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Both the neurons with orientation-selective and with non-selective surround inhibition

have been observed in the primary visual cortex (V1) of primates and cats. Though

the inhibition coming from the surround region (named as non-classical receptive field,

nCRF) has been considered playing critical role in visual perception, the specific role

of orientation-selective and non-selective inhibition in the task of contour detection

is less known. To clarify above question, we first carried out computational analysis

of the contour detection performance of V1 neurons with different types of surround

inhibition, on the basis of which we then proposed two integrated models to evaluate

their role in this specific perceptual task by combining the two types of surround

inhibition with two different ways. The two models were evaluated with synthetic

images and a set of challenging natural images, and the results show that both

of the integrated models outperform the typical models with orientation-selective or

non-selective inhibition alone. The findings of this study suggest that V1 neurons with

different types of center–surround interaction work in cooperative and adaptive ways at

least when extracting organized structures from cluttered natural scenes. This work is

expected to inspire efficient phenomenological models for engineering applications in

field of computational machine-vision.

Keywords: contour detection, non-classical receptive field, surround inhibition, non-selective inhibition,

orientation-selective inhibition

Introduction

At the level of individual neurons and neuronal population, center–surround interactions across
the receptive fields (RFs) of neurons are regarded as the underlying physiological bases of
visual information processing (Fitzpatrick, 2000; Alitto and Dan, 2010). Following the important
discoveries on the RFs of the visual system in the beginning of the 1960s (Hubel andWiesel, 1962),
researchers have conducted extensive work trying to uncover the temporal-spatial properties and
the corresponding functional roles of the RFs in visual processing. Numerous neurophysiological
findings on macaque monkeys and cats (Allman et al., 1985; Knierim and van Essen, 1992;
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Li and Li, 1994; Kapadia et al., 1995, 2000; Nothdurft et al.,
1999; Sceniak et al., 1999, 2002; Walker et al., 1999; Jones et al.,
2001; Angelucci and Bressloff, 2006; Song and Li, 2008; Chen
et al., 2013) have clearly shown that for most neurons in the
primary visual cortex (V1), the stimulus placed within the non-
classical receptive field (nCRF), an extensive peripheral region
beyond the central classical receptive field (CRF), can strongly
modulate (mainly inhibit) the spiking response to the stimulus
placed within CRF, and in general, the surround modulation
varies depending on the properties of stimulus, especially the
feature contrasts between the regions of CRF and nCRF, such
as orientation contrast (Knierim and van Essen, 1992; Li and Li,
1994; Walker et al., 1999), luminance contrast (Levitt and Lund,
1997; Kapadia et al., 1999; Sceniak et al., 1999, 2002; Song and Li,
2008; Chen et al., 2013), spatial frequency contrast (Knierim and
van Essen, 1992; Li and Li, 1994; Walker et al., 1999), and phase
contrast (Li and Li, 1994; Nothdurft et al., 1999; Xu et al., 2005;
Shen et al., 2007; Song and Li, 2008; Song et al., 2010).

In particular, many physiological studies showed that most
V1 neurons are selectively responsive to visual stimuli of a
narrow range of orientations, i.e., the strength of surround
inhibition reaches maximal when the surrounding stimulus
shares the same orientation with the stimulus within the CRF,
and decreases with the increasing of orientation contrast between
the central and surrounding stimuli (Knierim and van Essen,
1992; Li and Li, 1994; Walker et al., 1999), which is normally
called orientation-selective inhibition. In addition, there are
also several studies indicating that for a sizable group of
neurons in V1 of anesthetized macaque monkeys, the strength
of inhibition is independent of the orientation contrast between
the stimuli within and outside the CRF (Nothdurft et al.,
1999), which is referred as to non-selective inhibition or general
inhibition. Both neurons with orientation-selective and with
non-selective surround inhibition have been found in V1 of
monkeys (Knierim and van Essen, 1992; Nothdurft et al., 1999)
and cats (Li and Li, 1994; Sengpiel et al., 1997; Chen et al.,
2013). Similar neuron types were also found in the V1 area
of awake macaques with natural scene images as stimuli (Guo
et al., 2005). Considering the co-existing of the neurons with
orientation-selective and with non-selective surround inhibition
in area V1 of monkeys and cats, it has been proposed that the
surround could be looked at as a combination of the phenomena
of orientation-selective and non-selective inhibition (Nothdurft
et al., 1999).

Besides the surround inhibition, the modulation type of
facilitation (or excitation) in V1 has been also found by many
physiological studies (Levitt and Lund, 1997; Kapadia et al., 1999;
Sceniak et al., 1999, 2002; Song and Li, 2008). While surround
inhibition is thought to be mainly useful for suppressing
unwanted background configurations, excitatory interactions are
regarded to be especially helpful in linking together collinear
edge elements (Grigorescu et al., 2003; Tang et al., 2007).
In addition, significant evidence suggests that the surround
inhibition and facilitation could be dynamically modified by
feedback connections from higher visual cortexes, e.g., V4,
according to stimulus context (Angelucci and Bressloff, 2006; Fei-
Fei et al., 2007; Greene and Oliva, 2009;Wolfe et al., 2011; Gilbert

and Li, 2013; Chen et al., 2014). Such top-down modulation
of neuronal responses in V1 contributes to enhance the weak
figural signal and reduce background noise. In short, the full V1
mechanism involves the combined contribution of feedforward
(or bottom-up), lateral and feedback (or top-down) connections
to the CRF center and its surround of V1 neurons. However,
it is still not fully understood how the visual system integrates
the local V1 neuronal activities into organized structures such as
object contours.

Along another line, a number of computational models of
contextual influences and center–surround interactions exist
(e.g., the various models reviewed by Zhaoping, 2011), some
focusing on the underlying neural circuits (Li, 1998; Ross et al.,
2000; Ursino and La Cara, 2004; Hansen and Neumann, 2008;
La Cara and Ursino, 2008), and others on the phenomenological
modeling (Grigorescu et al., 2003, 2004; Petkov and Westenberg,
2003; Papari et al., 2007; Tang et al., 2007). In particular, some
recent studies proposed models for computer vision applications
by introducing the new properties of visual system, such as the
disinhibition receptive field of ganglion cells in retina (Wei et al.,
2012), adaptive inhibition (Zeng et al., 2011), sparse coding in V1
(Spratling, 2013), and multi-feature based surround modulation
(Yang et al., 2014).

In this paper we are especially concerned with the
computational evaluation of the role of orientation-selective and
non-selective surround inhibition in the specific task of contour
detection, which is not only helpful to understand the biological
mechanisms of structured information detection, but also very
useful for developing efficient models for various computer
vision applications such as contour-based object recognition
(Papari and Petkov, 2011). Among various biological vision
inspired models mentioned above, Petkov and his collaborators
(Grigorescu et al., 2003, 2004; Petkov and Westenberg, 2003)
proposed two models (called anisotropic inhibition and isotropic
inhibition), which employ the orientation-selective or non-
selective surround inhibition alone. Both models were shown to
outperform the traditional algorithms such as Canny detector
(Canny, 1986). However, as implied by the results of Grigorescu
et al. (2003), orientation-selective and non-selective surround
inhibitions show different detection performance in different
texture patterns. To date, the different roles of the two types
of surround inhibition have not been systematically evaluated
from a computational point of view. The primary purpose of this
work is to clarify how the two neuron types work interactively to
better detect contours from cluttered scenes, which is expected
to inspire efficient phenomenological models for engineering
applications in field of computational machine-vision.

The rest of this paper is organized as follows. We first
revisit the contour detection performance of the previous
phenomenological models with non-selective inhibition and
orientation-selective inhibition alone (Grigorescu et al., 2003;
Tang et al., 2007). Based on the deduced specific roles of these
two types of surround inhibition, we propose two integrated
adaptive models, namely, Models 1 and 2, by combining the
two inhibition types. We try to constrain the parameter settings
of the proposed models by biological measurements wherever
possible. We finally validate the proposed models on a natural
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image dataset commonly used in the field of computer vision
applications.

Materials and Methods

The Mathematical Representations of CRF and
nCRF
The receptive field (RF) properties of simple cells in V1 can be
well-described by a family of Gabor filters (Daugman, 1985; Jones
and Palmer, 1987; Morrone and Burr, 1988). In this study, a
Gabor energy model, which combines the responses of the pairs
of Gabor filters with orthogonal in phase, is used to simulate the
response of complex V1 cells (Chan and Coghill, 2001).

A two-dimensional (2D) Gabor filter can be written as

g(x, y; θ, ϕ) =
1

2πσ 2
exp

(

−
x̃2 + γ 2ỹ2

2σ 2

)

cos

(

2π
x̃

λ
+ ϕ

)

.

(1)
where x̃ = x cos θ + y sin θ , ỹ = −x sin θ + y cos θ , in which θ is
the preferred orientation of an orientation-selective V1 neuron.
Standard deviation σ defines the spatial size of CRF. γ is the
spatial aspect ratio determining the eccentricity of the Gaussian
envelope. λ is the wavelength and σ/λ represents the spatial
frequency bandwidth. In this study we set σ/λ = 0.56 and
γ = 0.5, which are physiologically based (Grigorescu et al., 2003;
Petkov and Westenberg, 2003; Zeng et al., 2011). ϕ is a phase
offset, and typically, the filter is symmetric when ϕ = 0 or π and
asymmetric when ϕ = −(π/2) or (π/2).

According to the physiological finding of Hubel and Wiesel
(1962), we define that at each sampling location (x, y), there
is a model V1 hypercolumn composed of cells whose CRFs
are centered at (x, y) and tuned to Nθ different orientations θi
spanning 180◦:

θi =
(i− 1)π

Nθ

, i = 1, 2, · · · ,Nθ . (2)

For an input image f (x, y), the CRF response of a complex V1 cell
to the stimulus placed at location (x, y) is computed according to
the Gabor energy model, which is written as

E(x, y; θi) =

√

[

e0(x, y; θi)
]2

+
[

eπ/2(x, y; θi)
]2

.

eϕ(x, y; θi) = f (x, y)∗g(x, y; θi, ϕ). (3)

where ∗ denotes the convolution operation. e0(x, y; θi) and
eπ/2(x, y; θi) are the responses of symmetric (or even) and
asymmetric (or odd) Gabor filters at orientation θi, respectively.

To quantify the neuronal behavior that the modulation
strength coming from nCRF decreases non-linearly with the
increased distance from the center of CRF, a distance related
weighting function is defined as Grigorescu et al. (2003) and Zeng
et al. (2011).

Wd(x, y) =
H(DOGσ,k(x, y))

∥

∥H(DOGσ,k(x, y))
∥

∥

1

. (4)

H(s) =

{

s, s ≥ 0
0, s < 0

(5)

where ‖·‖1 denotes the L1 norm. H (s) is used to guarantee
that neuronal responses should not be negative. DOGσ,k(x, y)
is the commonly used difference of Gaussian (DOG) function
written as

DOGσ,k(x, y) =
1

2π(kσ )2
exp

(

−
x2 + y2

2(kσ )2

)

−
1

2πσ 2
exp

(

−
x2 + y2

2σ 2

)

. (6)

where k is the size ratio of nCRF to CRF. In this study we set k = 4
based on the physiological finding that the spatial size of nCRF is
typically 2–5 times (in diameter) larger than that of CRF (Li and
Li, 1994; Nothdurft et al., 1999).

Revisiting of the Orientation-selective and
Non-selective Inhibition Models
Overview of Previous Surround Inhibition Models

Based on the physiological findings mentioned above, two typical
phenomenological models have been proposed by Petkov and
his colleagues (Grigorescu et al., 2003; Petkov and Westenberg,
2003) to simulate the orientation-selective and non-selective
inhibition for the specific task of contour detection, i.e.,
non-selective inhibition model (also called isotropic inhibition
model) and orientation-selective inhibition model (also called
anisotropic inhibition model). In the isotropic inhibition model,
the surround suppression is independent of the orientation
difference between the stimuli within and outside the CRF. In
the anisotropic inhibition model of Grigorescu et al. (2003)
and Petkov and Westenberg (2003), surround inhibition works
only when the stimuli within and outside the CRF share the
same orientation, which does not quite match the physiological
findings as mentioned earlier. To reinforce its physiological
plausibility, Tang et al. (2007) proposed a unified contour
extraction model based on visual cortical mechanisms including
recurrent spatial facilitation and (orientation-selective) surround
inhibition, in which the surround inhibition varies according to
the orientation contrast between the stimuli inside and outside
the CRF. They analyzed the effects of orientation-selective
surround inhibition alone, but did not compare with that of non-
selective surround inhibition. In the following, we will briefly
introduce the isotropic inhibition model of Grigorescu et al.
(2003) and Petkov and Westenberg (2003) and the anisotropic
inhibition model extracted from the full model of Tang et al.
(2007) and compare the performance of the two surround
inhibition types on a synthetic image.

For each location of an input image, a winner-take-all (WTA)
strategy is used to select the neuron with the maximum CRF
response across the Nθ cells with different preferred orientations,
which is written as

Ẽ(x, y) = max
{

E(x, y; θi)|i = 1, 2, ...,Nθ

}

. (7)

where Ẽ(x, y) is called the maximum Gabor energy map, and the
corresponding optimal orientation map is given by

θ̃(x, y) = θj, j = argmax
{

E(x, y; θi)|i = 1, 2, ...,Nθ

}

. (8)
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In order to describe the influence of the orientation contrast
between CRF and nCRF on the inhibition strength, an
orientation contrast based weighting function is defined as Tang
et al. (2007).

W1θ (θCRF, θnCRF) = exp

(

−
θ21

2σ 2
1

)

. (9)

θ1 =

{

|θCRF − θnCRF|, |θCRF − θnCRF| < π/2
π − |θCRF − θnCRF|,| θCRF − θnCRF| ≥ π/2

(10)

where θCRF and θnCRF are the orientations of the stimuli placed
in CRF and nCRF, respectively, θ1 is the orientation contrast
between θCRF and θnCRF . The standard deviation σ1 establishes
a non-linear decreasing of the inhibition strength with the
increasing of orientation contrast. We experimentally set σ1 =

π/6 in this study.
The orientation-selective (OS) inhibition Ios(x, y) is computed

at each location

Ios(x, y) =
∑

(m,n)

W1θ (θ̃(x, y), θ̃(x + m, y + n))·

Wd(m, n) · Ẽ(x + m, y + n). (11)

Note that on the right-hand-side of above equation, we take
the summation across all the locations around (x, y) that meet
(x+m, y+n) ∈ RnCRF , where RnCRF represents the nCRF region.

In contrast, the non-selective (NS) inhibition term Ins(x, y) is
independent of the orientation contrast, which can be modeled
by convoluting the Gabor energy Ẽ(x, y) with the spatial
weighting functionWd(x, y)

Ins(x, y) = Ẽ(x, y)∗Wd(x, y). (12)

Therefore, the final neuronal responses produced by the
orientation-selective and non-selective model can be respectively
written as

ros(x, y) = H
(

Ẽ(x, y)− α · Ios(x, y)
)

. (13)

rns(x, y) = H
(

Ẽ(x, y)− α · Ins(x, y)
)

. (14)

whereH (·) is defined as in Equation (5), i.e.,H(s) = swhile s > 0
and H(s) = 0 while s ≤ 0. α is a parameter used to control the
strength of surround inhibition.

We schematically draw in Figure 1 the possible local neural
networks of V1 cells with orientation-selective and with non-
selective surround inhibition. Note that physiologically, the
inhibition of surrounding excitatory neurons to the excitatory
neurons in CRF is realized via additional inhibitory interneurons
(Li, 1998; Fitzpatrick, 2000; Alitto and Dan, 2010). Here we
omit such interneurons for graphical clarity, and simplify
each inhibitory route as a short- or long-range synapse. In
Figure 1A, the cell with orientation-selective surround inhibition
receives different synaptic strengths depending on the orientation
difference between the central and surrounding stimuli. In
contrast, the cell with non-selective surround inhibition receives
same synaptic strengths regardless of the orientation contrast
(Figure 1B).

Performance Evaluation of Surround Inhibition Based

Models

Themodels mentioned above have been tested with synthetic and
natural images (Grigorescu et al., 2003; Tang et al., 2007) and the
results showed that both models exhibit better performance than
traditional edge detectors such as Canny for contour detection
and texture suppression. To conclusively identify the different
roles of these two inhibition mechanisms in contour detection,
here we first re-evaluated them with a synthetic image (Figure 2),
in which a salient line (contour) is embedded in four different
kinds of backgrounds [see regions (i–iv) of Figure 2A]. In
particular, region (iii) is divided into small square areas with a
size of 15 × 15 pixels. Each square contains a bar stimulus (10
pixels long and 2 pixels wide) with random orientation. Region
(iv) contains a vertical line and a grating with an orientation of
45◦ from the vertical. The distance between any two neighboring
black lines of the grating is 15 pixels.

We always set σ = 4.0 for the spatial size of the Gabor
filter (Equation 1) when computing the CRF response (i.e.,
Gabor energy) to the stimuli in Figure 2A and for the scale of
DOG filter [i.e., with the scales of 4.0 and 16.0 for the CRF
and nCRF, respectively, see Equation (6)] when computing the
surround inhibition based on the Gabor energy map (Figure 2B).
According to the definition of Gabor and DOG+ functions in
Section TheMathematical Representations of CRF and nCRF, the
CRF region of a neuron covers about 2 bars and the surround
(nCRF) covers about 5 × 5 bars in region (iii), and the CRF and
nCRFmay cover about 2 and 5 black lines of the grating in region
(iv), as illustrated by the ellipse-shaped Gabor filter on Figure 2A

and the DOG-shaped RF on Figure 2B.
The results shown in Figure 2 clearly demonstrate that both of

the orientation-selective and non-selective inhibition models can
easily extract the luminance edges [see region (i)] and isolated
lines [see region (ii)], which is consistent with the results of
other work (Grigorescu et al., 2003; Petkov and Westenberg,
2003). However, Figures 2C–E also illustrate that the orientation-
selective inhibition operator has the remarkable ability to extract
the salient line surrounded by a grating with different orientation
[see region (iv)], but incapable for the salient line in the textural
background with randomly oriented bars [see region (iii)].
More detailed analysis is as below. The salient line in region
(iv) (e.g., see point P1 in Figure 2B) receives relatively weak
surround inhibition, because there exists a orientation contrast
of about 45◦ between the stimuli in CRF and nCRF in this
specific case. In contrast, the grating texture (e.g., see point
P3 in Figure 2B) receives strong surround inhibition since no
orientation contrast exists between the stimuli in CRF and its
surround. Therefore, cells with orientation-selective inhibition
can reserve the contours in region (iv) and suppress the grating-
shaped textural background. Note that the extracted salient
segment in region (iv) is incomplete, which could be integrated
using other mechanisms such as spatial facilitation (Grigorescu
et al., 2003; Tang et al., 2007).

On the other hand, the texture in region (iii) (e.g., see point
P2 in Figure 2B) receives relatively weak orientation-selective
inhibition from surround due to the random orientation of the
stimuli, and hence, the orientation-selective inhibition operator
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FIGURE 1 | Simplified possible neural networks of surround inhibition

mechanisms of the two types of V1 neurons. Here a cortical excitatory

neuron in CRF only receives the feed-forward LGN input and feed-forward

inhibition coming from the neighboring inhibitory interneurons that are

activated by the excitatory neurons in nCRF via lateral connections

(Fitzpatrick, 2000; Alitto and Dan, 2010). Note that the interneurons are not

shown for the sake of graphical clarity, and the excitatory neurons in nCRF

(namely, the pre-synaptic cells) connect directly to the excitatory neurons in

CRF (namely, the post-synaptic cells). Wd is a weighting controlled by the

distance between the pre-synaptic and post-synaptic cells. (see Equation 4),

and W1θ is a weighting determined by the angle difference between the

preferred orientations of the pre-synaptic and post-synaptic cells. (see

Equation 9). (A) The local network of a V1 cell with orientation-selective

surround inhibition. The synaptic strength of inhibition depends on both W1θ

and Wd . (B) The local network of a V1 cell with non-selective surround

inhibition. The synaptic strength of inhibition depends only on Wd . Different

widths of the connection lines signify different synaptic strengths: thicker

lines denote stronger (inhibitory) synapses. For example, the lengths of

different connections in (B) are equal, which results in the same widths of the

connection lines and the equal synaptic strengths (Wd ).

can not respond well to the salient lines merged in cluttered
texture like region (iii). Figures 2C–E illustrate that the contour
line and texture in region (iii) are always reserved or suppressed
simultaneously when the inhibition strength (the factor α in
Equation 13) varies.

The opposite situation occurs for the non-selective inhibition
operator (Figures 2F–H), in which surrounding stimuli with
same texture density would contribute equal inhibition strength
to CRF, no matter the surrounding stimuli are uniformly or
randomly oriented. Both the contours embedded in regularly
oriented texture (e.g., point P1 in Figure 2B) and the unwanted
textures (e.g., point P2 in Figure 2B) receive very strong
inhibition, which means that the non-selective inhibition
operator has the ability to suppress the cluttered texture [region
(iii)] but can not well-reserve the lines merged in oriented grating
[region (iv)]. In addition, Figures 2F–H indicate that the salient
line in region (iv) can not be well-extracted by just adjusting the
inhibition strength α of the non-selective inhibition model (see
Equation 14).

In short, while the mechanism of non-selective suppression
cannot well account for the phenomenon of orientation
contrast pop-out, as indicated by our Figures 2F,G and the
Figure 10 of Petkov and Westenberg (2003), here we also
clearly demonstrated that orientation-selective suppression is
incapable of making well-defined structures perceptible beyond
the randomly oriented textures.

One may argue that with the commonly accepted neural
computation mechanism of max-pooling (or winner-take-all)
(Li, 1999; Carandini and Heeger, 2012), the salient vertical line in
Figure 2A could be easily extracted by assuming that the stimulus
at each location might excite both types of neurons. For example,
among a pool of two types of neurons, a neuron with orientation-
selective surround inhibition would produce higher response to
the salient segment in region (iv), and hence this segment would
pop out; and a neuron with non-selective surround inhibition
would produce higher response to the salient segment in region
(iii), which makes this segment pop out. However, it is easily
found that with only winner-take-all mechanism, it is difficult
to effectively suppress some kinds of background, such as the
randomly oriented textures in region (iii), where neurons with
orientation-selective inhibition produce higher responses.

The New Integrated Inhibition Models
Based on the computational analysis mentioned above, we
speculate that V1 cells with orientation-selective and with non-
selective surround inhibition work cooperatively when they
extract visual features such as salient contours from complex
natural scenes. To verify this prediction from a computational
point of view, we propose two new integrated models for contour
detection by combining the two surround inhibitionmechanisms
in two different ways. (i) Model 1: a binary orientation-saliency
(BOS) map is defined to determine the surround inhibition type
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FIGURE 2 | Results of the orientation-selective inhibition

operator and non-selective inhibition operator on the synthetic

map. (A) There are four kinds of backgrounds [i.e., (i)–(iv)] included

in the image. The inset of the ellipse-shaped Gabor filter on region

(iv) illustrates the preferred frequency of CRF compared to that of

the grating element. (B) The maximum Gabor energy map. The

concentric circles denoting the DOG-shaped RF (CRF plus nCRF)

illustrates the relative size of the RF compared to the stimulus

element. Point P1 is on the salient line segment embedded in the

grating texture, P2 locates in the cluttered texture, and P3 is in the

grating texture. Note that darker pixels correspond to higher

neuronal responses, which holds for (C–H). (C–E) are the final

responses of the orientation-selective inhibition operator with three

different inhibition strengths: α = 1.6, 1.8, and 2.0, respectively

(Equation 13). It is clear that the salient segment in randomly

oriented textures [e.g., the region (iii) where point P2 locates] has

no chance to pop out with the mechanism of orientation-selective

inhibition. In contrast, the salient segment embedded in the uniformly

orientated background [e.g., the region (iv) where point P1 and P3

locate] pops out easily. (F–H) are the final responses of

non-selective inhibition operator with three different inhibition

strengths: α = 0.8, 1.2, and 1.6, respectively (Equation 14). It is

obvious that the salient segment in randomly oriented textures [e.g.,

the region (iii) where point P2 locates] pops out easily with the

mechanism of non-selective inhibition. In contrast, the salient

segment embedded in the uniformly orientated background [e.g., the

region (iv) where point P1 locates] fades away when such type of

surround inhibition works. See detailed analysis in the text.

at each location, i.e., two types of neurons with different surround
inhibition mechanisms are selectively activated according to the
local orientation saliency. (ii) Model 2: a real-valued orientation-
saliency (ROS) map is defined as a spatial weighting function
to control the contribution of orientation-selective and non-
selective inhibition to the neuronal responses at each location,
i.e., neurons with both types of surround inhibition work at each
location, but with different contributions.

Model 1

In Model 1, we suppose that two types of neurons with different
surround inhibition mechanisms are selectively activated

according to the local visual patterns. Figure 3A shows the
networking architecture of Model 1. The lateral geniculate
nucleus (LGN) inputs from orientation-salient regions (e.g.,
the grating on the left part of visual inputs in Figure 3) will
selectively excite the V1 cells with orientation-selective surround
inhibition; and in contrast, the stimuli from non-orientation-
salient regions (e.g., the random bar filled region on the right part
of visual inputs in Figure 3) will only activate the V1 cells with
non-selective surround inhibition. The detailed implementation
of Model 1 is as follows.

In order to distinguish the different texture patterns based on
local orientation features, we define µros(x, y), the real-valued
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FIGURE 3 | Networking structures of proposed models. (A) In

Model 1, the orientation-salient regions (e.g., the grating on the left part

of visual inputs, where µbos (x, y) = 1) is only processed by the V1 cells

with orientation-selective surround inhibition; while the

non-orientation-salient regions region (e.g., the random bar filled region

on the right part of visual inputs, where µbos (x, y) = 0) is only processed

by the V1 cells with non-selective surround inhibition. V1 cells on the

branches of dashed lines are not selectively activated. (B) In Model 2,

the input stimulus at each spatial location is first processed by the

orientation-selective surround inhibition cells, and then processed by the

non-selective surround inhibition cells. The ROS map µros (x, y) (defined

by Equation 15) determines the contribution of each type of cells at

each location. For example, the orientation-salient region of grating

receives stronger orientation-selective inhibition and weaker non-selective

inhibition; the non-orientation-salient region of random bars is quite the

reverse. The widths of the connections from the surrounding cells to

CRF cells in Model 2 indicate the synaptic strengths: the thicker the

connections, the stronger the synaptic strengths are.

orientation-saliency (ROS) at spatial location (x, y), as a ratio
of the maximum CRF response across all Nθ cells with different
preferred orientations within a hypercolumn divided by the sum
of CRF responses of these cells, which is given by

µros(x, y) =
max

{

E(x, y; θi)
}

∑

i
E(x, y; θi)

, i = 1, 2, · · · ,Nθ . (15)

The computation of ROS according to Equation (15) could be
realized by a neural network of divisive normalization shown
in Figure 4. In the network a MAX-like operation is used
to integrate the responses of V1 cells within a hypercolumn,
which predicts the winner-take-all competition of cells in
response to the input stimuli with different orientations. MAX-
like computation has exhibited excellent capability in neural
coding in V1 (Zhaoping and May, 2007) and IT (Riesenhuber
and Poggio, 1999). Furthermore, the divisive normalization is
considered as a canonical neural computation in the neural
system (Carandini and Heeger, 2012).

An operation of Gaussian filtering is used to smoothµros(x, y),
and the whole ROSmap is normalized to makeµros(x, y) ∈ [0, 1]
for convenience. Then, a BOS map is calculated by binarizing the
ROS map according to

µbos(x, y) =

{

1, µros(x, y) ≥ th
0, µros(x, y) < th

(16)

where th is a threshold, and we experimentally set th = 0.4 in
this study. Based on the BOS map, an input image is divided into
orientation-salient regions (the regions with µbos(x, y) = 1) and
non-orientation-salient regions (the regions with µbos(x, y) =

0). In the orientation-salient regions, only the neurons with
orientation-selective surround inhibition are activated, and in
contrast, neurons with non-selective inhibition work only in the
non-orientation-salient regions.

The final neuronal response produced by Model 1 is given by

r1(x, y) =

{

H
(

Ẽ(x, y)− α1 · Ios(x, y)
)

, µbos(x, y) = 1

H
(

Ẽ(x, y)− α2 · Ins(x, y)
)

, µbos(x, y) = 0
(17)

whereH(·) is an operator defined as in Equation (5), i.e.,H(s) = s
while s > 0 and H(s) = 0 while s ≤ 0. α1 and α2 are
weighting factors to control the strengths of orientation-selective
and non-selective surround inhibition.

For some simple images, such as the synthetic image shown in
Figure 2A, the orientation-salient regions and non-orientation-
salient regions can be easily and solely labeled using a BOS map
and the contours can be effectively extracted using appropriate
types of neurons. However, the following two reasons impel us
to refine Model 1 in the next subsection: (1) the requirement of
defining a suitable threshold value th (see Equation 16) seems
non-biologically plausible and is not easy for each natural image;
(2) most natural images are so complicated that uniformly and
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FIGURE 4 | Computation of ROS with a possible neural network of

divisive normalization. A winner-take-all (or MAX) operation is used to select

the cell with the maximum CRF response across all Nθ cells with different

preferred orientations within a hypercolumn, which is further divided by the

sum of CRF responses of these cells.

randomly oriented features always coexist in many local regions
(Simoncelli, 2003; Olshausen and Field, 2004; Geisler, 2008;
Tkaèik et al., 2010, 2011), whichmakes it not reasonable to simply
define local regions as orientation-salient or non-orientation-
salient.

Model 2

The general idea behind Model 2 is that each local region
is always processed by both the neurons with orientation-
selective and with non-selective surround inhibition (Figure 3B),
and the relative contributions of the two types of neurons
are controlled by the ROS map computed by Equation (15).
For examples, orientation-salient regions (e.g., the grating on
the left part of visual inputs in Figure 3) will be processed
by stronger orientation-selective surround inhibition followed
by weaker non-selective surround inhibition. Conversely, the
stimuli from the non-orientation-salient regions (e.g., the
random bar filled region on the right part of visual inputs
in Figure 3) will be suppressed by weaker orientation-selective
surround inhibition followed by stronger non-selective surround
inhibition. The implementation details of Model 2 are as
follows.

Considering the fact that non-selective surround inhibition
may severely suppress the neuronal responses to the
contours embedded in the uniformly oriented background
(Figures 2F–H), the input image in Model 2 is first processed by
neurons with orientation-selective inhibition, and the neuronal
response is written as

Ros(x, y) = H
(

Ẽ(x, y)− α1 · µros(x, y) · Ios(x, y)
)

. (18)

where H(·) is defined as in Equation (5) to restrict neuronal
responses non-negative. ROS map µros(x, y) is used as a
spatial weighting function. α1 is a parameter used to control
the synaptic strength of the orientation-selective surround
inhibition. Equation (18) indicates that neurons at local
regions with a higher orientation saliency would receive greater
orientation-selective surround inhibition.

The output produced by Equation (18) contains randomly
oriented features, which is further processed by the neurons with
non-selective inhibition. The non-selective surround inhibition
term Rns(x, y) is easily computed by convoluting Ros(x, y) with
the spatial weighting functionWd

(

x, y
)

:

Rns(x, y) = Ros(x, y)∗Wd

(

x, y
)

. (19)

The final response of the neurons simulated in Model 2 is
given by

r2(x, y) = H
(

Ros(x, y)− α2 · (1− µros(x, y)) · Rns(x, y)
)

.

(20)
where α2 is a parameter controlling the synaptic strength of the
non-selective surround inhibition. Equation (20) indicates that
in the regions with more randomly oriented features, neurons
with non-selective inhibition would receive higher surround
inhibition, which is scaled by 1− µros(x, y).

It should be clarified that the present Models 1 and
2 are computationally implemented using the Gabor-based
phenomenological framework and the operation of convolution,
but in fact, these models can be biologically plausibly explained
and implemented using the form of neural circuits. The
convolution of Gabor energy map with a weighting template
(e.g., Equations 12 and 19) is in nature a simple implementation
of summing the synaptic strength weighted modulation coming
from the activated neurons in the nCRF region (Ursino and La
Cara, 2004; La Cara and Ursino, 2008; Zeng et al., 2011), where
the Gabor energy at each location denotes the spiking response of
a V1 neuron and the value of the weighting template represents
the strength of the feed-forward inhibitory synapse targeting the
CRF neuron.

Experimental Results

The Performance of the Integrated Models on a
Synthetic Image
To understand the behaviors of proposed models, we evaluated
their performance with the synthetic image shown in
Figure 5A. Figure 5B shows the maximum Gabor energy
map corresponding to the input image, and the ROS map and
BOS map are shown in Figure 5C and Figure 5D, respectively.
From the results shown in Figure 5E we can clearly find that
Model 1 responds well to isolated lines [e.g., in region (ii)]
and luminance contrast edges [e.g., in region (i)], which were
classified as orientation-salient regions (Figure 5D) and were
detected by neurons with orientation-selective inhibition. In
addition, Model 1 responds well to the organized lines embedded
in the cluttered background, which were selectively extracted
from orientation-salient regions [e.g., region (iv)] by neurons
with orientation-selective inhibition or from non-orientation-
salient regions [e.g., region (iii)] by neurons with non-selective
inhibition. As shown in Figure 5E, all the meaningful edges
mentioned above are clearly extracted while the oriented or
cluttered backgrounds are effectively suppressed with Model 1.

On this synthetic image, Model 2 also provides excellent
contour detection result (Figure 5F). In particular, Model
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FIGURE 5 | Results of our models on a synthetic image. (A) Input image

with four kinds of backgrounds [i.e., (i–iv)]. (B) The maximum Gabor energy

map [darker pixels correspond to higher neuronal responses, which holds for

(E,F)]. (C) The real orientation-saliency (ROS) map defined by Equation (15)

(whiter pixels correspond to higher orientation-saliencies). (D) The binary

orientation-saliency (BOS) map defined by Equation (16) with th = 0.4 (white

and black areas denote respectively the orientation-salient and

non-orientation-salient regions). (E) The final output of Model 1 with α1 = 1.60

and α2 = 1.60. (F) The final output of Model 2 with α1 = 1.60 (in Equation 18)

and α2 = 2.56 (in Equation 20).

2 suppresses the cluttered background in region (iii) more
completely than Model 1, due that Model 1 wrongly classifies a
few local clusters in region (iii) as the orientation-salient, and
the responses of the activated cells with orientation-selective
inhibition to these clusters can not be sufficiently suppressed by
the randomly oriented surrounding stimuli.

One may argue that if the contribution of facilitatory
modulation to contour pop-out was introduced, it would be
unnecessary to explicitly differentiate the roles of orientation-
selective and non-selective surround inhibition, since both
the two types of inhibition seem to work as noise eliminators.
Figure 2A may serve as example to illuminate the important
differences between the two types of inhibition. When

responding to the stimuli in region (iv) of Figure 2A, the
strengths of collinear facilitation are (almost) equal at all
spatial locations, and meanwhile, the strengths of non-selective
inhibition at all locations of this region are also equal. Hence,
non-selective inhibition together with collinear facilitation can
not make the vertical line segment in this region pop-out. In
contrast, the type of orientation-selective inhibition (or together
with collinear facilitation) can accomplish this visual task easily.

It should be pointed out that the boundary between the
regions (ii) and (iii) and the boundary between the regions
(iii) and (iv) can not be extracted and connected into clear
and smooth contours by Models 1 or 2. The reason is mainly
that these two boundaries are texture defined, and more visual
features like frequency and phase contrasts and even higher
cortical areas like V2 may be required to effectively detect such
kind of edges (Li and Li, 1994; Nothdurft et al., 1999; Xu et al.,
2005; Shen et al., 2007; Song and Li, 2008; Song et al., 2010).

Contour Detection on Natural Images
The performance was also tested with the widely used RuG
dataset (Grigorescu et al., 2003; Papari et al., 2007; Tang et al.,
2007; Papari and Petkov, 2008; Zeng et al., 2011), which includes
40 gray-level natural images and each has an associated ground-
truth binary contour map drawn by a human (downloaded from
http://www.cs.rug.nl/∼imaging/databases/contour_database/con
tour_database.html). The performance of our models was
compared with that of the typical orientation-selective and
non-selective inhibition models proposed by Grigorescu et al.
(2003), as described before.

In order to compare with the binary ground-truth contour
map, the contour results extracted with different models
were binarized using the standard procedure of non-maxima
suppression followed by hysteresis thresholding (Canny, 1986;
Grigorescu et al., 2003). In short, a non-maxima suppression
operation was used to thin the candidate contours, and then an
operation of hysteresis thresholding was applied to obtain the
binary contour with one-pixel wide. Same as Grigorescu et al.
(2003) and Zeng et al. (2011), we fixed tBl = 0.5tBh, where tBh
and tBl are two parameters defining the low and high threshold
values involved in the process of hysteresis thresholding. The
details of non-maxima suppression and hysteresis thresholding
could be referred to other literatures (Canny, 1986; Grigorescu
et al., 2003).

We tested all the models with the same 80 groups of
different parameter combinations in order to fully demonstrate
their performance in a statistical manner. Specifically, we set
Nθ = 12 for the Gabor filters. For the orientation-selective
and non-selective inhibition models, we used eight scales of
Gabor filters, σ ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4} and α ∈

{1.0, 1.2}. We applied five high hysteresis threshold values
based on the percentage of candidate edge pixels with p ∈

{0.1, 0.2, 0.3, 0.4, 0.5}. For our models, we used four Gabor
scales, σ ∈ {1.2, 1.6, 2.0, 2.4}, covering the most same domain
of the Gabor filters as the eight scales mentioned above. We
used α1 ∈ {1.8, 2.0} and α2 ∈ {1.2, 1.4}α1 to control the
strength of orientation-selective inhibition and non-selective
inhibition, respectively; and p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, with
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same distribution range as other models considered here, for
hysteresis threshold processing. Taken together with the results of
Grigorescu et al. (2003) and our extensive testing, it is reasonable
to propose that the 80 groups of parameter combinations
obtained with these parameter settings are able to fairly exploit
the overall performance of our models and other two existing
models.

Qualitative Comparison

The best contour detection results among those obtained with the
80 groups of parameter combinations are compared in Figure 6

for four of total 40 RuG images. From the figure we can find that
our Models 1 and 2 outperform the models with orientation-
selective (denoted by OS) and non-selective (denoted by NS)
inhibition alone, especially on the suppression of texture edges.
In particular, we can clearly see that in the binary contour
maps achieved by our Model 2 (the third rows in Figure 6), the
extracted contours are smoother (with fewer cracks), with much
fewer trivial edges on the images, which indicates that our Model
2 is capable of extracting salient contours and suppresses the
texture edges (like foliage or grass) much more effectively than
other models.

Quantitative Comparison

We measured the similarity of the output of computational
models and the ground-truth contour map of each image.
Generally, contours cannot always be detected at exact location.
Following the work of Grigorescu et al. (2003), in this study, a
5× 5 square neighborhood is used as a tolerance when matching
a contour pixel in the algorithm output to the ground truth
contours. That means a pixel detected by model is considered
as correctly contour pixel if there is (at least) a ground truth
contour pixel presenting in its 5 × 5 square neighborhood. Let
EGT and ED be respectively the set of ground-truth contour
pixels and pixels detected by a model. Then, the pixel set of
correctly contour pixels detected by a model (denoted by E) is
E = ED ∩ (EGT ⊕ T) (Note that ⊕ is the dilate operator and
T is a 5 × 5 square template). The pixel set of false positives
(denoted by EFP) is determined by eliminating the correctly
detected contour pixels from all pixels detected by model, i.e.,
EFP = ED−E. In contrast, the pixel set of false negatives (denoted
by EFN) is determined by eliminating those ground truth pixels,
which present in the 5 × 5 square neighborhood of correctly
detected contour pixels, from all ground truth contour pixels,
i.e., EFN = EGT − (EGT ∩ (ED ⊕ T)). Then the percentage of
false positives eFP, the percentage of false negatives eFN and the
overall performance measure P could be computed according to
Grigorescu et al. (2003), Tang et al. (2007), and Zeng et al. (2011)

eFP = card(EFP)/card(E). (21)

eFN = card(EFN)/card(EGT). (22)

P =
card(E)

card(E)+ card(EFP)+ card(EFN)
. (23)

where card(S) represents the number of elements of the set
S. It is obvious from the definitions that a lower eFP, caused
by the lower false positives and more correctly detected pixels,

indicates a better suppression of textured background. Similarly,
a lower eFN means a better integrity of salient contour,
and as a whole, a better overall performance results in a
higher P.

Table 1 lists the best P and the corresponding parameter
settings for the four images shown in Figure 6. The data clearly
show that our Models 1 and 2 provide smaller eFP, which
quantitatively reveals that our two models exhibit excellent
ability for suppressing texture edges. Meanwhile, our models
obtain superior overall performance (higher P) by balancing
the rate of false positive and false negative (lower eFP and
lower eFN).

Figure 7 illustrates the performance comparison of different
models with the statistical box-and-whisker plots for the eight of
40 natural images. The top end of a whisker and the horizontal
red line in the box represent respectively the best and the
median P (denoted by Pmax and Pmed, respectively) among the 80
performance measures obtained with the 80 groups of parameter
combinations. In our Model 2, the best performance Pmax is
substantially higher in comparison to that of the orientation-
selective and non-selective inhibition models. In addition, our
models produce a consistently higher median performance Pmed

than the two models with orientation-selective or non-selective
inhibition alone.

Figure 8A compares the average values of Pmax and Pmed

achieved by each model, computed on the all 40 images of RuG
dataset. Our Model 2 outperforms the models with non-selective
or orientation-selective inhibition alone in terms of both Pmax

and Pmed statistics. Meanwhile, we also analyzed the distribution
range of P over all parameter combinations. The average values of
the length of boxes and whiskers were computed on each model,
as shown in Figure 8B.

The statistics of Pmax could reflect a model’s capacity to
achieve best performance P on each image with optimal
parameter settings. In contrast, the statistics of Pmed and the
length of boxes and whiskers could reflect a model’s robustness
with various non-optimal parameter settings. The obvious
superior statistics of Pmed and the length of boxes and whiskers
produced by our modes, especially Model 2, indicates that
suitable combining of orientation-selective and non-selective
inhibition mechanisms endows a computational model with a
higher chance to obtain a better contour detection result on
each image. We believe that the statistics of Pmed and the
length of boxes and whiskers are more critical for a contour
detection model due to the fact that for a real-time computer
vision application under varying scenes, it is impracticable to
use an exhaustive searching method to find the optimal model
parameters for each input image.

Taken together with Figures 7, 8, it is reasonable to
conclude that our two models with integrated surround
inhibition mechanisms have the potential to achieve the best
contour detection results with higher performance than the
models with the orientation-selective or non-selective inhibition
mechanism alone. Furthermore, our two models have the
capacity to obtain a better result for each image in more
robust ways when non-optimal parameters are set in the
models.
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FIGURE 6 | Comparison of contour detection results on real

images. From top to bottom, rows show the four of the test

images (the first row), their corresponding ground truth contour

maps (the second row), the best contour maps obtained with our

Model 2 (the third row) and Model 1 (the fourth row), and the

best contour maps obtained with non-selective (denoted by NS) (the

fifth row) and orientation-selective (denoted by OS) (the last row)

inhibition models.

Discussion

This work focuses on the functional roles of two specific types

of surround inhibition of V1 cells. From a physiological point of

view, the goal of this study is not to develop a contour detection

model incorporated with the full V1 mechanisms including

surround inhibition, spatial facilitation, feedback modulation
from higher levels, temporal dynamics, etc. (Field et al., 1993;
Fitzpatrick, 2000; Seriès et al., 2003; Ursino and La Cara, 2004;
Vonikakis et al., 2006; Dakin and Baruch, 2009; Huang et al.,
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2009; Chen et al., 2014), but to clarify the different roles of
orientation-selective and non-selective surround inhibition of
V1 neurons in the specific task of extracting salient contours of
objects from cluttered background. As the basis of this study, we
demonstrated in the very beginning of this paper that, in general,
V1 neurons with non-selective surround inhibition exhibit better
overall performance measure due to its markedly superior ability

TABLE 1 | Parameter settings and the best performance of different

models.

Image Detector Parameter Performance

σ p α α1 α2 eFP eFN P

Basket OS 2.20 0.10 1.00 2.32 0.51 0.23

NS 2.20 0.20 1.20 1.12 0.52 0.31

Model 1 2.00 0.90 1.80 2.16 0.28 0.49 0.45

Model 2 1.60 0.90 2.00 2.80 0.48 0.37 0.48

Gazelle2 OS 2.40 0.10 1.20 1.18 0.32 0.38

NS 2.40 0.30 1.20 0.67 0.40 0.43

Model 1 1.60 0.90 1.80 2.16 0.30 0.57 0.38

Model 2 2.00 0.90 1.80 2.16 0.50 0.43 0.44

Rino OS 2.40 0.10 1.20 3.97 0.35 0.18

NS 2.40 0.10 1.20 0.46 0.44 0.44

Model 1 2.40 0.90 1.80 2.16 0.31 0.48 0.45

Model 2 2.40 0.70 2.00 2.80 0.25 0.44 0.49

Tire OS 2.40 0.10 1.20 0.64 0.46 0.40

NS 2.20 0.50 1.20 0.39 0.33 0.53

Model 1 1.20 0.90 1.80 2.16 0.13 0.45 0.52

Model 2 1.60 0.90 1.80 2.16 0.26 0.29 0.60

Bold values indicate the performance of our models.

in suppressing noised background. In contrast, V1 neurons with
orientation-selective inhibition show relatively higher capacity
to retain organized contours embedded in uniformly oriented
background.

More importantly, based on the above computational analysis,
we proposed two new integrated models (i.e., Models 1 and 2)
for salient contour detection by combining the two types of
surround inhibition in different ways. The results on a natural
image dataset with contour ground-truth showed that both
our Models 1 and 2 outperform substantially the models with
orientation-selective or non-selective inhibition alone, which
implies a cooperative way among different types of V1 neurons
at least when extracting salient contours from cluttered natural
scenes. Furthermore, the substantial superiority of Model 2
over Model 1 may at least suggest a reasonable hypothesis that
regularly and randomly oriented background patterns co-exist
with different amounts at most spatial locations of natural scenes,
which may provide meaningful implications for natural stimulus
based physiological experiments and computer vision oriented
applications. Note that it is beyond the scope of this work to
compare the performance of our new models with that of the
state-of-the-art methods developed mainly for the purpose of
engineering applications (e.g., Arbelaez et al., 2011), since our
focus in this study is especially on providing support for the idea
that neurons with different surround inhibition prefer working
cooperatively rather than alone.

To the best of our knowledge, none of the existing models has
explicitly modeled the different functional roles of orientation-
selective and non-selective surround inhibition within an
integrated model. The reason we emphasize the difference
between the two types of surround inhibition is that they
act quite differently, almost conversely, to a same stimulus
pattern. For example, to a vertical straight line embedded in

FIGURE 7 | Box-and-Whisker statistical comparison of different

models. The Box-and-Whisker plots compare the performance of the

orientation-selective inhibition model (denoted by OS), non-selective

inhibition model (denoted by NS), our Model 1 (denoted by M1) and

Model 2 (denoted by M2) for eight of the total 40 images. Note that

the box-and-whisker statistical analysis was done on all the 40 images

of the RuG dataset, eight of which are listed here just for the space

limitation.
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FIGURE 8 | Full statistical comparison of different models. (A) The

statistics of the max P (Pmax) and median P (Pmed) of the Box-and-Whisker

statistics as shown in Figure 7. (B) The statistics of the length of whiskers

(Pmax − Pmin) and the length of boxes. The statistics shown in (A,B) were

computed on the Box-and-Whisker statistics of all the 40 images of the whole

RuG dataset. The error bars indicate 95% confidence intervals.

horizontally oriented grating, a V1 cell with orientation-selective
surround inhibition responds strongly, and in contrast, a cell
with non-selective inhibition responds quite weakly (when other
mechanisms like spatial facilitation are omitted). Hence, we
suggest that a V1 model explicitly taking into account the two
types of surround inhibition will become more physiologically
plausible and computationally feasible.

Though discriminating the different roles of the two types of
surround inhibition mechanisms is of no doubt meaningful, and
the two possible solutions proposed in this study for combining
the two inhibition types seem to work well, there is still no
direct evidence for (or against) our two proposals of integrating
different surround inhibition types. Even so, we can see many
interesting experimental findings that may provide indirect
support to the physiological plausibility underlying our models.
For example, as for the biological counterpart of BOS or ROS
map, a most possible explanation is that the BOS or ROS map is
a certain kind of “gist” extracted very rapidly via a nonselective
pathway from very brief visual presentations (Rousselet et al.,
2005; Wolfe et al., 2011). It has been proposed that compared to
the capacity limited selective pathway for fine feature extraction,
binding, and object recognition, the nonselective pathway can

extract rapidly and efficiently from the entire scene some statistics
of global coarse information including the distributions of basic
visual attributes, such as texture and color, the spatial layout, etc
(Sanocki, 2003; Rousselet et al., 2005). These sources of statistical
and structural cues could be used to direct the resources of the
selective pathway intelligently to refine the extraction of basic
spatial structures like object contours (Fei-Fei et al., 2007; Greene
and Oliva, 2009; Wolfe et al., 2011). Apparently, this possible
scenario deserves further investigation. A recent physiological
study (Chen et al., 2014) found that the onset of responses
in V1 to global contours in a cluttered background is delayed
relative to that seen in V4 (though the responses in both areas
continue to evolve in parallel after that time). This supports the
previous suggestion that feedback from higher areas may serve to
dynamically gate horizontal connections within V1, which can
modify V1 response properties according to stimulus context
(and behavioral goal) and confer selectivity for more complex
stimulus geometries (Gilbert and Li, 2013). These studies strongly
suggest that feedback modulation from higher to lower visual
areas plays a critical role in conscious perception of global
forms (e.g., object contours). In fact, for the task of contour
detection, several models have already been proposed trying
to show how the top–down interactions operate to modulate
local circuits within V1 for both contour enhancement and
background suppression (Li, 1998; Zeng et al., 2011; Piëch et al.,
2013).

One may argue our finding that better performance is
achieved by the hierarchical processing in Model 2, i.e., the
visual inputs to V1 are processed first by neurons with
orientation-selective surround inhibition, and then by neurons
with non-selective surround inhibition. As demonstrated by the
detailed results and the analysis mentioned earlier, this specific
hierarchical processing is computationally required to extract
boundaries in regularly oriented textures [e.g., region (iv) in
Figure 2], and reversing this hierarchical order will make the
boundaries undetectable in regularly oriented background. The
biological plausibility underlying Model 2 is perhaps related
to the intrinsic organization of the pin-wheel-like-orientation
columns in V1. It has been long recognized that in the V1
area of high mammals, neurons are organized in clusters with
similar spatial summation properties, e.g., neurons with similar
orientation preference are arranged in iso-orientation domains
(IOD) around pin-wheel centers (PC), and the orientation tuning
curve of the pin-wheel cells is shallower and broader than that of
the domain cells in their CRFs (Bonhoeffer and Grinvald, 1991;
Maldonado et al., 1997; Nauhaus et al., 2008). Recent studies
(Hashemi-Nezhad and Lyon, 2012; Liu et al., 2013) further
revealed that the orientation tuning of the suppression in the
non-classical surround (i.e., nCRF) is sharper for IOD than for
PC. That is, the neurons with orientation-selective surround
inhibition are mostly in domain regions, and in contrast, the cells
with non-selective (or widely tuned) surround inhibition locate
mainly within the pinwheel centers. Inspired by these findings,
we hypothesize that the neurons with non-selective inhibition
in PC might integrate the information from the neurons with
orientation-selective inhibition in IOD by short-range lateral
connections between PC and IOD regions (Malach et al., 1993;
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Das and Gilbert, 1999; Yousef et al., 2001). A possible flow of
information transmission in our Model 2 could be: the inputs
from LGN are first processed by some neurons in the spreading
region of domain, and then integrated and further processed by
PC neurons with non-selective inhibition. It is of course required
to validate such information flow by further physiological
experiments, e.g., by comparing the response latency related to
the surround suppression of PC and domain neurons.

Finally, it is necessary to comment on some possible
future improvements of the proposed models. Considering
the special role of collinear facilitation in visual processing
and its successful applications in computational modeling, one
of our further research directions is to integrate facilitatory
surround modulation into our models, which is not only
helpful to objectively evaluate the functional role of different
V1 elements, but also beneficial to the application goal of
reconstructing incomplete contours and extracting Gestalt edges.
Furthermore, incorporating top-down feedback mechanisms
into computational models with appropriate ways is of no
doubt helpful to substantially improve the performance of
contour extraction in cluttered scenes, which is an especially
challenging but engrossing future direction since only little
knowledge about feedback from higher cortical areas has been
experimentally discovered (Gilbert and Li, 2013; Chen et al.,
2014).

In conclusion, much remains to be investigated about the
functional role and the underlying mechanisms of surround
inhibition of V1 neurons in visual processing of natural scenes
(Fitzpatrick, 2000; Alitto and Dan, 2010). The computational
analysis presented in this study is helpful to us to get a
better understanding of the functional properties of different
types of V1 neurons when extracting salient object contours
from cluttered natural scenes. The underlying idea that V1
neurons with different types of surround inhibition work
cooperatively for visual processing is in line with the widespread
agreement that the visual system evolved so as to be adapted
to the properties of the natural environment around us, and
the results may suggest some valuable directions for more
efficient contour detection models used in computer vision
applications.
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