predicting disease diagnosis, and 
prognosis of treatment response on the basis of patterns in 
the image.31,32 Our study combined the artificial intelligence 
with digital pathology to reveal the prognostic value of patho-
logical microscopic features in patients with NPC. It helped 
us identify patients with poor prognosis. This research had 
obvious innovation and practical. What's more, it was easy 
to operate, did not add an additional burden to patients and 
took less than one minute to complete the analysis of one 
slide in a computer using the Intel Xeon Gold 6128 CPU 
(3.4GHz/6core/19.25MB/115W).

Our results also showed that people in the low-risk 
group had similar results whether they received CCRT or 
ICT  +  CCRT. At the same time, patients in the high-risk 
group who received ICT + CCRT had better survival than 
those receiving CCRT. Because ICT increased both treatment 
time and the occurrence of side effects, many scholars had 
wanted to find a method of determining which patients were 
most likely to benefit from receiving ICT.33 Therefore, our 
study may offer a reference to support that CCRT alone may 
be sufficient for patients in the low-risk group. Meanwhile, 
several phase II/III studies have shown encouraging out-
comes associated with ICT in patients with LA-NPC.34-40 
Also, 2019 NCCN guidelines have changed the category rec-
ommendation for ICT followed by chemoradiotherapy from 
category 3 to category 2A (non-EBV DNA–associated) and 

category 1 (EBV DNA–associated), indicating that patients 
in the high-risk group should receive ICT + CCRT.

Our study had some limitations. First, all data evalu-
ated retrospectively confused making any inferences about 
causality and might limit generalizations to other centers 
or populations. Second, this study only consisted of undif-
ferentiated non-keratinization NPC in the endemic regions, 
and whether it fitted other pathological patterns and other 
regions was unknown. Third, we only found that the patho-
logical microfeatures help to guide treatment, but its princi-
ples were not clear.

In summary, the DSPMF is a reliable to estimate survival 
risk in patients with NPC and may be useful in predicting 
whether patients would benefit from ICT. The results of this 
study may help to guide treatment decisions for patients with 
NPC.
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