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In this study, HcVGH, a method that learns spatio-temporal categories by segmenting

first-person-view (FPV) videoscapturedbymobile robots, is proposed.Humansperceive

continuous high-dimensional information by dividing and categorizing it into significant

segments. This unsupervised segmentation capability is considered important formobile

robots to learn spatial knowledge. The proposed HcVGH combines a convolutional

variational autoencoder (cVAE)withHVGH,apastmethod,which follows thehierarchical

Dirichlet process-variational autoencoder-Gaussian process-hidden semi-Markov

model comprising deep generative and statistical models. In the experiment, FPV

videos of an agent were used in a simulated maze environment. FPV videos contain

spatial information,andspatial knowledgecanbe learnedbysegmenting them.Using the

FPV-video dataset, the segmentation performance of the proposed model was

compared with previous models: HVGH and hierarchical recurrent state space

model. The average segmentation F-measure achieved by HcVGH was 0.77;

therefore, HcVGH outperformed the baseline methods. Furthermore, the

experimental results showed that the parameters that represent the movability of the

maze environment can be learned.
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1 Introduction

Humans recognize continuous high-dimensional information by dividing and

categorizing it into significant segments without explicit segmentation points. This

unsupervised method has high generalizability and can be extended to mobile robots

to help them adapt to various environments and contexts. Similarly, words or phonemes
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can be learned by segmenting speech, and unit motions can be

learned by segmenting continuous motion data. Furthermore,

spatio-temporal categories that are symbolized representations of

a particular space can be learned via the segmentation of time-

series visual information obtained as the agent moves around.

This ability is also important for the spatial cognition of robots.

Furthermore, it has been suggested that visual information

contributes to spatial cognition in animals and humans. It has

been reported that the brains of rats have place cells in their

hippocampus (O’Keefe and Recce, 1993; Kitanishi et al., 2021)

that are activated when the rat finds itself in a specific location

and context; hence, the cells are considered to play an important

role in navigation. It has also been reported that the

hippocampus of bats plays an important role in the spatial

navigation or recognition of their current position (Dotson

and Yartsev, 2021). Moreover, Rolls and O’Mara (1995) and

Rolls (1999) reported that view cells of a monkey, which are

activated from visual information regardless of their location,

affect spatial cognitive processing and help in spatial navigation.

Spatial cognition is considered important not only in

computational neuroscience but also in machine learning and

robotics, and spatial cognition studies with robots have been

conducted (Milford et al., 2004; Madl et al., 2015; Schapiro et al.,

2017; Banino et al., 2018; Kowadlo et al., 2019; Scleidorovich

et al., 2020). For advanced intelligent mobile robots, using

information obtained by their own sensors to learn spatial

knowledge is necessary (Taniguchi et al., 2018). Based on this

background, this paper presents a stochastic model that divides

and categorizes first-person-view (FPV) videos obtained by a

mobile agent in a simulated maze. FPV videos contain spatial

information, and the parameters representing the spatio-

temporal structure can be learned by segmenting them.

Previously, HVGH1 was proposed; it is an unsupervised

segmentation method for time-series data that divides and

classifies information using the hierarchical Dirichlet process-

Gaussian process-hidden semi-Markov model (HDP-GP-

HSMM). HVGH includes a variational autoencoder (VAE) that

can be used as a feature extractor (Kingma andWelling, 2013). The

parameters learned by the HDP-GP-HSMM (Nagano et al., 2018)

are used as hyperparameters for the VAE, and parameters for

HVGH are learned through the interaction between the VAE and

the HDP-GP-HSMM process. It was confirmed that HVGH can

estimate segments of motions more accurately than hidden

Markov model (HMM)-based methods (Nagano et al., 2019).

However, it was difficult for HVGH to segment videos in

which significant features appeared among channels or pixels

because HVGH extracts features using only fully connected

layers. To overcome this limitation, a combined convolutional

VAE (cVAE) and HVGH (HcVGH) are proposed; they enable

feature extraction from videos while dividing and classifying them

into significant segments. Furthermore, FPV videos obtained by a

mobile agent in a simulated maze are used in this study. The

images in such videos have spatio-temporal structure because the

images temporally change under the spatial continuousness of the

agent moving. Therefore, by segmenting such a video, HcVGH

learns spatial categories and their transitions that represent both

spatial and temporal changes. In this paper, we define such

categorization as spatio-temporal categorization. Figure 1

presents an overview of the proposed model. Video data are

compressed and converted into a latent variable sequence by

the cVAE, and the latent variable sequence is divided and

classified into segments using the same HDP-GP-HSMM

process as before.

Herein, it is shown that the proposed method successfully

segments and classifies variable sequences using a small number

of video data. Following Kim et al. (2019), an experiment is

conducted using FPV video data obtained by a mobile agent in a

maze to demonstrate the superior stability and performance of

HcVGH. By comparing HcVGH with HVGH, which uses only

fully connected layers, it is demonstrated that capturing spatial

characteristics in the image by convolution is effective for the

estimation of the maze structure. Moreover, it is found that the

proposed method has higher explainability regarding the spatial

structure and segment classes than the end-to-end hierarchical

recurrent state space model (HRSSM).

2 Related work

Several unsupervised time-series data changepoint detection

methods, which assess fluctuation differences and repeated

temporal similarities to identify potential change points, have

been proposed (Yamanishi and Takeuchi, 2002; Lund et al., 2007;

Liu et al., 2013; Haber et al., 2014). However, these methods do

not necessarily indicate segment boundaries.

Many time-series data segmentation methods have been

proposed (Lioutikov et al., 2015; Wächter and Asfour, 2015;

Takano and Nakamura, 2016; Deldari et al., 2020). However, they

make heuristic assumptions. For example, Wächter and Asfour

(2015) proposed a method that uses contacts between an end-

effector and an encountered object to segment object-

manipulation motions. A method proposed by Lioutikov et al.

(2015) requires segmentation candidate points in advance.

Moreover, Takano and Nakamura (2016) proposed a method

that leverages errors between predicted and actual values for

robot observation segmentation. In another example, Deldari

et al. (2020) developed an entropy and shape-aware time-series

segmentation method that used segment similarities based on

data mining without stochastic modeling. However, this method

uses a threshold for computing segment length and similarity.

Notably, most proposed methods are probabilistically

formulated using HMMs to segment time-series data (Beal
1 HVGH: Hierarchical Dirichlet process-Variational autoencoder-

Gaussian process-Hidden semi-Markov model
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et al., 2002; Fox et al., 2011; Taniguchi and Nagasaka, 2011;

Matsubara et al., 2014). However, HMMs have difficulty

handling complicated time-series patterns. By contrast, our

model uses a GP, which nonparametrically represents

complicated time-series data more appropriately than HMMs

(Nakamura et al., 2017; Nagano et al., 2018).

Several studies have used deep neural networks to extract

significant patterns from time-series data (Fraccaro et al., 2017;

Rangapuram et al., 2018; Kurle et al., 2020). They proposed

combination state-space models and deep neural networks to

extract meaningful patterns; however, they focused not on

segmentation but on prediction from observed time-series

data considering their dynamics. By contrast, Liu et al. (2018)

and Ansari et al. (2021) estimated the boundary points of

segments and their classes by combining a recurrent neural

network with a hidden semi-Markov model (Yu, 2010). In all

cases, auxiliary variables are computed to represent the duration

and boundaries of a state to segment time-series data. However,

the number of classes is fixed, and only simple or periodic time-

series data are used. Therefore, it is difficult for these methods to

appropriately handle complex high-dimensional time-series

video data acquired by a mobile robot.

Related to the proposed approach, high-dimensional time-

series video data segmentation studies have been conducted (Kim

et al., 2019; Tanwani et al., 2020). Tanwani et al. (2020) used

labeled video data of robot-guided surgical operations to learn

the latent space of suitable primitive motions. Semi-supervised

learning for video segmentation was achieved by segmenting a

video and relearning the latent space with a small number of

manually labeled video segments. By contrast, the HRSSM was

proposed to divide video data into primitive segments in an

unsupervised, end-to-end manner using deep learning (Kim

et al., 2019), and applied for a navigation task using divided

segments in reinforcement learning. However, it is difficult for

HRSSM to estimate classes. Furthermore, the method requires an

inordinate amount of training data, and 1M frames of videos

were used in the experiment. However, our proposed method can

perform accurate segmentation using only about 1,000 frames.

For application to real robots, the proposed method is considered

FIGURE 1
Generative process of the proposed method.

FIGURE 2
HcVGH model: White and gray nodes respectively represent
unobserved variables and the high-dimensional observed
sequence obtained by concatenating segments.
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more feasible from the viewpoint of cost for data collection than

HRSSM.

Studies have investigated simultaneous mapping and

categorization of the environment by mobile robots

(Taniguchi et al., 2017; Chaplot et al., 2020). Chaplot et al.

(2020) built a semantic map of object categories detected by

pre-trained object detection and generated a path to the specified

goal based on reinforcement learning. However, it required pre-

trained object detection, and had difficulties in environments

with objects whose categories could not be recognized by the pre-

trained model or without characteristic objects. Taniguchi et al.

(2017) proposed a method for a mobile robot to divide the space

into place categories based on the position, visual features, and

place-related utterances provided by the user. However, the place

categories could not be learned without user utterances.

Moreover, they used a pre-trained convolutional neural

network to extract visual features, which is not a fully

unsupervised method. By contrast, the aim of our proposed

method is to segment space using only visual information and

learn features extracted from images in an unsupervised manner.

3 Proposed Method

3.1 HcVGH

Figure 2 provides a graphical model of the proposed HcVGH,

which is a generative model for segmenting time-series data. In

HcVGH, it is assumed that the time-series data are generated

based on the following process.

β represents an infinite-dimensional multinomial

distribution and is generated by a Griffiths, Engen, and

McCloskey (GEM) distribution (i.e., a stick-breaking process

(Sethuraman, 1994; Pitman, 2002)) parameterized by γ. In

Figure 2, cj (j = 1, 2, . . . , ∞) denotes segment classes.

Moreover, πc represents the transition probability based on

Dirichlet processes (Teh et al., 2006) parameterized by η and

β as follows:

β ~ GEM γ( ), (1)
πc ~ DP η, β( ), (2)

where γ and η represent the concentration parameters of the

Dirichlet processes controlling the sparseness of the generated

distribution. The two-phase Dirichlet process in Eqs 1, 2 is a

hierarchical Dirichlet process (Teh et al., 2006).

In Figure 2, class cj of the jth segment is generated by the (j −

1)th class, cj−1, and the transition probability, πc. Moreover, latent

variable Zj represents the jth segment generated by a GP

(MacKay et al., 1998) based on the parameter, ϕc,

corresponding to class c as follows:

cj ~ P c|cj−1,πc( ), (3)

Zj ~ GP Z|ϕcj( ). (4)

Segments Xj are generated from latent variables Zj:

Xj ~ pdec X|Zj( ). (5)

Here, we assume that video data (i.e., a time series of images)

comprise segment Xj. Hence, the cVAE’s decoder for pdec is

utilized to generate images Xj from their low-dimensional latent

variables, Zj. The observation sequence, s = X1, X2, . . . , XJ, is

obtained by combining Xj, based on these generative processes.

Moreover, the sequence of latent variables, �s � Z1,Z2, . . . ,ZJ, is

generated by connecting the segments of latent variables, Zj = zj1,
zj2, . . . , zji, /. Segment Xj = xj1, xj2, . . . , xji, / is comprised of

data points xji. The subscripts are omitted if the characters in the

data point indicate the content.

The generative process of HcVGH is summarized in

Algorithm 1, and the observed sequence, s, is generated from

this process. In the algorithm, the number of classes is assumed to

be infinite, and there are infinitely possible class transitions.

Notably, it is very difficult to directly implement this algorithm.

To overcome this problem, a slice sampler (Van Gael et al., 2008)

is used to produce a finite number of classes. In the slice sampler,

an auxiliary variable, uj, is computed to truncate transitions with

probability πcj−1 ,cj < uj.

Algorithm 1. HcVGH s-Generation Process

3.2 cVAE with GP prior

To obtain a suitable latent variable, z, of observation x, a
cVAE whose prior distribution is a GP was utilized. Figure 3A

illustrates the encoder, and Figure 3B illustrates the decoder. In

this figure, observed data point x is compressed into low-

dimensional latent variable z through the encoder network,

μenc(x), Σenc(x):

z ~ qenc z( ) � N z|μenc x( ),Σenc x( )( ), (6)
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where qenc(z) is a probability that approximates the posterior

distribution, p (z|x). As a prior of z, a Gaussian distribution with

the mean vector, μc, and variance–covariance matrix Σc

computed by GP(z|ϕc) is used:

p z( ) � N z|μc,Σc( ). (7)

Using this prior, latent variables reflecting the characteristics of

class c can be obtained. Moreover, the middle layer of the cVAE

network is the convolution layer. Therefore, HcVGH efficiently

compresses the time series of three-dimensional tensors

(i.e., images, each of which is composed of height, width and

channel).

The decoder network reconstructs observation x̂ from latent

variable z through the decoder network:

x̂ ~ pdec x|z( ). (8)

3.3 Parameter inference

The log-likelihood of HcVGH is as follows:

logp X1 , . . . ,XJ, c1 , . . . , cJ( ) � log∏
j
∫

Zj

p Zj, cj( )p Xj|Zj( )dZj

� log∏
j
∫

Zj

GP Zj|ϕc( )P cj|cj−1 , πc( )︸����������︷︷����������︸
HDP−GP−HSMM

p Xj|Zj( )︸����︷︷����︸
cVAE

dZj .

(9)

The factors, GP(Zj|ϕc)P(cj|cj−1, πc), are computed using

HDP-GP-HSMM, and p (Xj|Zj) are computed with cVAE in

Eq. 9. However, it is difficult to maximize Eq. 9 directly. To

overcome this problem, the parameters are approximately

maximized by alternately optimizing HDP-GP-HSMM

and cVAE.

Figure 4 presents an overview of HcVGH’s parameter

estimation process. First, the cVAE converts a sequence of

observations, s = X1, X2, . . . , XJ, into a sequence of latent

FIGURE 3
Convolutional variational autoencoder network architecture: (A) encoder = six convolutional layers (conv) and two fully connected layers (FC);
(B) decoder = one fully connected layer and seven deconvolutional layers (conv_T).

FIGURE 4
Overview of HcVGH parameter estimation. The parameters are learned using a mutual cVAE and HDP-GP-HSMM learning loop.
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variables, �s � Z1,Z2, . . . ,ZJ. The cVAE parameters are

estimated by maximizing the following variational lower

bound:

L xji, zji( ) � ∫ qenc zji|xji( )logpdec xji|zji( )dzji
− wDKL qenc zji|xji( )‖p zji|μc i( ),Σc i( )( )( ), (10)

where w represents the parameter used to weight the

Kullback–Leibler divergence. If w > 1, it becomes possible to

learn the disentangled latent variables that are suitable for

segmentation (Higgins et al., 2017).

Then, the latent variable sequence, �s, is divided and classified

into segments Z1, Z2, . . . , ZJ using HDP-GP-HSMM as follows:

Zn,1 , . . . ,Zn,Jn( ), cn,1 , . . . , cn,Jn( ) ~ p Z1 ,Z2 , . . . ,ZJ( ), c1 , c2 , . . . , cJ( )|�sn( ), (11)

where μc(i) and Σc(i) are parameters of the predictive distribution

computed by HDP-GP-HSMM and are used as parameters in the

cVAE’s prior distribution in Eq. 10. Moreover, in the latent space

learned by HcVGH, each latent variable reflects the

characteristics of the time-series data and those of each class

because the GP parameters differ for each.

In the proposed method, parameters of cVAE and HDP-GP-

HSMM are optimized by repeating the above computations until

the likelihoods converge.

As the proposed method is an improved version of HVGH,

several detailed sections are omitted in this paper. Please refer to

(Nagano et al., 2019).

4 Experiments

In this experiment, a small number of video data were

divided and classified into significant segments using

HcVGH to demonstrate that the estimated parameters

express spatial structures. To evaluate the proposed

HcVGH, it was applied to time-series data of FPV videos

of an agent in a maze. For comparison, HRSSM (Kim et al.,

2019) and HVGH (Nagano et al., 2019) were used as

baselines.

4.1 Experimental setup

4.1.1 Evaluation metrics
Four measures were used to evaluate segmentation accuracy:

normalized Hamming distance, precision, recall, and F-measure. The

normalized Hamming distance, an evaluation metric for clustering,

ranges from zero to one, and a value closer to zero indicates

approximation to ground truth. The remaining metrics range from

zero to one as well, and larger values indicate that the estimated

boundary points of segments are more similar to ground truth. With

regard to the boundary point evaluation, it is very difficult to achieve a

complete correspondence of an estimated boundary point and the

ground truth; therefore, the estimated boundary was considered

correct when it was within a tolerance of the ground truth. In this

study, the tolerance was set to ±5% of the sequence length. Details of

these metrics are described in (Nagano et al., 2019).

4.1.2 Dataset
Figure 5A presents themaze, and Figure 5B depicts FPV data of

the agent in themaze. In this experiment, the agent moved along the

6 paths indicated by the arrows in Figure 5A. Each FPV data frame

comprised red–green–blue image: xi ∈ R32×32×3. To train HVGH,

flattened vectors of the images were used. The maze consisted of

26 × 18 blocks, and the colored ones indicate areas where the agent

could not traverse. In Figure 5A, the white block represents the

agent, who can move “straight ahead,” “turn left,” and “turn right.”

The agentmoved straight ahead one block in five frames and rotated

90° to the left or right in three frames. The ground truth of the

segment boundaries is the corners and T-junctions in the maze, and

each hallway between boundaries is one segment.

To evaluate HRSSM, a 1M-frame dataset was constructed

from the agent randomly selecting its action at the corner and

T-junction with uniform distribution. The FPV data and maze

FIGURE 5
(A) Upper view of the maze. The white block indicates the
agent, which can move along 6 paths indicated by the arrows. (B)
Example of the first-person-view video data surrounded by the
black circle in (A).
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used in this experiment are published at https://github.com/

nagano28/color_maze.git.

4.1.3 HRSSM
HRSSM requires many hyperparameters; it estimates whether

there is a boundary in each subsequence, and 20 frames were set as

the length of a subsequence. This length was used as the default

value in the study. Lmax is the maximum length of a segment, and

Lmax = 20 was set because a boundary may not exist in a

subsequence. Nmax is the maximum number of segments in a

subsequence, and this parameter is influential to the segmentation.

Therefore, HRSSM was trained by varying Nmax = 1, 2,/, 5. The

number of dimensions of latent variables was set to 128, which was

also set as the default value. For all other hyperparameters, the

default values were used. With HRSSM, the paths indicated by the

arrows in Figure 5 and the context of five frames of data before and

after the path data frames were used. Furthermore, the learning

iterations were repeated until the training loss converged.

HRSSM does not estimate classes but estimates the boundary

points of the segments in an unsupervised manner. To evaluate

the categorization capability of HRSSM, Gaussian mixture model

was applied to the estimated latent variable and computed

normalized Hamming distance. Moreover, to observe the

influence of the training data size, HRSSM was evaluated in

the following two cases.

• HRSSM (6 paths): training and testing on the 6-path

dataset

• HRSSM (1M): training on the 1M dataset, testing on the 6-

path dataset

TABLE 1 Baselines and HcVGH segmentation results.

Hyperparameter Hamming Distance Precision Recall F-measure

HcVGH λ = 20 0.33 ± 0.05 0.84 ± 0.06 0.91 ± 0.06 0.87 ± 0.06

λ = 10 0.19 ± 0.02 0.68 ± 0.05 0.96 ± 0.01 0.79 ± 0.03

λ = 7 0.18 ± 0.01 0.61 ± 0.03 1.0 ± 0.0 0.75 ± 0.02

λ = 5 0.19 ± 0.01 0.56 ± 0.02 0.99 ± 0.01 0.72 ± 0.01

λ = 4 0.19 ± 0.01 0.55 ± 0.02 1.0 ± 0.0 0.71 ± 0.02

Average 0.22 ± 0.06 0.65 ± 0.12 0.97 ± 0.04 0.77 ± 0.07

HVGH λ = 20 0.78 ± 0.18 0.54 ± 0.33 0.49 ± 0.35 0.50 ± 0.33

λ = 10 0.66 ± 0.19 0.58 ± 0.33 0.56 ± 0.33 0.55 ± 0.32

λ = 7 0.60 ± 0.26 0.34 ± 0.31 0.45 ± 0.42 0.39 ± 0.35

λ = 5 0.68 ± 0.20 0.55 ± 0.34 0.55 ± 0.34 0.51 ± 0.29

λ = 4 0.80 ± 0.21 0.20 ± 0.27 0.29 ± 0.39 0.23 ± 0.31

Average 0.70 ± 0.20 0.44 ± 0.33 0.47 ± 0.35 0.43 ± 0.32

HRSSM (6 paths) Nmax = 1 0.40 0.95 0.56 0.70

Nmax = 2 0.41 0.72 0.23 0.34

Nmax = 3 0.41 0.79 1.0 0.88

Nmax = 4 0.40 0.62 0.96 0.76

Nmax = 5 0.40 0.39 1.0 0.55

Average 0.40 ± 0.01 0.69 ± 0.21 0.76 ± 0.35 0.65 ± 0.21

HRSSM (1M) Nmax = 1 0.35 1.0 0.69 0.80

Nmax = 2 0.35 1.0 0.48 0.64

Nmax = 3 0.34 0.64 0.65 0.63

Nmax = 4 0.39 0.51 0.73 0.60

Nmax = 5 0.39 0.44 0.92 0.59

Average 0.36 ± 0.03 0.72 ± 0.26 0.70 ± 0.16 0.65 ± 0.09
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FIGURE 6
Segmentation results of a first-person-view video data.

FIGURE 7
Transition probabilities of the estimated classes: (A) represents a transitionmatrix, and (B) represents the locations that correspond to each class
in the maze.
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4.1.4 HcVGH
To compare HcVGH and HRSSM, the value of the required

HcVGH parameter, λ, was changed to 20, 10, 7, 5, and 4, which

corresponds to approximately Nmax of HRSSM. λ is a mean

parameter of the Poisson distribution, Plen (k|λ)2, that

determines segment lengths. The parameters of the GP

kernel function were the same as those used in the past work

(Nagano et al., 2019). The weight of the regularization term of

the cVAE was set to w = 5, and the number of dimensions of the

latent variable was set to 16. When training the cVAE, 16 of the

input data points were used as a mini-batch, and Adam

(Kingma and Ba, 2014) was used for optimization with

100 iterations of updates. To train the HDP-GP-HSMM, the

block Gibbs sampler was iterated eight times. Additionally,

cVAE and HDP-GP-HSMM loops were repeated until the

variational lower bound of the cVAE converged.

4.2 Results

4.2.1 Segmentation results
Table 1 shows the results of segmentation using HRSSM,

HVGH, and HcVGH. In this result, HRSSM’s estimation accuracy

represents themost accurate result of learning iterations because in

the preliminary experiment, we confirmed that the initial values

did not significantly affect segmentation. In contrast, for HcVGH,

we used the average value of the results of five executions with

different initial values; this is because it has been empirically

confirmed that the GP-HSMM-based model could sometimes

not be able to get past the local optima.

TABLE 2 Evaluation of spatial movability of paths. “T” in the “Type” column shows their class sequences were included in the training data. “G” in the
“Type” column shows generated class sequences that were not included in the training data. Underlined numbers in “class sequence” represent
spatially impossible transitions.

Type Class sequence L

1 T 20, 11, 10, 21, 17, 15, 8, 16, 9, 4, 12, 23, 26, 2, 22 −0.228

2 T 20, 6, 3, 7, 24, 14, 3, 25, 22, 26, 2, 22 −0.390

3 T 20, 6, 3, 7, 24, 14, 5, 12, 23, 26, 2, 22 −0.327

4 T 20, 11, 10, 21, 17, 15, 8, 16, 2, 13 −0.432

5 T 20, 11, 10, 21, 17, 15, 0, 20, 27, 2, 4, 12, 23, 26, 2, 22 −0.426

6 T 20, 11, 10, 19, 9, 18, 7, 24, 14, 3, 2, 1, 22 −0.531

7 G 20, 11, 10, 21, 17, 15, 0, 20, 11, 10, 21, 17, 15, 8, 16, 9, 4, 12, 23, 26, 2, 22 −0.244

8 G 20, 11, 10, 21, 17, 15, 0, 20, 11, 10, 19, 9, 18, 7, 24, 14, 5, 12, 23, 26, 2, 22 −0.297

9 G 20, 11, 10, 21, 17, 15, 0, 20, 11, 10, 21, 17, 15, 8, 16, 2, 13 −0.364

10 G 20, 11, 10, 21, 17, 15, 8, 16, 9, 4, 20, 11, 10, 21, 17, 15, 8, 16, 9, 4, 12, 23, 26, 2, 22 −4.397

11 G 20, 11, 10, 21, 17, 15, 0, 20, 11, 10, 20, 11, 10, 21, 17, 15, 8, 16, 9, 4, 12, 23, 26, 2, 22 −4.420

FIGURE 8
Estimated results by HRSSM: (A–D) respectively represent an example of predicted images by using the same contexts.

2 Plen(k|λ) � λke−λ
k!
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Table 1 shows that the F-measure of HcVGH and HRSSM

(6 paths, Nmax = 3) were both high, and the correct boundary

points of the segments were estimated. However, this table

also shows that the F-measure of HRSSM (6 paths) was

strongly affected by the hyperparameter, Nmax. The

normalized Hamming distance of HRSSM (1M) was shorter

than that of HRSSM (6 paths). By contrast, regardless of the

hyperparameter settings, the F-measure of HcVGH was stable,

indicating high accuracy, and the Hamming distance of

HcVGH was stably small. Finally, the accuracy of

segmentation of HVGH was lower than that of the other

methods.

From this result, it is considered difficult for HVGH whose

VAE is composed of only fully connected layers to extract

effective features to represent the maze. In HRSSM (6 paths),

F-measure was not stable, and the maximum value was 0.88.

This may be because the training dataset was too small for

training HRSSM, and the parameters went into different local

optima in each training. By contrast, the F-measure of HRSSM

(1M) was stable although it was not higher than 0.88. The

normalized Hamming distance of HRSSM (1M) became

shorter than that of HRSSM (6 paths), and the latent

variable capturing the characteristics of each category of

FPV images could be learned through increasing the

training data. However, in HcVGH, the average normalized

Hamming distance was the smallest, the average F-measure

was the highest, and their standard deviations were the

smallest. This result shows that the dependence of HcVGH

on a hyperparameter is less strong than that of HRSSM. The

recall of HcVGH tended to be larger than its precision, and

this was because it classified the corner and T-junction into a

different category. Although this was judged as incorrect

based on the definition of ground truth in this experiment,

this estimation was also considered reasonable.

Figure 6 shows the qualitative results of HcVGH and HVGH

segmentation. In this figure, the horizontal axis represents the

time step, and the color of the horizontal bar graph represents the

class of the segments. The bar graph at the top indicates the

boundary points and classes of the ground truth, and an example

of an image observed by the agent is shown to correspond to the

correct class. This figure demonstrates that the segments and

classes estimated by HcVGH are approximate to the ground

truth. However, the final segment of Sequence 3 was estimated to

be a different class from the one obtained from the other

sequences, even though the agents traversed the same

corridor. This is because, depending on the direction of the

agent, the image features were slightly different, even in the same

corridor. Furthermore, some corners were classified as individual

classes, which does not correspond with the ground truth.

However, this estimation is reasonable and is not a problem.

In HVGH, there were many misclassifications, and it can be seen

that it is difficult to capture the characteristics of the images using

only fully connected layers.

4.2.2 Evaluation for spatial movability using
transition probability

Figure 7A presents a transition matrix that shows the transition

probability of estimated classes. In this figure, the intensity of each

cell represents log P (cj|cj−1), and lighter values indicate higher

probabilities. The white numbers in Figure 7B show the estimated

classes, c, of HcVGH. As shown in Figure 7A, probabilities that

represent movability from one place to another were explicitly

obtained. For example, as seen in the red dashed rectangle of

Figure 7A, the transition probabilities, log P (cj = 19|cj−1 = 10)

and log P (cj = 21|cj−1 = 10), are high, and it was confirmed that they

reflect actual transitions in the area enclosed by the black dashed line

of Figure 7B.

Table 2 shows the class sequences that are paths in the maze

and their normalized accumulated transition probabilities L

computed as follows:

L � 1
J
∑
J

j�1
logP̂ cj|cj−1( ), (12)

where P̂(cj|cj−1) is the transition probability without a prior

distribution to prevent overestimation by GEM distribution, J is

the length of the class sequence, and L is normalized by dividing

by J. “T” in the “Type” column of the table shows the class

sequences are included in the training data. “G” in the “Type”

column of the table shows five paths with the highest

probabilities in the randomly generated 100 paths by

randomly dividing and connecting the class sequences of six

paths in the training data. From this table, L of the six paths

(paths 1–6) in the training data is higher. Furthermore, L of path

7, which circulates around the green right bottom block in

Figure 7B, and paths 8 and 9, which combine paths from the

training data, are also higher although the paths were not

included in the training data. By contrast, L of paths 10 and

11, which contain spatially impossible transitions (underlined in

Table 2), is lower. From this result, transition probabilities can

represent spatial movability, and explicitly obtaining these

probabilities is an advantage of HcVGH. However, spatial

movability can sometimes be inaccurately estimated owing to

misclassification. In our experiment, different corners were

misclassified and estimated to belong to the same class; this

caused the movability at these positions to be incorrectly

estimated. To solve this problem, the number of

misclassifications must be reduced.

However, in HRSSM, subsequent states are generated from

the current state by a recurrent neural network, and it is difficult

to explicitly obtain movability between states. To evaluate

TABLE 3 Number of the predicted paths at the T-junction.

left right else

HRSSM (1M) 52 23 25
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movability estimated by HRSSM, the number of transitions at

T-junction in the blacked dashed rectangle in Figure 7B of

predicted 100 paths by the most accurate model HRSSM (1M,

Nmax = 1) were manually counted. Figure 8 shows examples of

prediction and Table 3 shows the counting result. Figure 8A

shows the agent prediction that it is possible to turn left, and

Figure 8B shows the agent prediction that it is possible to turn

right. The agent actions are determined by uniform distribution

in the 1M dataset; however, the prediction was biased as shown in

Table 3. Moreover, HRSSM predicted images that mixed both the

FIGURE 9
Latent variables learned by HcVGH: (A–C) respectively represent the first and second, first and third, and second and third dimension of the
principal component of the latent variables. The color of each point reflects the correct corridor class.

FIGURE 10
Latent variables learned by HRSSM (6 paths): (A–C) respectively represent the first and second, first and third, and second and third dimension of
the principal component of the latent variables. The color of each point reflects the correct corridor class.

FIGURE 11
Latent variables learned by HRSSM (1M): (A–C) respectively represent the first and second, first and third, and second and third dimension of the
principal component of the latent variables. The color of each point reflects the correct corridor class.
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left- and the right-side paths (Figure 8C) and mixed the left/

right-side and other paths (Figure 8D). From this result, we find

that in HRSSM, rough transition probabilities can be computed

manually or by any other additional means, but they cannot be

obtained explicitly. Therefore, it is difficult to evaluate spatial

movability with HRSSM in an unsupervised manner.

4.2.3 Comparison of latent variables
Figures 9–13 show the latent variables of 6 paths estimated by

HcVGH, HRSSM (6 paths), HRSSM (1M), HVGH, and only

cVAE. In these figures, panels (a), (b), and (c) respectively

represent the first and second, first and third, and second and

third dimensions of the latent variables, which were compressed

via principal component analysis (Pearson, 1901). The color of

each point reflects the correct corridor class.

In Figure 12, the latent variable of HVGH is not well

separated for each class. Similarly, in Figure 10, the latent

variables of HRSSM (6 paths) are not separated for each class,

and compared with HRSSM (6 paths), the latent variables of

HRSSM (1M) seem to improve slightly in Figure 11. However,

the latent variables of HRSSM (6 paths) and HRSSM (1M) are

overlapped and their separation for each class is inadequate

for clustering them. Therefore, it is difficult to classify the

latent variables into place categories in an unsupervised

manner.

By contrast, in HcVGH (Figure 9), the latent variables of the

same class have more similar values, and the latent variables of

different classes are well separated. Compared with those of only

cVAE (Figure 13), the latent variables of HcVGH (Figure 9) are

better separated. This is because μ and σ computed by HDP-GP-

HSMM are used as the prior of cVAE in the HcVGH, and

therefore, the latent variables that are classified into the same

categories get closer.

4.3 Discussion

From the results, it can be seen that HcVGH is accurate

and stable regardless of the hyperparameters. By contrast,

HRSSM tends to be affected by hyperparameters,

and parameter tuning is required depending on the

training data.

FIGURE 12
Latent variables learned by HVGH: (A–C) respectively represent the first and second, first and third, and second and third dimension of the
principal component of the latent variables. The color of each point reflects the correct corridor class.

FIGURE 13
Latent variables learned by only cVAE: (A–C) respectively represent the first and second, first and third, and second and third dimension of the
principal component of the latent variables. The color of each point reflects the correct corridor class.
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Furthermore, HcVGH has high explainability because the

transition probabilities that are considered movabilities can be

obtained explicitly. These transition probabilities can be used for

global path planning, and various paths can be planned

according to a purpose. For instance, shortest path, longest

path, paths going through a particular location, or paths that

maximize a particular objective function can be planned

considering the movability. However, HRSSM does not have

such explicit parameters, and therefore, it is difficult to plan paths

according to a purpose. One solution is generating many paths

and selecting one path that matches the purpose; however, the

optimal path is not always generated. Another solution is

computing transition probabilities as in Section 4.2.2;

however, generated samples require manual classification. For

this reason, HcVGH is suitable for application to mobile robots.

However, HcVGH has limitations. It depends on visual

information only, and locations with similar appearances can

be misclassified. To overcome this limitation, integration of the

method that can deal with multimodal information such as a

joint multimodal VAE (Suzuki et al., 2016) should be considered.

Moreover, by integrating the slam-based method such as

(Taniguchi et al., 2017), the robot can learn the place concept

in a fully unsupervised manner avoiding misclassification.

Another limitation of the model is its scalability. The size of

the dataset used for HcVGH training was not very large because

the proposed method uses a Gaussian process whose

computational cost to train N data is O(N3). Therefore, it

would be difficult to apply this to a huge dataset. In the

future, a verification of the scalability of the proposed method

will be conducted by using realistic huge data such as car-camera

videos (Geiger et al., 2013).

5 Conclusion

In this article, a cVAE was integrated into HVGH, a model

developed in a past work, and HcVGH, which divides and

classifies video time-series data into segments, was

proposed. The experimental results show that HcVGH

achieved more accurate FPV video data segmentation than

the baseline methods. Moreover, the results showed that

HcVGH has high explainability and a high segmentation

accuracy when compared with HRSSM, which segments

video data in an end-to-end manner. HcVGH estimates

boundary points and classes of segments more stably than

HRSSM.

Furthermore, in HcVGH, the parameters that represent

spatio-temporal structure of the maze can be obtained

explicitly. Using these parameters, spatial movability can be

evaluated, which is useful for navigation planning. In the

future, the agent’s actions will be introduced, and a method to

plan its actions based on probabilistic inference (Levine, 2018)

using HcVGH will be formulated.

However, one of the limitations of HcVGH is the

misclassification caused by using unimodal information. In

the future, the cVAE of HcVGH will be extended to a joint

multimodal VAE to divide and classify multimodal information

to overcome this problem. Another limitation of HcVGH is its

scalability. Therefore, it will be necessary to verify the scalability

of HcVGH by performing segmentation on a larger dataset, and

more realistic dataset.
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